Thrombosis is a pathology leading to the formation of clots, that can result in arterial obstructions and, eventually, migrate through the cardiocirculatory system causing heart attack, stroke or pulmonary embolism. The process is complex and its mechanism is still unclear, being the result of the interaction between various factors, including platelet activation and aggregation, chemical reactions, and hemodynamics.It is crucial to consider and minimise thrombosis in the design and implementation of artificial organs, such as artificial heart valves, and vascular prostheses. The study of hemodynamics can provide effective support to identify and prevent the risk of thrombosis.Due to the lack of adequate analytical solutions and the complexity of experimental studies, research increasingly evolves towards the use of computational methods.This thesis aims at modelling the formation, growth and evolution of thrombus by means of a Smoothed Particle Hydrodynamics (SPH) numerical method coupled with a fluid-structure interaction (FSI) model. The proposed model describes the main phases of the coagulative cascade through the balance of four biochemical species and three types of platelets. SPH particles can switch from fluid to solid phase whenspecific biochemical and physical conditions are satisfied. Fluid-solid coupling is modelled by introducing elastic binds between solid particles, without requiring detention and management of the interface between the two media.In order to reach this goal, firstly the model is validated by comparing the numerical prediction with experimental data available in the literature, secondly, it is applied to describe thrombosis formation due to relevant pathologies such as atrial fibrillation and cerebral aneurysms where the insertion of flow diverter creates thrombogenic stasis zone.
La trombosi è una patologia che porta alla formazione di coaguli, che possono provocare ostruzioni arteriose e, infine, migrano attraverso il sistema cardiocircolatorio causando infarto, ictus o embolia polmonare. Il processo è abbastanza complesso ed il suo meccanismo non è ancora chiaro, essendo il risultato dell’interazione tra diversi fattori, compresa l'attivazione e l'aggregazione piastrinica, le reazioni chimiche e l'emodinamica.È fondamentale considerare e ridurre al minimo la formazione di trombi nella progettazione e realizzazione di organi artificiali, come valvole cardiache artificiali o protesi. Lo studio dell'emodinamica può fornire un supporto efficace per identificare e prevenire il rischio di trombosi.A causa della mancanza di soluzioni analitiche adeguate e della complessità degli studi sperimentali, la ricerca evolve sempre più verso l’utilizzo delle simulazioni numeriche Questa tesi mira a modellare la formazione, la crescita e l'evoluzione del trombo mediante il metodo numerico accoppiato Smoothed Particle Hydrodynamics (SPH) usando un modello di interazione fluido-struttura (FSI). Il modello proposto descrive le principali fasi della cascata coagulativa attraverso l'equilibrio di quattro specie biochimiche e tre tipologie di piastrine. Le particelle SPH possono passare dalla fase fluida a quella solida se sono soddisfatte delle specifiche condizioni biochimiche e fisiche. L'accoppiamento fluido-solido è modellato introducendo legami elastici tra le particelle solide senza nessuna interfaccia. Per raggiungere questo obiettivo, in primo luogo il modello viene validato confrontando i risultati numerici con i dati sperimentali disponibili in letteratura, in secondo luogo, il nuovo codice numerico è applicato per descrivere la trombosi in appendice atriale in caso di fibrillazione o come trombosi indotta in aneurismi cerebrali.
(2023). An innovative approach to simulate thrombosis with smoothed particle hydrodynamics.
An innovative approach to simulate thrombosis with smoothed particle hydrodynamics
VIOLA, Alessia
2023-12-28
Abstract
Thrombosis is a pathology leading to the formation of clots, that can result in arterial obstructions and, eventually, migrate through the cardiocirculatory system causing heart attack, stroke or pulmonary embolism. The process is complex and its mechanism is still unclear, being the result of the interaction between various factors, including platelet activation and aggregation, chemical reactions, and hemodynamics.It is crucial to consider and minimise thrombosis in the design and implementation of artificial organs, such as artificial heart valves, and vascular prostheses. The study of hemodynamics can provide effective support to identify and prevent the risk of thrombosis.Due to the lack of adequate analytical solutions and the complexity of experimental studies, research increasingly evolves towards the use of computational methods.This thesis aims at modelling the formation, growth and evolution of thrombus by means of a Smoothed Particle Hydrodynamics (SPH) numerical method coupled with a fluid-structure interaction (FSI) model. The proposed model describes the main phases of the coagulative cascade through the balance of four biochemical species and three types of platelets. SPH particles can switch from fluid to solid phase whenspecific biochemical and physical conditions are satisfied. Fluid-solid coupling is modelled by introducing elastic binds between solid particles, without requiring detention and management of the interface between the two media.In order to reach this goal, firstly the model is validated by comparing the numerical prediction with experimental data available in the literature, secondly, it is applied to describe thrombosis formation due to relevant pathologies such as atrial fibrillation and cerebral aneurysms where the insertion of flow diverter creates thrombogenic stasis zone.File | Dimensione | Formato | |
---|---|---|---|
An innovative approach to simulate thrombosis with smoothed particle hydrodynamics.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
23.77 MB
Formato
Adobe PDF
|
23.77 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.