The abstract outlines the research proposal focused on the utilization of Unmanned Aerial Vehicles (UAVs) for monitoring potholes in road infrastructure affected by various weather conditions. The study aims to investigate how different materials used to fill potholes, such as water, grass, sand, and snow-ice, are impacted by seasonal weather changes, ultimately affecting the performance of pavement structures. By integrating weather-aware monitoring techniques, the research seeks to enhance the rigidity and resilience of road surfaces, thereby contributing to more effective pavement management systems. The proposed methodology involves UAV image-based monitoring combined with advanced super-resolution algorithms to improve image refinement, particularly at high flight altitudes. Through case studies and experimental analysis, the study aims to assess the geometric precision of 3D models generated from aerial images, with a specific focus on road pavement distress monitoring. Overall, the research aims to address the challenges of traditional road failure detection methods by exploring cost-effective 3D detection techniques using UAV technology, thereby ensuring safer roadways for all users.
(2024). Enhancing Road Infrastructure Monitoring: Integrating Drones for Weather-Aware Pothole Detection.
Enhancing Road Infrastructure Monitoring: Integrating Drones for Weather-Aware Pothole Detection
UDDIN, Mohammed Zeeshan
2024-07-19
Abstract
The abstract outlines the research proposal focused on the utilization of Unmanned Aerial Vehicles (UAVs) for monitoring potholes in road infrastructure affected by various weather conditions. The study aims to investigate how different materials used to fill potholes, such as water, grass, sand, and snow-ice, are impacted by seasonal weather changes, ultimately affecting the performance of pavement structures. By integrating weather-aware monitoring techniques, the research seeks to enhance the rigidity and resilience of road surfaces, thereby contributing to more effective pavement management systems. The proposed methodology involves UAV image-based monitoring combined with advanced super-resolution algorithms to improve image refinement, particularly at high flight altitudes. Through case studies and experimental analysis, the study aims to assess the geometric precision of 3D models generated from aerial images, with a specific focus on road pavement distress monitoring. Overall, the research aims to address the challenges of traditional road failure detection methods by exploring cost-effective 3D detection techniques using UAV technology, thereby ensuring safer roadways for all users.File | Dimensione | Formato | |
---|---|---|---|
UDDIN-THESIS.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Dimensione
1.58 MB
Formato
Adobe PDF
|
1.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.