This paper presents a study aimed to the realization of a novel multiresolution registration framework. The transformation function is computed iteratively as a composition of local deformations determined by the maximization of mutual information. At each iteration, local transformations are joint together using fuzzy kernel regression. This technique represents the core of the mothod and it’s formally described from a probabilistic perspective. It avoids blocking artifacts and allows to keep the final deformation spatially congruent and smooth. Both qualitative and quantitative experimental results show that this approach is equally effective for registering datasets acquired from both single and multiple diagnostic modalities.

Ardizzone, E., Gallea, R., Gambino, O., Pirrone, R. (2009). Multi-modal Image Registration Using Fuzzy Kernel Regression. In 2009 IEEE International Conferenve on Image Processing - ICIP 2009. IEEE [10.1109/ICIP.2009.5414220].

Multi-modal Image Registration Using Fuzzy Kernel Regression

ARDIZZONE, Edoardo;GALLEA, Roberto;GAMBINO, Orazio;PIRRONE, Roberto
2009-01-01

Abstract

This paper presents a study aimed to the realization of a novel multiresolution registration framework. The transformation function is computed iteratively as a composition of local deformations determined by the maximization of mutual information. At each iteration, local transformations are joint together using fuzzy kernel regression. This technique represents the core of the mothod and it’s formally described from a probabilistic perspective. It avoids blocking artifacts and allows to keep the final deformation spatially congruent and smooth. Both qualitative and quantitative experimental results show that this approach is equally effective for registering datasets acquired from both single and multiple diagnostic modalities.
2009
ICIP 2009
Cairo, Egypt
2009
2009
4
A stampa
Ardizzone, E., Gallea, R., Gambino, O., Pirrone, R. (2009). Multi-modal Image Registration Using Fuzzy Kernel Regression. In 2009 IEEE International Conferenve on Image Processing - ICIP 2009. IEEE [10.1109/ICIP.2009.5414220].
Proceedings (atti dei congressi)
Ardizzone, E; Gallea, R; Gambino, O; Pirrone, R
File in questo prodotto:
File Dimensione Formato  
0000193.pdf

Solo gestori archvio

Descrizione: Articolo principale
Dimensione 340.81 kB
Formato Adobe PDF
340.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
05413603.pdf

Solo gestori archvio

Descrizione: copertina
Dimensione 477.96 kB
Formato Adobe PDF
477.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/53364
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact