The reliability of the Maximum Entropy Method MEM) to reconstruct finite temperature electron density (ED) is here discussed, investigating the case of periclase (MgO). A theoretical electron density has been generated by quantum mechanic calculations and folded with a function simulating atomic thermal motion, in order to produce a reference errorless ED [q(r)REF]. The Fourier coefficients of q(r)REF have been calculated, and used as “observed” diffraction intensities to reconstruct via MEM the original ED. The electron density attained by MEM [q(r)MEM] and q(r)REF have been compared with each other (pixel-by-pixel and critical points) to assess the ability of MEM to retrieve EDs, on the basis of a set of observed structure factors. We have carried out our study varying the number of observed structure factors [i.e. sin (q)/l cut-off], the nature of the prior-density [uniform density and procrystal-like model] and the way in which the prior-density is treated during MEM maximization [fixed or free to change]. We observe that (i) it is recommendable to use the prior-density as a start point only, and allow it to change during maximization; (ii) the closer is the prior-density o q(r)REF, the easier one attains by MEM a correct D; (iii) if the prior-density is varied and a sufficient large number of observed structure factors used, then MEM tends to yield converging EDs, regardless of the prior-density chosen as a start point.
MERLI M, APAVESE, N CURETTI (2005). M1-site in dioctahedral micas: a novel approach from information theory to fix its content. ??????? it.cilea.surplus.oa.citation.tipologie.CitationProceedings.prensentedAt ??????? Geoitalia 2005.
M1-site in dioctahedral micas: a novel approach from information theory to fix its content
MERLI, Marcello;
2005-01-01
Abstract
The reliability of the Maximum Entropy Method MEM) to reconstruct finite temperature electron density (ED) is here discussed, investigating the case of periclase (MgO). A theoretical electron density has been generated by quantum mechanic calculations and folded with a function simulating atomic thermal motion, in order to produce a reference errorless ED [q(r)REF]. The Fourier coefficients of q(r)REF have been calculated, and used as “observed” diffraction intensities to reconstruct via MEM the original ED. The electron density attained by MEM [q(r)MEM] and q(r)REF have been compared with each other (pixel-by-pixel and critical points) to assess the ability of MEM to retrieve EDs, on the basis of a set of observed structure factors. We have carried out our study varying the number of observed structure factors [i.e. sin (q)/l cut-off], the nature of the prior-density [uniform density and procrystal-like model] and the way in which the prior-density is treated during MEM maximization [fixed or free to change]. We observe that (i) it is recommendable to use the prior-density as a start point only, and allow it to change during maximization; (ii) the closer is the prior-density o q(r)REF, the easier one attains by MEM a correct D; (iii) if the prior-density is varied and a sufficient large number of observed structure factors used, then MEM tends to yield converging EDs, regardless of the prior-density chosen as a start point.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.