RESEARCH PAPER

Cognitive correlates in amyotrophic lateral sclerosis: a population-based study in Italy

Anna Montuschi,1 Barbara Iazzolino,1 Andrea Calvo,1,2,3 Cristina Moglia,1 Leonardo Lopiano,3 Gabriella Restagno,4 Maura Brunetti,4 Irene OSSola,4 Anna Lo Presti,5 Stefania Cammarosano,1 Antonio Canosa,1 Adriano Chiò1,2,3

ABSTRACT

Background There is less data available regarding the characteristics of cognitive impairment in patients with amyotrophic lateral sclerosis (ALS) in a population-based series.

Methodology Patients with ALS incident in Piemonte, Italy, between 2009 and 2011 underwent an extensive neuropsychological battery. Cognitive status was classified as follows: normal cognition, frontotemporal dementia (ALS-FTD), executive cognitive impairment (ALS-ECI), non-executive cognitive impairment (ALS-NECI), behavioural impairment (ALS-Bi), non-classifiable cognitive impairment. We also assessed 127 age-matched and gender-matched controls identified through patients' general practitioners.

Results Out of the 281 incident patients, 207 (71.9%) underwent the neuropsychological testing; of these, 19 were excluded from the analysis due previous conditions affecting cognition. Ninety-one (49.7%) patients were cognitively normal, 23 (12.6%) had ALS-FTD, 36 (19.7%) ALS-ECI, 10 (5.5%) ALS-NECI, 11 (6.0%) ALS-Bi and 11 (6.0%) non-classifiable cognitive impairment, 1 had comorbid Alzheimer’s disease. Patients with ALS-FTD were older, had a lower education level, and had a shorter survival than any other cognitive group. Of the nine cases with C9ORF72 mutation, six had ALS-FTD, two ALS-ECI and one was cognitively normal; one of the five patients with SOD1 mutations and one of the five patients with TARBP2 mutations had ALS-Bi.

Conclusions About 50% of Italian patients with ALS had some degree of cognitive impairment, in keeping with a previous Irish study, despite the largely different genetic background of the two populations. The lower educational attainment in patients with ALS-FTD indicated a possible role of cognitive reserve in ALS-related cognitive impairment. ALS-ECI and ALS-NECI may represent discrete cognitive syndromes in the continuum of ALS and FTD.

METHODS

We invited to participate to the study all patients with ALS resident in the provinces of Turin and Cuneo of Piemonte region, Italy, (n=281), and diagnosed between 1 January 2009 and 31 December 2011, identified through the Piemonte and Valle d’Aosta register for ALS (PARALS), fully characterised from a population-based series of patients with ALS, identified through the Piemonte and Valle d’Aosta register for ALS (PARALS), fully characterised from the clinical and genetic point of view.

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by a progressive loss of spinal, bulbar and cortical motor neurons, leading to voluntary muscles weakness and wasting and ultimately to death due to respiratory failure. While in about 90% of patients ALS occurs sporadically, in 10% it is genetically transmitted. Extramotor features in ALS include cognitive changes, which have been described in 10–50% of patients. Frequency and clinical correlates of cognitive impairment in ALS are still poorly understood. With only one exception, all studies have been performed on small clinic-based cohorts and did not use standardised methodologies for the evaluation of cognition. Recent consensus criteria proposed a classification of frontotemporal cognitive and behavioural syndromes in ALS which includes ALS with frontotemporal dementia (ALS-FTD) and two milder forms of ALS with behavioural impairment (ALS-Bi) and ALS with cognitive impairment.

The aim of this study was to assess the frequency and the clinical pattern of cognitive impairment in a population-based series of patients with ALS, identified through the Piemonte and Valle d’Aosta register for ALS (PARALS), fully characterised from the clinical and genetic point of view.

To cite: Montuschi A, Iazzolino B, Calvo A, et al. J Neurol Neurosurg Psychiatry Published Online First: [please include Day Month Year] doi:10.1136/jnnp-2013-307223

1 Rita Levi Montalcini
2 Laboratoire of Molecular Genetics, Azienda Ospedaliera Città della Salute e della Scienza, Torino, Italy
3 Department of Neurology, Azienda Ospedaliera Città della Salute e della Scienza, Torino, Italy
4 Laboratory of Molecular Genetics, Azienda Ospedaliera Città della Salute e della Scienza, Torino, Italy
5 Department of Economics and Statistics, University of Torino, Italy

Correspondence to
Professor Adriano Chiò, ALS Center, University of Turin, via Cherasco 15, 10126 Torino, Italy, achiost@usa.net

Received 12 November 2013
Revised 10 February 2014
Accepted 27 March 2014

Copyright Article author (or their employer) 2014. Produced by BMJ Publishing Group Ltd under licence.
were interviewed at home, at the GP office or at the hospital. Only nine subjects asked to participate as controls denied their participation. Most GPs were willing to collaborate (~85%). When a GP did not collaborate, another GP practicing in the same area was contacted.

Neuropsychological battery
Patients and controls underwent a battery of neuropsychological tests encompassing executive function, memory, visuospatial function and language, selected according to Clinical Diagnostic Criteria for Frontotemporal Lobar Degeneration, and ALS-FTD Consensus Criteria. The neuropsychological battery included: Mini Mental State Examination; Wisconsin Card Sorting Test; Trail Making A and B; Stroop Colour-Word Interference Test; letter and category fluency test; Wechsler Memory Scale II—revised (Form 2); Rey-Osterrieth Complex Figure Test; Token test; Wechsler Adult Intelligence Scale revised; Raven’s Progressive Colored Matrices; Frontal Assessment Battery. In some cases supplementary tasks were administered for a comprehensive evaluation of language; the following tests were used: semantic systems tests (7 and 8) of the Battery for the Analysis of Aphasic Deficits and the Silhouette trial of the Visual Object and Space Perception battery.

Neurobehavioral dysfunction was determined on the basis of direct observation and patient’s history, and with the Frontal Systems Behavior Scale, using the Family-form evaluated by a close relative (scores: normal ≤ 59, borderline 60–64; pathological ≥ 65). If a subject had scores reflecting a frontal systems abnormality in the premorbid and in the postillness forms, he/she was considered pathological only if there was an increase of ≥ 10 points at the T score between the two forms. Anxiety and depression were assessed with the Hospital Anxiety and Depression Scale; the item ‘I feel slowed down’ was discussed with patients in order not to refer to physical disability. Cognitive impairment was defined as impairment on two tests of executive or non-executive function that was below the 5th centile of healthy controls.

The battery was administered following the same sequence in order to avoid the possible differential interference of the answers of one test over the others. The administration of the battery required ~2 h, and was usually performed in the morning. If the subject felt too tired, a further session was scheduled to complete the battery, within 2 weeks after the first one. Patients’ and controls’ O₂ saturation at the time of the neuropsychological testing was measured with a pulse oximetry; none of the patients and controls had evidence of hypoxaemia (oxygen saturation < 92 mm Hg).

Cognitive classification
Clinical diagnosis and cognitive classification were performed with the collaboration of two neurologists specialising in ALS and FTD and two neuropsychologists. Patients’ cognitive status was classified as follows:

A. ALS with normal cognition.
B. ALS with frontotemporal dementia (ALS-FTD). The diagnosis of frontotemporal dementia was defined according to Clinical Diagnostic Criteria for Frontotemporal Lobar Degeneration.
C. ALS comorbid with non-FTD dementias. The diagnoses of non-FTD dementias were based on the criteria of the Diagnostic and Statistical Manual of Mental Disorders-IV-TR and those of the National Institute of Neurological and Communicative Disorders and Stroke—Alzheimer’s Disease and Related Disorders Association.
D. ALS with executive cognitive impairment (ALS-ECI). Patients with ALS who did not meet criteria for FTD or other types of dementia, but who had an impairment in two tests of executive dysfunction compared with healthy controls, that is, had an executive dysfunction, were classified as ALS with executive cognitive dysfunction. A more conservative cut-off than that proposed by the ALS-FTD Consensus Criteria was used (2.3rd centile).
E. ALS with non-executive cognitive impairment (ALS-NECI). This group includes patients with ALS with impairment in two non-executive domains, in particular visuospatial abilities, and no impairment in executive function.
F. ALS with behavioural impairment (ALS-Bi). This group includes patients with predominant behavioural disturbances and with impairment in none or only one test of executive dysfunction and no impairment in non-executive domains.
G. ALS with non-classifiable cognitive impairment (ALS-NCCI). This group includes patients with ALS with impairment in one executive and/or one non-executive test, sometimes associated with smooth behavioural changes.

Genetic analysis
All coding exons and 50 bp of the flanking intron-exon boundaries of SOD1, of exon 6 of TARDBP and of exons 14 and 15 of FUS and exons 5, 9, 12 and 14 of OPTN and the single exon of ANG have been PCR amplified, sequenced using the Big-Dye Terminator v3.1 sequencing kit (Applied Biosystems), and run on an ABIPrism 3130 genetic analyser. In patients with positive family history for ALS or FTD all coding exons of VCP have also been assessed. These exons were selected as the vast majority of known pathogenic variants are known to lie within these mutational hot spots. A repeat-primed PCR assay was used to screen for the presence of the GGGGCC hexanucleotide expansion in the first intron of C9ORF72. A cut-off of ≥30 repeats was considered pathological.

Statistical methods
Comparisons between means were made with Student t test or analysis of variance; comparisons between categorical variables were made with χ² test; for all comparisons, Levene’s test was used to confirm the equality of variances.

Survival was calculated from onset to death/tracheostomy or censoring date (30 June 2013), using the Kaplan-Meier method, and compared with the log-rank test. No patients were lost to follow-up. Multivariable analysis was performed with Cox proportional hazards model (stepwise backward) (for details, see table 3). For the analysis of the relationship between cognitive status and disease progression, the progression rate for the ALSFRS-R score, its four subscores (bulbar, fine motor, gross motor and respiratory) and forced vital capacity per cent of predicted (FVC%) was calculated as the mean monthly number of points lost from disease onset to the time of cognitive evaluation. For example, the progression rate for the ALSFRS-R score was calculated as follows: (48-ALSFRS-R at time of cognitive evaluation)/duration from onset to diagnosis (months). In the Cox model, these variables were dichotomised on the basis of their median value. The list of all variables included in the Cox model is reported in table 3.

A p level <0.05 was considered statistically significant. All tests were two-tailed. Statistical analyses were carried out using SPSS V20.0 (SPSS, Chicago, Illinois, USA).
Cognitive groups were clinically and demographically different (table 2). Patients with ALS-FTD, ALS-ECI and ALS-Bi had a higher mean age (~70 years) than those with normal cognition and ALS-NECI. ALS-NCCI had the lowest age at onset. Patients with ALS-FTD and those with ALS-NECI had a higher frequency of bulbar onset than all other groups (p=0.003). The mean number of education years was significantly lower in patients with ALS-FTD than in all other groups. ALSFRS-R score and FVC% at the time of the cognitive examination did not show significant differences. However, the ALSFRS-R bulbar subscore (items 1, 2 and 3 of the ALSFRS-R scale) was significantly lower in the group with ALS-FTD (data not shown). The rate of decline of ALSFRS-R, of its subscores and of FVC% was similar in the various groups (see online E-table S2).

Patients’ cognitive status and genetics
Of the nine cases carrying the GGGGCC hexanucleotide repeat expansion in the first intron of the C9ORF72 gene, six had ALS-FTD, two ALS-ECI and one was cognitively normal. One of the five patients with SOD1 mutations and one of the five patients with TARBDP mutation had ALS-Bi. Both patients with FUS and OPTN mutations were cognitively normal. Genetic status was significantly correlated to the presence/absence of cognitive impairment (p=0.0001).

Survival analysis
The overall median survival time was 2.7 years (95% CI 2.4 to 2.9) (figure 2). Patients with ALS-FTD had a significantly shorter survival (1.9 years, 95% CI 1.7 to 2.2) than any other group of patients with cognitive impairment, with the only exception of those with ALS-NECI (2.0 years, 95% CI 1.6 to 2.4). Patients with ALS-Bi (3.0 years, 95% CI 0.8 to 5.3) had a survival time similar to that of cognitively normal patients (3.1 years, 95% CI 2.7 to 3.4). Patients with ALS-ECI had an intermediate survival between the two groups (2.6 years, 95% CI 2.0 to 3.1). Cognitive status remained significant in Cox multivariable analysis (table 3). The presence of FTD significantly increased the risk of death compared with non-demented patients; also ALS-NECI and ALS-ECI resulted to be independently related to a worse outcome.
We have studied cognitive status in a population-based series of patients with ALS in Italy using an extensive battery of tests evaluating multiple cognitive domains. In our series, 13% of patients had a comorbid FTD, while 50% had normal cognition. The remaining patients who did not meet the criteria for FTD, but otherwise had some clinical significance, including a negative effect on disease outcome, showed various degrees of cognitive impairment.

The frequency of cognitive impairment in our epidemiological series was similar to that described in Irish patients. However, differently from that study, according to ALS-FTD Consensus Criteria we identified a group of patients with cognitive impairment, that is, patients with isolated behavioural impairment, accounting for 6% of cases. These patients did not show impairment in more than one executive or one non-executive test, but had a behavioural impairment at extensive clinical observation and at the Frontal Systems Behavior Scale test. Interestingly, one control patient also met the criteria for cognitive behavioural impairment.

We also identified a group of patients (6% of our series) (NCCI) with impairment in one executive and/or one non-executive test who did not fulfill the criteria for other cognitive groups. These patients largely differed from cognitively normal patients and from all other cognitive subgroups, being younger, less frequently bulbar, and with a higher mean education level. It is possible that this group includes premorbid FTD cases, that is, patients who did not meet the criteria for other cognitive impairments but who could have developed more severe impairment later in the course of the disease.

In our series, patients with ALS-FTD with full-blown comorbid dementia had a significantly lower educational level, in keeping with another population-based study. The lower mean educational level in Italian patients and controls in this series compared with that of the Irish study reflects the low level of education in the Italian population born before 1950. Educational level, as well as higher occupation attainment, are considered proxies of cognitive reserve. The role of cognitive reserve in protecting from AD is widely accepted, although the underlying mechanisms are still unclear. Cognitive reserve is also involved as a protective mechanism in several cognitive functions impaired in FTD, in particular speed of processing/executive functioning, visual spatial abilities and verbal memory.

Our finding suggests that either a long-standing frontal dysfunction interferes with learning and might underlie the future development of cognitive impairment or low education level puts patients at higher risk of developing FTD. Differently from patients with ALS-FTD, those with ALS-ECI, ALS-NCCI and ALS-Bi did not differ from normal controls regarding educational level, and those with ALS-NCCI had a higher educational level than other cognitive groups and controls. This finding may indicate that either cognitive reserve does not have a role in these variants of cognitive impairments in ALS, or that some patients develop cognitive impairment not meeting the full criteria for FTD because they are protected by their cognitive reserve.

Patients with ALS-FTD and ALS-ECI had an older age at onset than controls, ALS-Bi and ALS-NCCI, in keeping with various papers, but not all. This difference may be due to the higher mean age of our patients compared with other series.

In our series, bulbar onset was significantly more frequent in ALS-FTD and ALS-NCCI. Bulbar onset has been found to be more commonly related to FTD features in several series, but not in all. Supporting our findings, a [18F]2-fluoro-2-deoxy-D-glucose (FDG) Positron Emission Tomography (FDG-PET) study showed a significantly higher relative decrease in metabolism in large frontal and parietal regions in bulbar onset patients compared with spinal ones.

Table 1 Demographic and clinical characteristics of patients with ALS and controls

<table>
<thead>
<tr>
<th></th>
<th>Patients with ALS enrolled for the study (n=183)*</th>
<th>Non-captured patients with ALS (n=79)</th>
<th>Healthy controls (n=127)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age at onset (years, SD)</td>
<td>67.0 (9.9)</td>
<td>66.9 (10.3)</td>
<td>66.5 (11.4)</td>
</tr>
<tr>
<td>Gender (female, %)</td>
<td>76 (41.5%)</td>
<td>35 (44.3%)</td>
<td>54 (42.5%)</td>
</tr>
<tr>
<td>Education (number of years, SD)</td>
<td>8.3 (4.1)</td>
<td>8.5 (4.2)</td>
<td>8.7 (4.3)</td>
</tr>
<tr>
<td>Site of onset (bulbar, %)</td>
<td>62 (33.9%)</td>
<td>26 (32.9%)</td>
<td>–</td>
</tr>
</tbody>
</table>

*All comparisons are non-significant.
*Nineteen patients tested but not included in the study due to exclusion criteria (see text) are not shown in the table.

ALS, amyotrophic lateral sclerosis.

Table 2 Demographic and clinical characteristics of patients with ALS according to cognitive status

<table>
<thead>
<tr>
<th></th>
<th>Cognitively normal (n=91)</th>
<th>ALS-FTD (n=23)</th>
<th>ALS-ECI (n=36)</th>
<th>ALS-NICI (n=10)</th>
<th>ALS-Bi (n=11)</th>
<th>ALS-NCCI (n=11)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age at onset (years, SD)</td>
<td>65.9 (10.6)</td>
<td>69.1 (7.7)</td>
<td>70.0 (7.4)</td>
<td>64.9 (12.8)</td>
<td>68.1 (9.9)</td>
<td>61.9 (9.5)</td>
<td>0.04</td>
</tr>
<tr>
<td>Gender (female, %)</td>
<td>40 (43.5%)</td>
<td>43 (47.8%)</td>
<td>14 (38.9%)</td>
<td>4 (40.0%)</td>
<td>4 (36.8%)</td>
<td>4 (36.8%)</td>
<td>0.97</td>
</tr>
<tr>
<td>Disease duration at time of interview (years, SD)</td>
<td>1.23 (1.11)</td>
<td>1.28 (0.60)</td>
<td>1.18 (0.76)</td>
<td>1.03 (0.63)</td>
<td>1.19 (1.17)</td>
<td>1.20 (0.62)</td>
<td>0.99</td>
</tr>
<tr>
<td>Site of onset (bulbar, %)</td>
<td>28 (30.4%)</td>
<td>10 (60.9%)</td>
<td>10 (27.8%)</td>
<td>6 (60.0%)</td>
<td>2 (18.2%)</td>
<td>2 (18.2%)</td>
<td>0.015</td>
</tr>
<tr>
<td>Time lapse between diagnosis and interview (years, SD)</td>
<td>0.25 (0.23)</td>
<td>0.35 (0.31)</td>
<td>0.26 (0.26)</td>
<td>0.12 (0.05)</td>
<td>0.18 (0.12)</td>
<td>0.31 (0.32)</td>
<td>0.12</td>
</tr>
<tr>
<td>Mean education (years, SD)</td>
<td>8.6 (3.7)</td>
<td>4.7 (1.9)</td>
<td>7.8 (4.0)</td>
<td>9.5 (5.1)</td>
<td>9.9 (5.2)</td>
<td>12.4 (4.4)</td>
<td>0.0001</td>
</tr>
<tr>
<td>FALS (%)</td>
<td>11 (12.1%)</td>
<td>7 (30.4%)</td>
<td>2 (5.6%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.015</td>
</tr>
<tr>
<td>Mean ALSFRS-R score at time of interview (SD)</td>
<td>38.8 (7.6)</td>
<td>34.9 (7.3)</td>
<td>36.4 (7.6)</td>
<td>40.9 (6.4)</td>
<td>34.5 (12.8)</td>
<td>39.7 (6.3)</td>
<td>0.086</td>
</tr>
<tr>
<td>Mean FVC% at time of interview (SD)</td>
<td>91.2 (25.5)</td>
<td>80.7 (25.0)</td>
<td>88.4 (28.7)</td>
<td>83.2 (22.3)</td>
<td>83.7 (26.6)</td>
<td>92.3 (23.1)</td>
<td>0.181</td>
</tr>
</tbody>
</table>

One patient with comorbid Alzheimer’s disease is not included in the table.

p Value is calculated with analysis of variance (age, education, time lapse, ALSFRS-R, FVC%) or χ² (gender, site of onset, FALS status).

ALS, amyotrophic lateral sclerosis; Bi, behavioural impairment; ECI, executive cognitive impairment; FALS, familial ALS; FTD, frontotemporal dementia; FVC%, forced vital capacity per cent of predicted; NECI, non-executive cognitive impairment; NCCI, non-classifiable cognitive impairment.
In this study a genetic characterisation of all patients with ALS was performed. C9ORF72 hexanucleotide repeat expansion was the more frequent mutation, and, as expected, C9ORF72 was also the one significantly associated with FTD compared with other gene mutations or no genetic mutations. However, patients with FTD with C9ORF72 mutation accounted only for a fourth of all cases with ALS-FTD, indicating that other genetic, epigenetic, or environmental mechanisms underlie the involvement of prefrontal cortex in ALS. The role of still unknown genes is supported by the fact that ALS-FTD was more commonly related to a positive family history of ALS than all other cognitive conditions.

Cognitive impairment has a strong negative impact on ALS outcome.4 14 26 29 30 The survival of our patients with ALS-FTD and ALS-ECI was about 1 year shorter than that of cognitively normal, patients with ALS-Bi and ALS-NECI. The reason of this finding is still not completely understood. The presence of neurobehavioral dysfunction or of isolate dysexecutive behaviour in ALS at diagnosis has been found to be a strong predictor of a poor outcome, partially related to a reduced efficacy of life-prolonging therapies such as non-invasive ventilation and percutaneous endoscopic gastrostomy,14 while the decline in cognitive function was faster in patients who were cognitively impaired at baseline.31 However, we could not find any significant correlation between ALS progression, evaluated with ALSFRS-R at the time of the interview, and patients’ cognitive status, indicating that the shorter survival of patients with ALS with cognitive impairment is not completely explained by the progression rate of their motor impairment. Cox multivariable analysis confirmed that cognitive status was independently related to ALS outcome.

A limitation of this study is that it is based on a single observation shortly after the diagnosis of the disease. However, at least two series with a follow-up cognitive assessment in patients with ALS found that an onset of FTD or other forms of cognitive impairment is rare during the disease course.31 32

In this study of cognitive status of incident Italian patients with ALS, the frequency of cognitive impairment was similar to that reported by a population-based study performed in Ireland,4 despite the different genetic backgrounds of the two populations,1 2 that is, the higher frequency of C9ORF72 mutations in Ireland, and of SOD1 and TARDBP mutations in Italy. We found that ~15% of patients had ALS-FTD and another 35% had some degree of cognitive impairment. Comorbid FTD was associated with higher age at onset, bulbar onset and lower educational level, likely to represent a proxy for a reduced cognitive reserve, and has a significantly reduced survival than any other cognitive group. It remains to be understood whether ALS-ECI and ALS-NECI represent incomplete forms of cognitive impairment or discrete cognitive syndromes within the spectrum of ALS and FTD, with strong effect on the disease outcome.

Table 3 Cox’s multivariable analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR (95% CI)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS-FTD</td>
<td>1</td>
<td>0.0001</td>
</tr>
<tr>
<td>ALSFRS total score</td>
<td></td>
<td></td>
</tr>
<tr>
<td><0.7 points/month</td>
<td>3.7 (2.1 to 6.6)</td>
<td>0.003</td>
</tr>
<tr>
<td>≥0.7 points/month</td>
<td>1.9 (1.3 to 2.9)</td>
<td></td>
</tr>
<tr>
<td>ALS-NECI</td>
<td>0</td>
<td>0.004</td>
</tr>
<tr>
<td>ALS-ECI</td>
<td>1</td>
<td>0.025</td>
</tr>
<tr>
<td>Type of onset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinal</td>
<td>1</td>
<td>0.03</td>
</tr>
<tr>
<td>Bulbar</td>
<td>1.7 (1.1 to 2.7)</td>
<td></td>
</tr>
</tbody>
</table>

The following variables were included in the Cox model: age (18–59, 60–69, 70–79, 80–99) years, gender, FALS status (FALS vs SALS), gene mutation (C9ORF72, SOD1, TARDBP, FUS, OPTN, no mutation identified), years of education (≤5, 6–8, 9–13, ≥14), progression rate of ALSFRS-R total score (<0.7 vs ≥0.7 points/month), ALSFRS-R bulbar score (<0.15 vs ≥0.15 points/month), ALSFRS-R fine motor score (<0.2 vs ≥0.2 points/month), ALSFRS-R gross motor score (<0.22 vs ≥0.22 points/month), ALSFRS-R respiratory score (<0.1 vs ≥0.1 points/month), FVC% (<0.50 vs ≥0.50 months), Cognitive status was included as ALS-FTD (yes vs no), ALS-ECI (yes vs no), ALS-NECI (yes vs no), ALS-Bi (yes vs no) and ALS-NCCI (yes vs no). Enteral nutrition and non-invasive ventilation were included as time-dependent variables. ALS, amyotrophic lateral sclerosis; Bi, behavioural impairment; ECI, executive cognitive impairment; FALS, familial ALS; FTD, frontotemporal dementia; FVC%, forced vital capacity per cent of predicted; NECI, non-executive cognitive impairment; NCCI, non-classifiable cognitive impairment.

Acknowledgements

The authors thank patients and controls for having collaborated with this study. This work was in part supported Ministero della Salute (Ricerca Sanitaria Finalizzata, 2010, grant RF-2010-2309849) and European Community’s Health Seventh Framework Programme (FP7/2007-2013 under grant agreement 259867).

Contributors

Study concept and design: AM, Andrea C, LL, Antonio C, Adriano C. Acquisition of data: AM, BI, Andrea C, CM, MB, IO, SC, Adriano C. Analysis and interpretation of data: AM, Andrea C, LL, ALP, Antonio C. Drafting of the manuscript: AM, Adriano C. Critical revision of the manuscript for important intellectual content: AM, Andrea C, CM, LL, ALP, Antonio C, Adriano C. Obtained funding: Adriano C. Administrative, technical and material support: BI, CM, MB, IO, SC. Study supervision: AM, Adriano C. Adriano C had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. All authors have approved the submitted version of the paper.

Funding

Ministero della Salute (Ricerca Sanitaria Finalizzata, 2010, grant RF-2010-2309849) and European Community’s Health Seventh Framework Programme (FP7/2007-2013 under grant agreement 259867).

Competing interests

Andrea C has received research support from Italian Ministry of Health (Ricerca Finalizzata). LL has received research support from Italian Ministry of Health (Ricerca Finalizzata). GR has received research support from Italian Ministry of Health (Ricerca Finalizzata). Ricerca Finalizzata and Regione Piemonte (Ricerca Finalizzata). Adriano C serves on the editorial advisory board of Amyotrophic Lateral Sclerosis and has received research support from Italian Ministry of Health (Ricerca Finalizzata).
Neurodegeneration

Regione Piemonte (Ricerca Finalizzata), University of Turin, Federazione Italiana Giuocco Calcio, Fondazione Vialli e Mauro onlus, and European Commission (Health Seventh Framework Programme); he serves on scientific advisory boards for Biogen Idec and Cytokinetics.

Patient consent

REFERENCES

Cognitive correlates in amyotrophic lateral sclerosis: a population-based study in Italy

Anna Montuschi, Barbara Iazzolino, Andrea Calvo, et al.

J Neurol Neurosurg Psychiatry published online April 25, 2014
doi: 10.1136/jnnp-2013-307223
Articles on similar topics can be found in the following collections

Memory disorders (psychiatry) (1230 articles)
Motor neurone disease (252 articles)
Neuromuscular disease (1170 articles)
Spinal cord (467 articles)
Dementia (891 articles)
Drugs: CNS (not psychiatric) (1728 articles)
Psychiatry of old age (299 articles)

Notes

Advance online articles have been peer reviewed, accepted for publication, edited and typeset, but have not yet appeared in the paper journal. Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/