We study the transient dynamics and the asymptotic behaviour of a multilevel system in the strong dissipation regime. The system is modeled as a periodically driven quantum particle in an asymmetric double well potential, interacting with the bosonic heat bath of the Caldeira-Leggett model. The analytical approach used is non- perturbative in the particle-bath coupling and is based on a space-discretized path integral expression for the particle’s reduced density matrix. By a suitable approximation on the Feynman-Vernon influence functional a Markov-approximated master equation is obtained for the populations in the Discrete Variable Representation (DVR).

MAGAZZU', L., VALENTI, D., SPAGNOLO, B., FALCI, G. (2013). Transient Dynamics of a Driven Quantum Bistable System [Altro].

Transient Dynamics of a Driven Quantum Bistable System

MAGAZZU', Luca;VALENTI, Davide;SPAGNOLO, Bernardo;
2013-01-01

Abstract

We study the transient dynamics and the asymptotic behaviour of a multilevel system in the strong dissipation regime. The system is modeled as a periodically driven quantum particle in an asymmetric double well potential, interacting with the bosonic heat bath of the Caldeira-Leggett model. The analytical approach used is non- perturbative in the particle-bath coupling and is based on a space-discretized path integral expression for the particle’s reduced density matrix. By a suitable approximation on the Feynman-Vernon influence functional a Markov-approximated master equation is obtained for the populations in the Discrete Variable Representation (DVR).
2013
Poster, contributo al congresso 'Noise Information and Complexity at the Quantum Scales' - Erice, 6-12 Ottobre 2013
MAGAZZU', L., VALENTI, D., SPAGNOLO, B., FALCI, G. (2013). Transient Dynamics of a Driven Quantum Bistable System [Altro].
File in questo prodotto:
File Dimensione Formato  
BookofAbstract-NICatQS13.pdf

Solo gestori archvio

Descrizione: Libro degli Abstract - NIC@QS13
Dimensione 6.47 MB
Formato Adobe PDF
6.47 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/83746
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact