Let p:C-->Y be a covering of smooth, projective curves which is a composition of \pi:C-->C'' of degree 2 and g:C''-->Y of degree n. Let f:X-->Y be the covering of degree 2^n, where the curve X parametrizes the liftings in C^{(n)} of the fibers of g:C''-->Y. Let P(X,\delta) be the associated Prym-Tyurin variety, known to be isogenous to the Prym variety P(C,C''). Most of the results in the paper focus on calculating the polarization type of the restriction of the canonical polarization of JX on P(X,\delta). We obtain the polarization type when n=3. When Y=P^1 we conjecture that P(X,\delta) is isomorphic to the dual of the Prym variety P(C,C''). This was known when n=2, we prove it when n=3, and for arbitrary n if \pi:C-->C'' is \''{e}tale. Similar results are obtained for some other types of coverings.
Kanev, V., Lange, H. (2008). Polarization types of isogenous Prym-Tyurin varieties. In Contemporary Mathematics (pp.147-174). PROVIDENCE (RI) : Amer. Math. Society.
Polarization types of isogenous Prym-Tyurin varieties
KANEV, Vassil;
2008-01-01
Abstract
Let p:C-->Y be a covering of smooth, projective curves which is a composition of \pi:C-->C'' of degree 2 and g:C''-->Y of degree n. Let f:X-->Y be the covering of degree 2^n, where the curve X parametrizes the liftings in C^{(n)} of the fibers of g:C''-->Y. Let P(X,\delta) be the associated Prym-Tyurin variety, known to be isogenous to the Prym variety P(C,C''). Most of the results in the paper focus on calculating the polarization type of the restriction of the canonical polarization of JX on P(X,\delta). We obtain the polarization type when n=3. When Y=P^1 we conjecture that P(X,\delta) is isomorphic to the dual of the Prym variety P(C,C''). This was known when n=2, we prove it when n=3, and for arbitrary n if \pi:C-->C'' is \''{e}tale. Similar results are obtained for some other types of coverings.File | Dimensione | Formato | |
---|---|---|---|
Polarization types of isogenous Prym-Tyurin varieties_arxiv.pdf
Solo gestori archvio
Descrizione: Main article
Dimensione
400.32 kB
Formato
Adobe PDF
|
400.32 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.