Moving from the seminal papers by Bobkov and Tanaka \cite{BT,BT2,BT3} on the spectrum of the $(p,q)$-Laplacian, we analyze the case of the double-phase operator. We discuss the region of parameters in which existence and non-existence of positive solutions occur. The proofs are based on normalization procedures, the Nehari manifold, and truncation techniques, exploiting Picone-type inequalities and an ad-hoc strong maximum principle.

Laura Gambera; Umberto Guarnotta (8-12/07/2024).On Bobkov-Tanaka type spectrum for the double-phase operator.

On Bobkov-Tanaka type spectrum for the double-phase operator

Laura Gambera
;

Abstract

Moving from the seminal papers by Bobkov and Tanaka \cite{BT,BT2,BT3} on the spectrum of the $(p,q)$-Laplacian, we analyze the case of the double-phase operator. We discuss the region of parameters in which existence and non-existence of positive solutions occur. The proofs are based on normalization procedures, the Nehari manifold, and truncation techniques, exploiting Picone-type inequalities and an ad-hoc strong maximum principle.
Mathematics, Analysis of PDEs
35J60, 35J25, 35B38, 35P30
Laura Gambera; Umberto Guarnotta (8-12/07/2024).On Bobkov-Tanaka type spectrum for the double-phase operator.
File in questo prodotto:
File Dimensione Formato  
GG3.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 449.88 kB
Formato Adobe PDF
449.88 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/669703
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact