In this paper we review some results concerning the behaviour of the incompressible Navier–Stokes solutions in the zero viscosity limit. Most of the emphasis is put on the phenomena occurring in the boundary layer created when the no-slip condition is imposed. Numerical simulations are used to explore the limits of the theory. We also consider the case of 2D vortex layers, i.e. flows with internal layers in the form of a rapid variation, across a curve, of the tangential velocity.

Gargano, F., Lombardo, M.C., Sammartino, M., Sciacca, V. (2009). Singularity Formation and Separation Phenomena in Boundary Layer Theory. In Partial Differential Equations and Fluid Mechanics (pp.81-120). Cambridge University Press [10.1017/CBO9781139107112.006].

Singularity Formation and Separation Phenomena in Boundary Layer Theory

GARGANO, Francesco;LOMBARDO, Maria Carmela;SAMMARTINO, Marco Maria Luigi;SCIACCA, Vincenzo
2009-01-01

Abstract

In this paper we review some results concerning the behaviour of the incompressible Navier–Stokes solutions in the zero viscosity limit. Most of the emphasis is put on the phenomena occurring in the boundary layer created when the no-slip condition is imposed. Numerical simulations are used to explore the limits of the theory. We also consider the case of 2D vortex layers, i.e. flows with internal layers in the form of a rapid variation, across a curve, of the tangential velocity.
Partial Differential Equations and Fluid Mechanics
University of Warwick (UK)
21-23/5/2007
2009
40
Gargano, F., Lombardo, M.C., Sammartino, M., Sciacca, V. (2009). Singularity Formation and Separation Phenomena in Boundary Layer Theory. In Partial Differential Equations and Fluid Mechanics (pp.81-120). Cambridge University Press [10.1017/CBO9781139107112.006].
Proceedings (atti dei congressi)
Gargano, F; Lombardo, MC; Sammartino, MML; Sciacca, V
File in questo prodotto:
File Dimensione Formato  
GLSS_cambridge_final.pdf

Solo gestori archvio

Dimensione 734.41 kB
Formato Adobe PDF
734.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/47026
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact