Nowadays, sludge dewatering is one of the greatest operational cost to wastewater treatment cycle. Specifically, 1t of fresh sludge to be disposed is composed, on average, by 0.25 - 0.30t of suspended solids, with an average cost for treatment and disposal around 280 - 470 €/t of suspended solids. Despite several technologies have been developed with the focus to reduce also the specific sludge production, still mechanical dewatering represents a crucial step to limit the amount of sludge to be disposed. Many physical–chemical parameters influence the sludge dewaterability: floc structure, particle size, bound water content, surface charge and hydrophobicity, Extracellular Polymeric Substances content and sludge retention time. Many authors agree in identifying the sludge origin as one of the main aspect involved in sludge dewaterability. In order to elucidate the key factors influencing the dewaterability process, the present work is aimed to investigate the influence of the treatment plant lay-out on sludge dewaterability. The sludge samples were analyzed according to EN International Standards. The analyzed sludge samples were derived from 4 conventional activated sludge and 2 membrane bioreactor wastewater treatment plants (WWTPs). The results confirm the complexity of the inter-relationships between many factors affecting the sludge dewaterability (i.e., WWTP lay-out, physical-chemicals and biological factors).

Capodici, M., Mannina, G., Torregrossa, M. (2015). Wasted activated sludge dewaterability: comparative evaluation of sludge derived from CAS and MBR systems. In Proceeding Euromed 2015.

Wasted activated sludge dewaterability: comparative evaluation of sludge derived from CAS and MBR systems

CAPODICI, Marco;MANNINA, Giorgio;TORREGROSSA, Michele
2015-01-01

Abstract

Nowadays, sludge dewatering is one of the greatest operational cost to wastewater treatment cycle. Specifically, 1t of fresh sludge to be disposed is composed, on average, by 0.25 - 0.30t of suspended solids, with an average cost for treatment and disposal around 280 - 470 €/t of suspended solids. Despite several technologies have been developed with the focus to reduce also the specific sludge production, still mechanical dewatering represents a crucial step to limit the amount of sludge to be disposed. Many physical–chemical parameters influence the sludge dewaterability: floc structure, particle size, bound water content, surface charge and hydrophobicity, Extracellular Polymeric Substances content and sludge retention time. Many authors agree in identifying the sludge origin as one of the main aspect involved in sludge dewaterability. In order to elucidate the key factors influencing the dewaterability process, the present work is aimed to investigate the influence of the treatment plant lay-out on sludge dewaterability. The sludge samples were analyzed according to EN International Standards. The analyzed sludge samples were derived from 4 conventional activated sludge and 2 membrane bioreactor wastewater treatment plants (WWTPs). The results confirm the complexity of the inter-relationships between many factors affecting the sludge dewaterability (i.e., WWTP lay-out, physical-chemicals and biological factors).
Settore ICAR/03 - Ingegneria Sanitaria-Ambientale
12-mag-2015
EUROMED 2015: Desalination for Clean Water and Energy Cooperation among Mediterranean Countries of Europe and the MENA Region. 10–14 May 2015 Palermo, Italy
Palermo
10 - 14, maggio, 2015
mar-2015
2015
11
CD-ROM
Capodici, M., Mannina, G., Torregrossa, M. (2015). Wasted activated sludge dewaterability: comparative evaluation of sludge derived from CAS and MBR systems. In Proceeding Euromed 2015.
Proceedings (atti dei congressi)
Capodici, M; Mannina, G; Torregrossa, M
File in questo prodotto:
File Dimensione Formato  
275_Euromed_2015.pdf

Solo gestori archvio

Descrizione: Full text
Dimensione 235.11 kB
Formato Adobe PDF
235.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/128512
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact