Interest in on-body communication channels is growing as the use of wireless devices increases in medical, consumer and military sensor applications. This paper presents an experimental investigation and analysis of the narrowband on-body propagation channel. This analysis considers each of the factors affecting the channel during a range of stationary and motion activities in different environments with actual wireless mote devices on the body. Use of such motes allows greater freedom in the subject's movements and the inclusion of real-world indoor and outdoor environments in a test sequence. This paper identifies and analyses the effect of the different components of the signal propagation (mean propagation path gain, large-scale fading and small-scale fading) and the cause of the losses and variation due to activities, positions or environmental factors. Our results show the effect on the received signal and the impact of voluntary and involuntary movements, which cause shadowing effects. The analysis also allows us to identify sensor positions on the body that are more reliable and those positions that may require a relay or those that may be suitable for acting as a relay.

Di Franco, F., Tachtatzis, C., Graham, B., Tracey, D., Timmons, N.F., Morrison, J. (2011). On-body to on-body channel characterization. ??????? it.cilea.surplus.oa.citation.tipologie.CitationProceedings.prensentedAt ??????? IEEE SENSORS, Limerick, Irelands [10.1109/ICSENS.2011.6127262].

On-body to on-body channel characterization

DI FRANCO, Fabio;
2011-01-01

Abstract

Interest in on-body communication channels is growing as the use of wireless devices increases in medical, consumer and military sensor applications. This paper presents an experimental investigation and analysis of the narrowband on-body propagation channel. This analysis considers each of the factors affecting the channel during a range of stationary and motion activities in different environments with actual wireless mote devices on the body. Use of such motes allows greater freedom in the subject's movements and the inclusion of real-world indoor and outdoor environments in a test sequence. This paper identifies and analyses the effect of the different components of the signal propagation (mean propagation path gain, large-scale fading and small-scale fading) and the cause of the losses and variation due to activities, positions or environmental factors. Our results show the effect on the received signal and the impact of voluntary and involuntary movements, which cause shadowing effects. The analysis also allows us to identify sensor positions on the body that are more reliable and those positions that may require a relay or those that may be suitable for acting as a relay.
Settore ING-INF/03 - Telecomunicazioni
28-ott-2011
IEEE SENSORS
Limerick, Irelands
28/10/2011
2011
4
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6127262
Di Franco, F., Tachtatzis, C., Graham, B., Tracey, D., Timmons, N.F., Morrison, J. (2011). On-body to on-body channel characterization. ??????? it.cilea.surplus.oa.citation.tipologie.CitationProceedings.prensentedAt ??????? IEEE SENSORS, Limerick, Irelands [10.1109/ICSENS.2011.6127262].
Proceedings (atti dei congressi)
Di Franco, F; Tachtatzis, C; Graham, B; Tracey, D; Timmons, NF; Morrison, J
File in questo prodotto:
File Dimensione Formato  
Sensors2011.pdf

Solo gestori archvio

Descrizione: On-body to on-body channel characterization
Dimensione 285.13 kB
Formato Adobe PDF
285.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/64402
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 11
social impact