Quantum extreme learning machines (QELMs) leverage untrained quantum dynamics to efficiently process information encoded in input quantum states, avoiding the high computational cost of training more complicated nonlinear models. On the other hand, quantum information scrambling (QIS) quantifies how the spread of quantum information into correlations makes it irretrievable from local measurements. Here, we explore the tight relation between QIS and the predictive power of QELMs. In particular, we show efficient state estimation is possible even beyond the scrambling time, for many different types of dynamics — in fact, we show that in all the cases we studied, the reconstruction efficiency at long interaction times matches the optimal one offered by random global unitary dynamics. These results offer promising venues for robust experimental QELM-based state estimation protocols, as well as providing novel insights into the nature of QIS from a state estimation perspective.

(16/09/2024 - 20/09/2024).State Estimation with Quantum Extreme Learning Machine beyond scrambling time.

State Estimation with Quantum Extreme Learning Machine beyond scrambling time

Marco Vetrano

Abstract

Quantum extreme learning machines (QELMs) leverage untrained quantum dynamics to efficiently process information encoded in input quantum states, avoiding the high computational cost of training more complicated nonlinear models. On the other hand, quantum information scrambling (QIS) quantifies how the spread of quantum information into correlations makes it irretrievable from local measurements. Here, we explore the tight relation between QIS and the predictive power of QELMs. In particular, we show efficient state estimation is possible even beyond the scrambling time, for many different types of dynamics — in fact, we show that in all the cases we studied, the reconstruction efficiency at long interaction times matches the optimal one offered by random global unitary dynamics. These results offer promising venues for robust experimental QELM-based state estimation protocols, as well as providing novel insights into the nature of QIS from a state estimation perspective.
Quantum Information, Quantum Machine Learning
(16/09/2024 - 20/09/2024).State Estimation with Quantum Extreme Learning Machine beyond scrambling time.
File in questo prodotto:
File Dimensione Formato  
DeCAF_poster__1_.pdf

Solo gestori archvio

Descrizione: Poster
Tipologia: Altro materiale (es. dati della ricerca)
Dimensione 2.49 MB
Formato Adobe PDF
2.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/674615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact