In the present study a feature selection algorithm based on mutual information (MI) was applied to electro-encephalographic (EEG) data acquired during three different motor imagery tasks from two dataset: Dataset I from BCI Competition IV including full scalp recordings from four subjects, and new data recorded from three subjects using the popular low-cost Emotiv EPOC EEG headset. The aim was to evaluate optimal channels and band-power (BP) features for motor imagery tasks discrimination, in order to assess the feasibility of a portable low-cost motor imagery based Brain-Computer Interface (BCI) system. The minimal sub set of features most relevant to task description and less redundant to each other was determined, and the corresponding classification accuracy was assessed offline employing linear support vector machine (SVM) in a 10-fold cross validation scheme. The analysis was performed: (a) on the original full Dataset I from BCI competition IV, (b) on a restricted channels set from Dataset I corresponding to available Emotiv EPOC electrodes locations, and (c) on data recorded with the EPOC system. Results from (a) showed that an offline classification accuracy above 80% can be reached using only 5 features. Limiting the analysis to EPOC channels caused a decrease of classification accuracy, although it still remained above chance level, both for data from (b) and (c). A top accuracy of 70% was achieved using 2 optimal features. These results encourage further research towards the development of portable low cost motor imagery-based BCI systems.

Schiatti, L., Faes, L., Tessadori, J., Barresi, G., Mattos, L. (2016). Mutual information-based feature selection for low-cost BCIs based on motor imagery. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp.2772-2775). Institute of Electrical and Electronics Engineers Inc. [10.1109/EMBC.2016.7591305].

Mutual information-based feature selection for low-cost BCIs based on motor imagery

Faes, L.;
2016-01-01

Abstract

In the present study a feature selection algorithm based on mutual information (MI) was applied to electro-encephalographic (EEG) data acquired during three different motor imagery tasks from two dataset: Dataset I from BCI Competition IV including full scalp recordings from four subjects, and new data recorded from three subjects using the popular low-cost Emotiv EPOC EEG headset. The aim was to evaluate optimal channels and band-power (BP) features for motor imagery tasks discrimination, in order to assess the feasibility of a portable low-cost motor imagery based Brain-Computer Interface (BCI) system. The minimal sub set of features most relevant to task description and less redundant to each other was determined, and the corresponding classification accuracy was assessed offline employing linear support vector machine (SVM) in a 10-fold cross validation scheme. The analysis was performed: (a) on the original full Dataset I from BCI competition IV, (b) on a restricted channels set from Dataset I corresponding to available Emotiv EPOC electrodes locations, and (c) on data recorded with the EPOC system. Results from (a) showed that an offline classification accuracy above 80% can be reached using only 5 features. Limiting the analysis to EPOC channels caused a decrease of classification accuracy, although it still remained above chance level, both for data from (b) and (c). A top accuracy of 70% was achieved using 2 optimal features. These results encourage further research towards the development of portable low cost motor imagery-based BCI systems.
Settore ING-INF/06 - Bioingegneria Elettronica E Informatica
ago-2016
38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
Orlando; United States
16-20 August 2016
38th
2016
4
Online
Schiatti, L., Faes, L., Tessadori, J., Barresi, G., Mattos, L. (2016). Mutual information-based feature selection for low-cost BCIs based on motor imagery. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp.2772-2775). Institute of Electrical and Electronics Engineers Inc. [10.1109/EMBC.2016.7591305].
Proceedings (atti dei congressi)
Schiatti, L.*; Faes, L.; Tessadori, J.; Barresi, G.; Mattos, L.
File in questo prodotto:
File Dimensione Formato  
A46-EMBC2016-Schiatti.pdf

Solo gestori archvio

Dimensione 757.13 kB
Formato Adobe PDF
757.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/276430
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact