This thesis summarizes the work carried out during the 3-year PhD course in the period between 2019 and 2022. As is well known in the scientific community, the very ambitious nuclear fusion project has required and still requires considerable resources and investments; The roadmap for large-scale nuclear fusion power generation is comprised of challenging missions. The ITER and DEMO projects, being international projects, require the collaboration (both from an economic and technical point of view) of different countries at European and non-European level; for this reason, the various technological aspects, which will then be implemented and applied in the final fusion reactors, are first analyzed, simulated, and managed by various bodies of the project member states (including Italy). One of the most important research facilities for these projects is located at the ENEA headquarters in Frascati (RM) and is called DTT (divertor tokamak test facility). The DTT structure is designed to explore all lines of plasma operating regimes relevant to ITER and DEMO; In particular, it will be possible to demonstrate the physical and technological feasibility of various divertor configurations. In this way it will be possible to integrate knowledge on alternative divertor concepts already tested on existing machines. Since the magnetic energy stored in superconducting magnets is of the order of 2GJ-4GJ (for DTT), in the event of a failure or quench there must be the possibility to extract it very quickly to safeguard the integrity of the Tokamak and superconductors. In this case, the so-called FDU systems (fast discharge unit) intervene, which basically consist of resistors to allow discharge and fast dissipation of energy. Protection is carried out by connecting a discharge resistor in series to each block of magnets divided into various groups depending on their electrical configuration. The main objective of this thesis so is to report all the models, simulations and results processed for the entire duration of the course of study as part of the development of Fast Discharge Units (FDU).

Questa tesi riassume il lavoro svolto durante il triennio di dottorato nel periodo compreso tra il 2019 e il 2022. Come è ben noto nella comunità scientifica, l'ambiziosissimo progetto di fusione nucleare ha richiesto e richiede notevoli risorse ed investimenti; La tabella di marcia per la generazione di energia da fusione nucleare su larga scala comprende missioni impegnative. I progetti ITER e DEMO, essendo progetti internazionali, richiedono la collaborazione (sia dal punto di vista economico che tecnico) di diversi Paesi a livello europeo ed extraeuropeo; per questo motivo i vari aspetti tecnologici, che verranno poi implementati e applicati nei reattori a fusione finali, vengono prima analizzati, simulati e gestiti da vari enti degli stati membri del progetto (compresa l'Italia). Una delle strutture di ricerca più importanti per questi progetti si trova presso la sede ENEA di Frascati (RM) ed è denominata DTT (divertor tokamak test facility). La struttura DTT è progettata per esplorare tutte le linee di regimi operativi del plasma rilevanti per ITER e DEMO; In particolare sarà possibile dimostrare la fattibilità fisica e tecnologica di varie configurazioni di divertore. In questo modo sarà possibile integrare le conoscenze su concetti di divertori alternativi già sperimentati su macchine esistenti. Poiché l'energia magnetica immagazzinata nei magneti superconduttori è dell'ordine di 2GJ-4GJ (per DTT), in caso di guasto o quench deve esserci la possibilità di estrarla molto velocemente per salvaguardare l'integrità del Tokamak e dei superconduttori. In questo caso intervengono i cosiddetti sistemi FDU (Fast Discharge Unit), costituiti essenzialmente da resistenze per consentire la scarica e la rapida dissipazione dell'energia. La protezione viene realizzata collegando una resistenza di scarica in serie ad ogni blocco di magneti suddivisi in vari gruppi a seconda della loro configurazione elettrica. L'obiettivo principale di questa tesi è quindi quello di riportare tutti i modelli, le simulazioni ei risultati elaborati per l'intera durata del corso di studio nell'ambito dello sviluppo di Fast Discharge Units (FDU).

(2023). Design and Simulation of Fast Discharge Units (FDUs) for Toroidal Field Coils of Divertor Tokamak Test (DTT).

Design and Simulation of Fast Discharge Units (FDUs) for Toroidal Field Coils of Divertor Tokamak Test (DTT)

Lopes, Carmelo Riccardo
2023-02-01

Abstract

This thesis summarizes the work carried out during the 3-year PhD course in the period between 2019 and 2022. As is well known in the scientific community, the very ambitious nuclear fusion project has required and still requires considerable resources and investments; The roadmap for large-scale nuclear fusion power generation is comprised of challenging missions. The ITER and DEMO projects, being international projects, require the collaboration (both from an economic and technical point of view) of different countries at European and non-European level; for this reason, the various technological aspects, which will then be implemented and applied in the final fusion reactors, are first analyzed, simulated, and managed by various bodies of the project member states (including Italy). One of the most important research facilities for these projects is located at the ENEA headquarters in Frascati (RM) and is called DTT (divertor tokamak test facility). The DTT structure is designed to explore all lines of plasma operating regimes relevant to ITER and DEMO; In particular, it will be possible to demonstrate the physical and technological feasibility of various divertor configurations. In this way it will be possible to integrate knowledge on alternative divertor concepts already tested on existing machines. Since the magnetic energy stored in superconducting magnets is of the order of 2GJ-4GJ (for DTT), in the event of a failure or quench there must be the possibility to extract it very quickly to safeguard the integrity of the Tokamak and superconductors. In this case, the so-called FDU systems (fast discharge unit) intervene, which basically consist of resistors to allow discharge and fast dissipation of energy. Protection is carried out by connecting a discharge resistor in series to each block of magnets divided into various groups depending on their electrical configuration. The main objective of this thesis so is to report all the models, simulations and results processed for the entire duration of the course of study as part of the development of Fast Discharge Units (FDU).
feb-2023
Questa tesi riassume il lavoro svolto durante il triennio di dottorato nel periodo compreso tra il 2019 e il 2022. Come è ben noto nella comunità scientifica, l'ambiziosissimo progetto di fusione nucleare ha richiesto e richiede notevoli risorse ed investimenti; La tabella di marcia per la generazione di energia da fusione nucleare su larga scala comprende missioni impegnative. I progetti ITER e DEMO, essendo progetti internazionali, richiedono la collaborazione (sia dal punto di vista economico che tecnico) di diversi Paesi a livello europeo ed extraeuropeo; per questo motivo i vari aspetti tecnologici, che verranno poi implementati e applicati nei reattori a fusione finali, vengono prima analizzati, simulati e gestiti da vari enti degli stati membri del progetto (compresa l'Italia). Una delle strutture di ricerca più importanti per questi progetti si trova presso la sede ENEA di Frascati (RM) ed è denominata DTT (divertor tokamak test facility). La struttura DTT è progettata per esplorare tutte le linee di regimi operativi del plasma rilevanti per ITER e DEMO; In particolare sarà possibile dimostrare la fattibilità fisica e tecnologica di varie configurazioni di divertore. In questo modo sarà possibile integrare le conoscenze su concetti di divertori alternativi già sperimentati su macchine esistenti. Poiché l'energia magnetica immagazzinata nei magneti superconduttori è dell'ordine di 2GJ-4GJ (per DTT), in caso di guasto o quench deve esserci la possibilità di estrarla molto velocemente per salvaguardare l'integrità del Tokamak e dei superconduttori. In questo caso intervengono i cosiddetti sistemi FDU (Fast Discharge Unit), costituiti essenzialmente da resistenze per consentire la scarica e la rapida dissipazione dell'energia. La protezione viene realizzata collegando una resistenza di scarica in serie ad ogni blocco di magneti suddivisi in vari gruppi a seconda della loro configurazione elettrica. L'obiettivo principale di questa tesi è quindi quello di riportare tutti i modelli, le simulazioni ei risultati elaborati per l'intera durata del corso di studio nell'ambito dello sviluppo di Fast Discharge Units (FDU).
Nuclear fusion; DTT; Superconducting magnets; Fast Discharge Unit; Quench Protection;
(2023). Design and Simulation of Fast Discharge Units (FDUs) for Toroidal Field Coils of Divertor Tokamak Test (DTT).
File in questo prodotto:
File Dimensione Formato  
DESIGN AND SIMULATION OF FAST DISCHARGE UNITS (FDUs) FOR TOROIDAL FIELD COILS OF DIVERTOR TOKAMAK TEST (DTT).pdf

accesso aperto

Descrizione: Tesi di dottorato
Tipologia: Tesi di dottorato
Dimensione 21.52 MB
Formato Adobe PDF
21.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/580087
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact