Fabry disease comprises a wide phenotypic variability in relation to the large number of organs and systems involved. The diagnosis of Fabry disease is complex due to the number of organs/systems involved, to the non-specific clinical manifestationa and to its rarity. Clinical progression of the disease occurs between 30-40 years when clinical manifestations because of the involvement of important organs such as heart failure, renal failure and cerebrovascular events. Death usually occurs during the fourth/fifth decade of life and it is secondary to cardiac, renal or cerebral involvement even if the advent of dialysis and enzyme replacement therapy are significantly prolonging the average life of patients. Although the gene that causes the disease and its function is known in detail, it still appears today unclear the wide heterogeneity of clinical presentation that characterizes this disorder, within the same family, too. Factors that might play a role in phenotypic modulation of Fabry disease are multiple and not yet studied (environmental factors, epigenetic factors, other modulatory genes).Mitochondria represent "the energy central unit of the cell" [202].They are intracellular organelles that perform different functions, the most important of which is represented by the production of energy in the form of ATP through oxidative phosphorylation. The mitochondrion is the only organelle with its own genome, mitochondrial DNA (mtDNA). In each mitochondrion there are from 2 to 10 copies of mtDNA, and in each cell more than 1000 copies. The mtDNA is a circular molecule of double-stranded DNA, consisting of 16569 base pairs, encoding 37 genes: 13 encode mitochondrial respiratory chain peptides, 2 ribosomal RNAs and 22 RNAs transfer (tRNA). All other mitochondrial proteins (including the 67 subunits that contribute to form the five complexes of the respiratory chain) are encoded by nuclear DNA. Human mtDNA is characterized by a high evolutionary rate that is 10 – 20 times that of genes of the nucleus; its sequence variation was therefore generated along lines of maternal radiation exclusively for the sequential accumulation of new mutations. Over time this process of molecular divergence has given rise to monophyletic entities called haplogroups. A valid tool to determine if any mitochondrial polymorphisms can act as susceptibility or protective factors in the onset of neurodegenerative diseases was provided precisely from the analysis of mitochondrial haplogroups, defined as clusters of mitochondrial genomes continent-specific related to evolution and defined by the presence of ancestral and stable polymorphisms. The presence of stable polymorphic sites within the coding region defines the haplogroup, on the other hand most of the mutations that are observed are both in the coding sequences and in the control region and that occur within pre-existing haplogroups define the individual mtDNA type, or haplotype [172]. It has been hypothesized that variations within the mtDNA can cause subtle differences in the encoded proteins and induce a modification, albeit minimal, in the activities of oxidative phosphorylation and in the production of reactive species of oxygen, or they act as protective factors, with a beneficial effect on the transport chain of electrons and/or for the production of free radicals. In recent years, research has been aimed at understanding a possible role of haplogroups in the modulation of mitochondrial gene expression during evolution and in the human processes of adaptation ; it has also begun to investigate whether the variability of the genome mitochondrial could perform a protective action or, conversely, it acts as a risk factor in the onset of neurodegenerative diseases such as Parkinson's disease (192), the disease of Friedreich (203), Amyotrophic Lateral Sclerosis [196]), Alzheimer's disease and Huntington [172]. Although numerous mutations of the GLA gene have been associated with the classic and late forms, one definitive genotype-phenotype correlation has not been demonstrated and the diagnosis and classification of disease can only be made on a genetic basis. Substrate deposition is related to tissue damage in Fabry disease; however, the underlying molecular mechanisms remain unclear fully known. Patients with Fabry disease have an important impairment of protein and lipid oxidative processes , reduced antioxidant defenses and increased levels of inflammatory cytokines and biomarkers [204–205]. the high level intracellular GB3 induces oxidative stress and up-regulation of the expression of cell adhesion molecules in vascular endothelial cells [206]. Furthermore it has been hypothesized that a pro-oxidant state occurs which is related and appears to be induced by GB3 in patients with Fabry disease [207]The aim of our multicenter project was to evaluate the role of oxidative stress in Fabry disease. In particular we evaluated (I) whether there are signs of oxidative stress in the blood; (II) whether there is an association between biomarkers of oxidative stress and clinical manifestations of the disease and/or a difference between the classic form and late onset variants; (III) whether the stress parameters over time correlate with Lyso-Gb3 and disease onset and progression, in a subset of 8 treatment-naive subjects/patients with normal Lyso-Gb3 levels, in order to evaluate whether biomarkers of oxidative stress may present early markers of the disease This project also aimed to evaluate the frequency of mitochondrial haplogroups, their possible role of genetic susceptibility in the determinism of Fabry disease, and if they could influence the state of plasma oxidative stress in such patients; however, the analysis of the data, concerning this second aim, on the group of enrolled patients did not allow to obtain relevant , clear and definitive results therefore our group proposes to pursue a further deepening in this field of scientific research, to collect more data by extending the analysis on a greater number of patients and therefore involving more centres.

La malattia di Fabry comprende una estrema varietà fenotipica in relazione con il grande numero di organi e sistemi coinvolti. La diagnosi di malattia di Fabry è complessa a causa del numero di organi/sistemi coinvolti e dei fenotipi clinici non specifici e della sua rarità. La progressione clinica della malattia si manifesta tra i 30-40 anni quando per i numerosi organi coinvolti compaiono manifestazioni cliniche quali insufficienza cardiaca, renale ed eventi cerebrovascolari. La morte di solito sopraggiunge durante la quarta/quinta decade di vita ed è secondaria all’interessamento cardiaco, renale o cerebrale anche se l’avvento della dialisi e della terapia enzimatica sostitutiva stanno sensibilmente prolungando la vita media dei pazienti. Seppur conosciuto in dettaglio il gene che causa la malattia e la sua funzione, ad oggi appare ancora poco chiaro il perché la malattia presenti un’ampia eterogeneità di presentazione clinica, anche all’interno della stessa famiglia. I fattori che potrebbero giocare un ruolo nella modulazione fenotipica della malattia di Fabry sono molteplici e non ancora studiati (fattori ambientali, fattori epigenetici, altri geni modulatori).mI mitocondri rappresentano “la centralina energetica della cellula” [202). Sono organelli intracellulari che svolgono diverse funzioni, la più importante delle quali è rappresentata dalla produzione di energia sotto forma di ATP mediante la fosforilazione ossidativa. Il mitocondrio è l’unico organellodelle cellule animali dotato di un proprio genoma, il DNA mitocondriale (mtDNA). In ogni mitocondrio si trovano da 2 a 10 copie di mtDNA, ed in ogni cellula più di 1000 copie. Il mtDNA è una molecola circolare di DNA a doppio filamento, costituito da 16569 paia basi, che codifica 37 geni: 13 codificano peptidi della catena respiratoria mitocondriale, 2 RNA ribosomali e 22 RNA transfer (tRNA). Tutte le altre proteine mitocondriali (comprese le 67 subunità che concorrono a formare i cinque complessi della catena respiratoria) sono codificate dal DNA nucleare. L’mtDNA umano è caratterizzato da un elevato tasso evolutivo che è 10 – 20 volte quello dei geni del nucleo; la sua variazione di sequenza si è perciò generata lungo linee di radiazione materna esclusivamente per l’accumulo sequenziale di nuove mutazioni. Nel tempo questo processo di divergenza molecolare ha dato origine ad entità monofiletiche dette aplogruppi. Un valido strumento per determinare se eventuali polimorfismi mitocondriali possano agire come fattori di suscettibilità o di protezione nell’insorgenza di malattie neurodegenerative è stato fornito proprio dall’analisi degli aplogruppi mitocondriali, definiti come clusters di genomi mitocondriali continente-specifici correlati all’evoluzione e definiti in base alla presenza di ancestrali e stabili polimorfismi.. La presenza di stabili siti polimorfici all’interno della regione codificante definisce l’aplogruppo, mentre la maggior parte delle mutazioni che si osservano sia nelle sequenze codificanti che nella regione di controllo e che si realizzano all’interno di preesistenti aplogruppi definiscono il tipo individuale di mtDNA, o aplotipo [172]. È stato ipotizzato che variazioni all’interno del mtDNA possano causare sottili differenze nelle proteine codificate ed indurre una modificazione, seppur minima, nelle attività della fosforilazione ossidativa e nella produzione di specie reattive dell’ossigeno, o viceversa agire come fattori protettivi, con effetto benefico sulla catena di trasporto di elettroni e/o per la produzione di radicali liberi. In questi ultimi anni la ricerca è stata finalizzata alla comprensione di un eventuale ruolo degli aplogruppi nella modulazione dell’espressione dei geni mitocondriali durante l’evoluzione e i processi di adattamento del genere umano; si è iniziato inoltre ad indagare se la variabilità del genoma mitocondriale potesse svolgere un’azione protettiva o, viceversa, agire come fattore di rischio nell’insorgenza di malattie neurodegenerative come il morbo di Parkinson (192), la malattia di Friedreich (203), la Sclerosi Laterale Amiotrofica [196]), la malattia di Alzheimer e Corea di Huntington [172]. Benchè numerose mutazioni del gene GLA siano state associate alle forme classiche e tardive, una definitiva correlazione genotipo-fenotipo none stata dimostrata e la diagnosi e classificazione della malattia on possono essere effettuate solo su base genetica. Il deposito dei substrati è correlato al danno tissutale nella malattia di Fabry; tuttavia, i meccanismi molecolari sottostanti restano non completamente conosciuti. I pazienti affetti da malattia di Fabry presentano un importante danno 44 ossidativo proteico e lipidico, ridotte difese antiossidanti e aumentali livelli di citochine e biomarcatori infiammatori [204–205]. L’eccesso di GB3 intracellulare induce stress ossidativo e un up-regulation dell’espressione delle molecole di adesione cellulare nelle cellule endoteliali vascolari [206]. Inoltre è stato ipotizzato che si verifica uno stato proossidante che è correlato e sembra essere indotto dal GB3 nei pazienti con malattia di Fabry [207]Lo scopo del nostro progetto multicentrico è stato quello di valutare il ruolo dello stress ossidativo nella malattia di Fabry. In particolare abbiamo valutato (I) se vi sono segni di stress ossidativo nel sangue; (II) se esiste un’associazione tra biomarcatori di stress ossidativo e manifestazion i cliniche della malattia e/o una differenza tra forma classica e varianti late onset; (III) se i parametri dello stress ossidativo nel tempo si correlano con il Lyso-Gb3 e l’insorgenza e progressione della malattia, in un sottogruppo di 8 soggetti/paziente naive al trattamento con normali livelli di Lyso-Gb3, al fine di valutare se i biomarkers di stress ossidativo possano presentare marcatori precoci della malattia Questo progetto si proponeva inoltre di valutare la frequenza degli aplogruppi mitocondriali, un loro possibile ruolo di suscettibilità genetica nel determinismo della malattia di Fabry, e se essi potessero influenzare lo stato di stress ossidativo plasmatico in tali pazienti; tuttavia l’analisi dei dati, relativi a questo secondo obiettivo , sul gruppo dei pazienti arruolati non ha permesso di ottenere risultati rilevanti, chiari e definitivi pertanto il nostro gruppo si propone di proseguire un ulteriore approfondimento in questo campo di ricerca scientifica, raccogliere più dati estendendo l’analisi su un maggior numero di pazienti e quindi coinvolgendo più centri.

(2023). VALUTAZIONE DI ALCUNI BIOMARKERS DI STRESS OSSIDATIVO E DELLA FREQUENZA DEGLI APLOGRUPPI MITOCONDRIALI IN UNA POPOLAZIONE DI PAZIENTI CON MALATTIA DI ANDERSON-FABRY..

VALUTAZIONE DI ALCUNI BIOMARKERS DI STRESS OSSIDATIVO E DELLA FREQUENZA DEGLI APLOGRUPPI MITOCONDRIALI IN UNA POPOLAZIONE DI PAZIENTI CON MALATTIA DI ANDERSON-FABRY.

SIMONETTA, Irene
2023-03-11

Abstract

Fabry disease comprises a wide phenotypic variability in relation to the large number of organs and systems involved. The diagnosis of Fabry disease is complex due to the number of organs/systems involved, to the non-specific clinical manifestationa and to its rarity. Clinical progression of the disease occurs between 30-40 years when clinical manifestations because of the involvement of important organs such as heart failure, renal failure and cerebrovascular events. Death usually occurs during the fourth/fifth decade of life and it is secondary to cardiac, renal or cerebral involvement even if the advent of dialysis and enzyme replacement therapy are significantly prolonging the average life of patients. Although the gene that causes the disease and its function is known in detail, it still appears today unclear the wide heterogeneity of clinical presentation that characterizes this disorder, within the same family, too. Factors that might play a role in phenotypic modulation of Fabry disease are multiple and not yet studied (environmental factors, epigenetic factors, other modulatory genes).Mitochondria represent "the energy central unit of the cell" [202].They are intracellular organelles that perform different functions, the most important of which is represented by the production of energy in the form of ATP through oxidative phosphorylation. The mitochondrion is the only organelle with its own genome, mitochondrial DNA (mtDNA). In each mitochondrion there are from 2 to 10 copies of mtDNA, and in each cell more than 1000 copies. The mtDNA is a circular molecule of double-stranded DNA, consisting of 16569 base pairs, encoding 37 genes: 13 encode mitochondrial respiratory chain peptides, 2 ribosomal RNAs and 22 RNAs transfer (tRNA). All other mitochondrial proteins (including the 67 subunits that contribute to form the five complexes of the respiratory chain) are encoded by nuclear DNA. Human mtDNA is characterized by a high evolutionary rate that is 10 – 20 times that of genes of the nucleus; its sequence variation was therefore generated along lines of maternal radiation exclusively for the sequential accumulation of new mutations. Over time this process of molecular divergence has given rise to monophyletic entities called haplogroups. A valid tool to determine if any mitochondrial polymorphisms can act as susceptibility or protective factors in the onset of neurodegenerative diseases was provided precisely from the analysis of mitochondrial haplogroups, defined as clusters of mitochondrial genomes continent-specific related to evolution and defined by the presence of ancestral and stable polymorphisms. The presence of stable polymorphic sites within the coding region defines the haplogroup, on the other hand most of the mutations that are observed are both in the coding sequences and in the control region and that occur within pre-existing haplogroups define the individual mtDNA type, or haplotype [172]. It has been hypothesized that variations within the mtDNA can cause subtle differences in the encoded proteins and induce a modification, albeit minimal, in the activities of oxidative phosphorylation and in the production of reactive species of oxygen, or they act as protective factors, with a beneficial effect on the transport chain of electrons and/or for the production of free radicals. In recent years, research has been aimed at understanding a possible role of haplogroups in the modulation of mitochondrial gene expression during evolution and in the human processes of adaptation ; it has also begun to investigate whether the variability of the genome mitochondrial could perform a protective action or, conversely, it acts as a risk factor in the onset of neurodegenerative diseases such as Parkinson's disease (192), the disease of Friedreich (203), Amyotrophic Lateral Sclerosis [196]), Alzheimer's disease and Huntington [172]. Although numerous mutations of the GLA gene have been associated with the classic and late forms, one definitive genotype-phenotype correlation has not been demonstrated and the diagnosis and classification of disease can only be made on a genetic basis. Substrate deposition is related to tissue damage in Fabry disease; however, the underlying molecular mechanisms remain unclear fully known. Patients with Fabry disease have an important impairment of protein and lipid oxidative processes , reduced antioxidant defenses and increased levels of inflammatory cytokines and biomarkers [204–205]. the high level intracellular GB3 induces oxidative stress and up-regulation of the expression of cell adhesion molecules in vascular endothelial cells [206]. Furthermore it has been hypothesized that a pro-oxidant state occurs which is related and appears to be induced by GB3 in patients with Fabry disease [207]The aim of our multicenter project was to evaluate the role of oxidative stress in Fabry disease. In particular we evaluated (I) whether there are signs of oxidative stress in the blood; (II) whether there is an association between biomarkers of oxidative stress and clinical manifestations of the disease and/or a difference between the classic form and late onset variants; (III) whether the stress parameters over time correlate with Lyso-Gb3 and disease onset and progression, in a subset of 8 treatment-naive subjects/patients with normal Lyso-Gb3 levels, in order to evaluate whether biomarkers of oxidative stress may present early markers of the disease This project also aimed to evaluate the frequency of mitochondrial haplogroups, their possible role of genetic susceptibility in the determinism of Fabry disease, and if they could influence the state of plasma oxidative stress in such patients; however, the analysis of the data, concerning this second aim, on the group of enrolled patients did not allow to obtain relevant , clear and definitive results therefore our group proposes to pursue a further deepening in this field of scientific research, to collect more data by extending the analysis on a greater number of patients and therefore involving more centres.
11-mar-2023
La malattia di Fabry comprende una estrema varietà fenotipica in relazione con il grande numero di organi e sistemi coinvolti. La diagnosi di malattia di Fabry è complessa a causa del numero di organi/sistemi coinvolti e dei fenotipi clinici non specifici e della sua rarità. La progressione clinica della malattia si manifesta tra i 30-40 anni quando per i numerosi organi coinvolti compaiono manifestazioni cliniche quali insufficienza cardiaca, renale ed eventi cerebrovascolari. La morte di solito sopraggiunge durante la quarta/quinta decade di vita ed è secondaria all’interessamento cardiaco, renale o cerebrale anche se l’avvento della dialisi e della terapia enzimatica sostitutiva stanno sensibilmente prolungando la vita media dei pazienti. Seppur conosciuto in dettaglio il gene che causa la malattia e la sua funzione, ad oggi appare ancora poco chiaro il perché la malattia presenti un’ampia eterogeneità di presentazione clinica, anche all’interno della stessa famiglia. I fattori che potrebbero giocare un ruolo nella modulazione fenotipica della malattia di Fabry sono molteplici e non ancora studiati (fattori ambientali, fattori epigenetici, altri geni modulatori).mI mitocondri rappresentano “la centralina energetica della cellula” [202). Sono organelli intracellulari che svolgono diverse funzioni, la più importante delle quali è rappresentata dalla produzione di energia sotto forma di ATP mediante la fosforilazione ossidativa. Il mitocondrio è l’unico organellodelle cellule animali dotato di un proprio genoma, il DNA mitocondriale (mtDNA). In ogni mitocondrio si trovano da 2 a 10 copie di mtDNA, ed in ogni cellula più di 1000 copie. Il mtDNA è una molecola circolare di DNA a doppio filamento, costituito da 16569 paia basi, che codifica 37 geni: 13 codificano peptidi della catena respiratoria mitocondriale, 2 RNA ribosomali e 22 RNA transfer (tRNA). Tutte le altre proteine mitocondriali (comprese le 67 subunità che concorrono a formare i cinque complessi della catena respiratoria) sono codificate dal DNA nucleare. L’mtDNA umano è caratterizzato da un elevato tasso evolutivo che è 10 – 20 volte quello dei geni del nucleo; la sua variazione di sequenza si è perciò generata lungo linee di radiazione materna esclusivamente per l’accumulo sequenziale di nuove mutazioni. Nel tempo questo processo di divergenza molecolare ha dato origine ad entità monofiletiche dette aplogruppi. Un valido strumento per determinare se eventuali polimorfismi mitocondriali possano agire come fattori di suscettibilità o di protezione nell’insorgenza di malattie neurodegenerative è stato fornito proprio dall’analisi degli aplogruppi mitocondriali, definiti come clusters di genomi mitocondriali continente-specifici correlati all’evoluzione e definiti in base alla presenza di ancestrali e stabili polimorfismi.. La presenza di stabili siti polimorfici all’interno della regione codificante definisce l’aplogruppo, mentre la maggior parte delle mutazioni che si osservano sia nelle sequenze codificanti che nella regione di controllo e che si realizzano all’interno di preesistenti aplogruppi definiscono il tipo individuale di mtDNA, o aplotipo [172]. È stato ipotizzato che variazioni all’interno del mtDNA possano causare sottili differenze nelle proteine codificate ed indurre una modificazione, seppur minima, nelle attività della fosforilazione ossidativa e nella produzione di specie reattive dell’ossigeno, o viceversa agire come fattori protettivi, con effetto benefico sulla catena di trasporto di elettroni e/o per la produzione di radicali liberi. In questi ultimi anni la ricerca è stata finalizzata alla comprensione di un eventuale ruolo degli aplogruppi nella modulazione dell’espressione dei geni mitocondriali durante l’evoluzione e i processi di adattamento del genere umano; si è iniziato inoltre ad indagare se la variabilità del genoma mitocondriale potesse svolgere un’azione protettiva o, viceversa, agire come fattore di rischio nell’insorgenza di malattie neurodegenerative come il morbo di Parkinson (192), la malattia di Friedreich (203), la Sclerosi Laterale Amiotrofica [196]), la malattia di Alzheimer e Corea di Huntington [172]. Benchè numerose mutazioni del gene GLA siano state associate alle forme classiche e tardive, una definitiva correlazione genotipo-fenotipo none stata dimostrata e la diagnosi e classificazione della malattia on possono essere effettuate solo su base genetica. Il deposito dei substrati è correlato al danno tissutale nella malattia di Fabry; tuttavia, i meccanismi molecolari sottostanti restano non completamente conosciuti. I pazienti affetti da malattia di Fabry presentano un importante danno 44 ossidativo proteico e lipidico, ridotte difese antiossidanti e aumentali livelli di citochine e biomarcatori infiammatori [204–205]. L’eccesso di GB3 intracellulare induce stress ossidativo e un up-regulation dell’espressione delle molecole di adesione cellulare nelle cellule endoteliali vascolari [206]. Inoltre è stato ipotizzato che si verifica uno stato proossidante che è correlato e sembra essere indotto dal GB3 nei pazienti con malattia di Fabry [207]Lo scopo del nostro progetto multicentrico è stato quello di valutare il ruolo dello stress ossidativo nella malattia di Fabry. In particolare abbiamo valutato (I) se vi sono segni di stress ossidativo nel sangue; (II) se esiste un’associazione tra biomarcatori di stress ossidativo e manifestazion i cliniche della malattia e/o una differenza tra forma classica e varianti late onset; (III) se i parametri dello stress ossidativo nel tempo si correlano con il Lyso-Gb3 e l’insorgenza e progressione della malattia, in un sottogruppo di 8 soggetti/paziente naive al trattamento con normali livelli di Lyso-Gb3, al fine di valutare se i biomarkers di stress ossidativo possano presentare marcatori precoci della malattia Questo progetto si proponeva inoltre di valutare la frequenza degli aplogruppi mitocondriali, un loro possibile ruolo di suscettibilità genetica nel determinismo della malattia di Fabry, e se essi potessero influenzare lo stato di stress ossidativo plasmatico in tali pazienti; tuttavia l’analisi dei dati, relativi a questo secondo obiettivo , sul gruppo dei pazienti arruolati non ha permesso di ottenere risultati rilevanti, chiari e definitivi pertanto il nostro gruppo si propone di proseguire un ulteriore approfondimento in questo campo di ricerca scientifica, raccogliere più dati estendendo l’analisi su un maggior numero di pazienti e quindi coinvolgendo più centri.
Fabry disease; Biomarkers; lysoGb3; oxidative stress; mitochondrial haplogroups
(2023). VALUTAZIONE DI ALCUNI BIOMARKERS DI STRESS OSSIDATIVO E DELLA FREQUENZA DEGLI APLOGRUPPI MITOCONDRIALI IN UNA POPOLAZIONE DI PAZIENTI CON MALATTIA DI ANDERSON-FABRY..
File in questo prodotto:
File Dimensione Formato  
Tesi Dottorato di Ricerca Dr Simonetta Irene.pdf

accesso aperto

Descrizione: TESI DOTTORATO DI RICERCA IN MEDICINA MOLECOLARE E CLINICA DI SIMONETTA IRENE
Tipologia: Tesi di dottorato
Dimensione 4.47 MB
Formato Adobe PDF
4.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/581510
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact