Numerical solutions of Prandtl’s equation and Navier Stokes equations are considered for the two dimensional flow induced by an array of periodic rec- tilinear vortices interacting with an infinite plane. We show how this initial datum develops a separation singularity for Prandtl equation. We investigate the asymptotic validity of boundary layer theory considering numerical solu- tions for the full Navier Stokes equations at high Reynolds numbers.

DELLA ROCCA, G., GARGANO, F., SAMMARTINO, M., SCIACCA V (2008). High Reynolds number Navier-Stokes solutions and boundary layer separation induced by a rectilinear vortex array. In Proceedings of "WASCOM 2007"---14TH CONFERENCE ON WAVES AND STABILITY IN CONTINUOUS MEDIA.

High Reynolds number Navier-Stokes solutions and boundary layer separation induced by a rectilinear vortex array

GARGANO, Francesco;SAMMARTINO, Marco Maria Luigi;SCIACCA, Vincenzo
2008-01-01

Abstract

Numerical solutions of Prandtl’s equation and Navier Stokes equations are considered for the two dimensional flow induced by an array of periodic rec- tilinear vortices interacting with an infinite plane. We show how this initial datum develops a separation singularity for Prandtl equation. We investigate the asymptotic validity of boundary layer theory considering numerical solu- tions for the full Navier Stokes equations at high Reynolds numbers.
lug-2007
WASCOM 2007"---14TH CONFERENCE ON WAVES AND STABILITY IN CONTINUOUS MEDIA
Baia Samuele (RG) Italy
30 giugno--7 luglio 2007
2008
11
DELLA ROCCA, G., GARGANO, F., SAMMARTINO, M., SCIACCA V (2008). High Reynolds number Navier-Stokes solutions and boundary layer separation induced by a rectilinear vortex array. In Proceedings of "WASCOM 2007"---14TH CONFERENCE ON WAVES AND STABILITY IN CONTINUOUS MEDIA.
Proceedings (atti dei congressi)
DELLA ROCCA,G; GARGANO, F; SAMMARTINO, M; SCIACCA V
File in questo prodotto:
File Dimensione Formato  
sciacca_wascom_07.pdf

Solo gestori archvio

Dimensione 861.03 kB
Formato Adobe PDF
861.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/40214
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact