Clinical Evaluation of a Telemedically Linked Introral Drug Delivery System

Simon Herrlich1, Andy Wolff2, Rachid Nouna1, Sven Spieth1, Ben Z. Beiski2, Roberto Monastero3, Giuseppina Campisi3, Roland Zengerle1

1 HSG-IMIT, Villingen-Schwenningen, Germany
2 Peh-Med Ltd., Harutzim, Israel
3 Università degli Studi di Palermo, Italy

The miniaturized introral drug delivery system BuccalDose is composed of a replaceable cartridge which is worn in a removable prosthesis and an external base station for telemedical therapy monitoring. The system has now been tested for the first time with Parkinson’s disease (PD) patients. The study evaluated the usability of the entire system, the functionality of the telemedical transmission path and the functionality of the cartridge, which uses an osmotic pumping principle to release a liquid drug formulation to the buccal mucosa. The BuccalDose system was generally considered to be easy to handle, even with movement disorders, up to a mild-moderate disease stage. In addition, the obtained in vivo release rates of the cartridges confirmed the previously achieved in vitro release behavior.

The BuccalDose system

The drug delivery system BuccalDose is worn as a replaceable cartridge in a removable intraoral appliance (Fig. 1). During the manufacturing process, special attention is given to the installation procedures of a cartridge carrier into the appliance body, as its original functional capabilities (i.e., stability, durability, and occlusion) must be maintained [1]. The replaceable cartridge is fabricated from biocompatible materials with customized assembly & packaging technologies [2]. During operation, water from saliva in the mouth generates a volumetric flow rate across the semipermeable membrane of the cartridge by dissolving salt. Thereby, a flexible barrier membrane is deflected and the separately stored drug is ejected (Fig. 2).

For the phase I clinical evaluation, no drug has been used and air was instead ejected. In early stages of the disease, BuccalDose could administer dopamine agonists such as pramipexole or ropinirole [4], while in the later stages levodopa derivatives [5] are promising drug candidates.

The current design of the cartridge is in principle further miniaturizable as osmotic pumps in general [6]. On the other hand, the storable amount of active ingredients is then also reduced. The entire BuccalDose system is completed by a telemedically linked base station, a mobile gateway, and an assistive tool (Fig. 3). With the assistive tool, PD patients with limited motor skills are able to insert and remove the magnetically attachable cartridge into the prosthesis and into the base station, respectively. The usability of the BuccalDose system in daily life was evaluated in relation to the disease stage using a patient questionnaire. The usability of the base station and the assistive tool was mainly perceived as easy, while operation tends to be more difficult in higher disease stages. The wearing comfort was independent from the disease stage and consistently considered to be comfortable. However, the removal of the cartridge from the prosthesis with the assistive tool was difficult for patients with more limited motor skills in moderate or advanced disease stages. The osmotic pumping principle was charac-
Characterized by the cumulative weight gain of each cartridge, which would be similar to its cumulative release rate. On average, the measured cumulative weight gain was $1.65 \pm 0.3 \text{ mg/h}$ in vivo, which is comparable to previously obtained in vitro results ($1.85 \pm 0.02 \text{ mg/h}$). From the application and hygienic point of view, the cartridges should not be reused after removal, e.g. during night periods. Therefore, the release rates are ideally adapted to last for a period of one daytime as the cartridge should be completely depleted.

Conclusion & Outlook

The idea of the entire system was thereby considered by the patients as “very good”. The clinical evaluation provided important information on the necessary functional design features that are required for a miniaturized drug delivery device operated by patients with movement disorders. The present version of the system seems to be usable up to a mild-moderate disease stage in patients with medium to high education level. However, in advanced PD, intensive training for correct usage may be necessary and for PD patients with limited cognitive functions it appears to be not suitable.

The next step is the implementation of a new and improved version of the BuccalDose system which can be handled more intuitively with less operation steps, i.e. by integration of the mobile gateway into the base station. In the framework of the EUREKA project OPTIMED, a new and miniaturized version of the cartridge is being developed that can be also worn on the teeth.

Acknowledgement

This work was supported in part by the German Federal Ministry of Education and Research (BMBF) under Grant 16SV3797 and by the European Commission within the framework of the AAL Joint Programme, 1st call, aal-2008-1-022.

References

Hahn-Schickard-Gesellschaft für angewandte Forschung e.V.
Institut für Mikro- und Informations-technik
Simon Herrlich
Wilhelm-Schickard-Str. 10
D – 78052 Villingen-Schwenningen
Phone +49 (0)7721-943 - 332
Fax +49 (0)7721-943 - 210
Mail simon.herrlich@hsg-imit.de
Web www.hsg-imit.de