We develop a method by which a large number of differential equations representing biochemical reaction kinetics may be represented by a smaller number of differential equations. The basis of our technique is a conjecture that the high dimension equations of biochemical kinetics, which involve reaction terms of specific forms, are actually implementing a low dimension system whose behavior requires right hand sides that can not be biochemically implemented. For systems that satisfy this conjecture, we develop a simple approximation scheme based on multilinear algebra that extracts the low dimensional system from simulations of the high dimension system. We demonstrate this technique on a standard 10 dimensional model of circadian oscillations and obtain a 3 dimensional sub-model that has the same rhythmic, birhythmic and chaotic behavior of the original model.
BAMIEH B, GIARRE' L (2007). On Discovering Low Order Models in Biochemical Reaction Kinetics. In Proceedings of IEEE American Control Conference (pp.2702-2707) [10.1109/ACC.2007.4283134].
On Discovering Low Order Models in Biochemical Reaction Kinetics
GIARRE, Laura
2007-01-01
Abstract
We develop a method by which a large number of differential equations representing biochemical reaction kinetics may be represented by a smaller number of differential equations. The basis of our technique is a conjecture that the high dimension equations of biochemical kinetics, which involve reaction terms of specific forms, are actually implementing a low dimension system whose behavior requires right hand sides that can not be biochemically implemented. For systems that satisfy this conjecture, we develop a simple approximation scheme based on multilinear algebra that extracts the low dimensional system from simulations of the high dimension system. We demonstrate this technique on a standard 10 dimensional model of circadian oscillations and obtain a 3 dimensional sub-model that has the same rhythmic, birhythmic and chaotic behavior of the original model.File | Dimensione | Formato | |
---|---|---|---|
On discovering.pdf
Solo gestori archvio
Dimensione
659.14 kB
Formato
Adobe PDF
|
659.14 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.