The National Institute for Occupational Safety and Health has attributed most occupational diseases of industrial workers to excessive exposure to dangerous substances. In particular, occupational lung diseases are caused by the inhalation of harmful substances such as dust particles and gases [1]. The use of DPI and periodic health checks for industrial workers certainly reduces risks, but a more effective prevention strategy should include real-time monitoring of physiological parameters [2]. In this context, recent academic and industrial research has focused on the development of smart wearable systems for continuous health monitoring. This has been possible mainly due to significant progress in micro- and nanotechnology and the miniaturization of devices [3]. In such regard, electrochemical sensors represent a promising alternative due to their speed of response, simplicity of operation, and lower cost than traditional methods of diagnosis [4]. This research activity involves the development of a smart mask based on an electrochemical sensor for the non-invasive detection of hydrogen peroxide in exhaled breath. In particular, a higher concentration of this biomarker indicates the onset of oxidative stress, a pathological condition that can lead to more serious diseases, such as asthma and COPD (Chronic Obstructive Pulmonary Disease) [5]. This sensor was fabricated through a sustainable production process, from the CDs at the end of life because their silver layer can be used for its good electrochemical properties. In particular, this layer was peeled off the CD and a three electrodes configuration was given using a laser cutter.

Electrochemical sensors for worker safety in manufacturing industries

M. G. Bruno
Primo
;
B. Patella;R. Inguanta;G. Aiello

Abstract

The National Institute for Occupational Safety and Health has attributed most occupational diseases of industrial workers to excessive exposure to dangerous substances. In particular, occupational lung diseases are caused by the inhalation of harmful substances such as dust particles and gases [1]. The use of DPI and periodic health checks for industrial workers certainly reduces risks, but a more effective prevention strategy should include real-time monitoring of physiological parameters [2]. In this context, recent academic and industrial research has focused on the development of smart wearable systems for continuous health monitoring. This has been possible mainly due to significant progress in micro- and nanotechnology and the miniaturization of devices [3]. In such regard, electrochemical sensors represent a promising alternative due to their speed of response, simplicity of operation, and lower cost than traditional methods of diagnosis [4]. This research activity involves the development of a smart mask based on an electrochemical sensor for the non-invasive detection of hydrogen peroxide in exhaled breath. In particular, a higher concentration of this biomarker indicates the onset of oxidative stress, a pathological condition that can lead to more serious diseases, such as asthma and COPD (Chronic Obstructive Pulmonary Disease) [5]. This sensor was fabricated through a sustainable production process, from the CDs at the end of life because their silver layer can be used for its good electrochemical properties. In particular, this layer was peeled off the CD and a three electrodes configuration was given using a laser cutter.
Oxidative Stress, Hydrogen Peroxide, Electrochemical Sensor, Worker Safety, Wearable Device
File in questo prodotto:
File Dimensione Formato  
PosterGEI.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/619576
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact