We set out to study the consequences of the assumption of types of wellfounded trees in dependent type theories. We do so by in- vestigating the categorical notion of wellfounded tree introduced in [16]. Our main result shows that wellfounded trees allow us to define initial algebras for a wide class of endofunctors on locally cartesian closed cat- egories.

GAMBINO, N., HYLAND, M. (2004). Wellfounded Trees and Dependent Polynomial Functors. In Types 2003. Springer [10.1007/978-3-540-24849-1_14].

Wellfounded Trees and Dependent Polynomial Functors

GAMBINO, Nicola;
2004-01-01

Abstract

We set out to study the consequences of the assumption of types of wellfounded trees in dependent type theories. We do so by in- vestigating the categorical notion of wellfounded tree introduced in [16]. Our main result shows that wellfounded trees allow us to define initial algebras for a wide class of endofunctors on locally cartesian closed cat- egories.
2004
Types 2003
2004
15
GAMBINO, N., HYLAND, M. (2004). Wellfounded Trees and Dependent Polynomial Functors. In Types 2003. Springer [10.1007/978-3-540-24849-1_14].
Proceedings (atti dei congressi)
GAMBINO, N; HYLAND, MARTIN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/40056
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 50
social impact