In recent years, RNA sequencing and analysis using Next Generation Sequencing (NGS) methods have enabled to understand the gene expression pertaining to plant biotic and abiotic stress conditions in both quantitative and qualitative manner. The large number of transcriptomic works published in plants requires more meta-analysis studies that would identify common and specific features in relation of the high number of objective studies performed at different developmental and environmental conditions. Meta-analysis of transcriptomic data will identify commonalities and differences between differentially regulated gene lists and will allow screen which genes are key players in gene-gene and protein-protein interaction networks. These analyses will allow delivering important information on how a specific environmental factor affects plant molecular responses and how plants activate general stress responses to environmental stresses. The identification of common genes between different biotic stress will allow to gain insight into these general responses and help the diagnosis of an early “stress state” of the plants. These analyses help in monitoring stressed plants to start early specific management procedures for each disease or disorder. In this meta-analysis study, I considered all transcriptomic data related to biotic stresses in fruit tree crops, which are already published. The aim was to determine which genes, pathways, gene set categories and predicted protein-protein interaction networks may play key roles in specific responses to pathogen infections.

(2020). INVESTIGATION OF BIOTIC STRESS RESPONSES IN FRUIT TREE CROPS USING META-ANALYTICAL TECHNIQUES..

INVESTIGATION OF BIOTIC STRESS RESPONSES IN FRUIT TREE CROPS USING META-ANALYTICAL TECHNIQUES.

BALAN, Bipin
2020-03-01

Abstract

In recent years, RNA sequencing and analysis using Next Generation Sequencing (NGS) methods have enabled to understand the gene expression pertaining to plant biotic and abiotic stress conditions in both quantitative and qualitative manner. The large number of transcriptomic works published in plants requires more meta-analysis studies that would identify common and specific features in relation of the high number of objective studies performed at different developmental and environmental conditions. Meta-analysis of transcriptomic data will identify commonalities and differences between differentially regulated gene lists and will allow screen which genes are key players in gene-gene and protein-protein interaction networks. These analyses will allow delivering important information on how a specific environmental factor affects plant molecular responses and how plants activate general stress responses to environmental stresses. The identification of common genes between different biotic stress will allow to gain insight into these general responses and help the diagnosis of an early “stress state” of the plants. These analyses help in monitoring stressed plants to start early specific management procedures for each disease or disorder. In this meta-analysis study, I considered all transcriptomic data related to biotic stresses in fruit tree crops, which are already published. The aim was to determine which genes, pathways, gene set categories and predicted protein-protein interaction networks may play key roles in specific responses to pathogen infections.
mar-2020
Biotic Stress, Transcriptome Analysis, Next Generation Sequencing, Bioinformatics
(2020). INVESTIGATION OF BIOTIC STRESS RESPONSES IN FRUIT TREE CROPS USING META-ANALYTICAL TECHNIQUES..
File in questo prodotto:
File Dimensione Formato  
Bipin_Balan_PhD_Thesis.pdf

accesso aperto

Descrizione: Doctoral thesis
Tipologia: Pre-print
Dimensione 4.67 MB
Formato Adobe PDF
4.67 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/400369
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact