In the first part of this paper, recalling a general discussion on iterated conditioning given by de Finetti in the appendix of his book, vol. 2, we give a representation of a conditional random quantity $X|HK$ as $(X|H)|K$. In this way, we obtain the classical formula $\pr{(XH|K)} =\pr{(X|HK)P(H|K)}$, by simply using linearity of prevision. Then, we consider the notion of general conditional prevision $\pr(X|Y)$, where $X$ and $Y$ are two random quantities, introduced in 1990 in a paper by Lad and Dickey. After recalling the case where $Y$ is an event, we consider the case of discrete finite random quantities and we make some critical comments and examples. We give a notion of coherence for such more general conditional prevision assessments; then, we obtain a strong generalized compound prevision theorem. We study the coherence of a general conditional prevision assessment $\pr(X|Y)$ when $Y$ has no negative values and when $Y$ has no positive values. Finally, we give some results on coherence of $\pr(X|Y)$ when $Y$ assumes both positive and negative values. In order to illustrate critical aspects and remarks we examine several examples.
Biazzo, V., Gilio, A., Sanfilippo, G. (2009). On general conditional random quantities. In ISIPTA'09: proceedings of the Sixth International Symposium on Imprecise Probability: theories and applications (pp.51-60). Durham : SIPTA.
On general conditional random quantities
SANFILIPPO, Giuseppe
2009-01-01
Abstract
In the first part of this paper, recalling a general discussion on iterated conditioning given by de Finetti in the appendix of his book, vol. 2, we give a representation of a conditional random quantity $X|HK$ as $(X|H)|K$. In this way, we obtain the classical formula $\pr{(XH|K)} =\pr{(X|HK)P(H|K)}$, by simply using linearity of prevision. Then, we consider the notion of general conditional prevision $\pr(X|Y)$, where $X$ and $Y$ are two random quantities, introduced in 1990 in a paper by Lad and Dickey. After recalling the case where $Y$ is an event, we consider the case of discrete finite random quantities and we make some critical comments and examples. We give a notion of coherence for such more general conditional prevision assessments; then, we obtain a strong generalized compound prevision theorem. We study the coherence of a general conditional prevision assessment $\pr(X|Y)$ when $Y$ has no negative values and when $Y$ has no positive values. Finally, we give some results on coherence of $\pr(X|Y)$ when $Y$ assumes both positive and negative values. In order to illustrate critical aspects and remarks we examine several examples.File | Dimensione | Formato | |
---|---|---|---|
BGS-ISIPTA09.pdf
Solo gestori archvio
Descrizione: Articolo per intero
Dimensione
202.14 kB
Formato
Adobe PDF
|
202.14 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.