Changing Needs, Adaptive Buildings, Smart Cities

Volume 1

- Analytical, Experimental Research Results.
- Building Design Analytical Behaviour Presentations.
- Critical Reviews.
- Methods, Methodologies.
- Product-Oriented, Process-Oriented Design and Applications.

Edited by
Oktay URAL
Emilio PIZZI
Sergio CROCE
Changing Needs, Adaptive Buildings, Smart Cities

Volume 1
- Analytical, Experimental Research Results.
- Building Design Analytical Behaviour Presentations.
- Critical Reviews.
- Methods, Methodologies.
- Product-Oriented, Process-Oriented Design and Applications.
CORPORATE PATRONAGES AND SPONSORS

The Conference wishes to acknowledge and warmly thank the following organisations and companies for patronship, sponsorship and contributions.

- We warmly thank the Tourist Information Office of Milano Municipality for having provided the participants with information material illustrating the various interesting aspects of the capital city of Lombardy.
- We warmly thank the Tourist Information Office of Lecco Municipality for having provided the participants with information material regarding the Lecco area, a place which attracted for centuries national and international poets and artists. And
- We warmly thank the Lecco Chamber of Commerce for the social programme on September 18th, 2013, they kindly offered.

Changing Needs, Adaptive Buildings, Smart Cities

Proceedings of the thirty-ninth World Congress on Housing Science, 39 IAHS.
Politecnico di Milano, Italy
September 17 - September 20, 2013
Volume 1
Edited by
OKTAY URAL, EMILIO PIZZI and SERGIO CROCE

PoliScript
Milan, 2013
CONTENTS

FOREWORD 30
PREFACE 32
CONFERENCE ORGANISATION 36

BUILDING DESIGN 39

DWELLING IN POST DISASTER RECONSTRUCTION. HOW TO REBUILD A SENSE OF BELONGING?
Marco MORANDOTTI, Elisa SALVANESCHI 41

LIGHT SHELTERS: USE OF REFLECTIVE INSULATIONS IN EMERGENCY ARCHITECTURE
Cristina PUSCEDDU, Marco IMPERADORI 49

ADAPTABILITY AS A STRATEGY FOR AFFORDABLE HOUSING. DESIGN PROPERTIES AFFECTING APARTMENTS’ ADAPTABILITY IN MULTISTORY HOUSING
Ali Haider AL JAMEEL, Omar Arshad AL HAFITH 57

‘SPONTANEOUS’ VS. ‘PRESCRIBED’: ADAPTATION OF PUBLIC HOUSES AND SOCIAL SUSTAINABILITY IN UAE
Khaled GALAL AHMED 65

OPEN CONFIGURATION MODEL FOR COLLECTIVE HOUSING BUILDING STRUCTURE: GRAPH MODEL
Jelena NIKOLIC 71

THE INTEGRATION OF BUILDING SERVICES IN MODULAR CONSTRUCTION SYSTEMS. THE CASE OF THE ‘999 PROJECT’
Angelo LUCCHINI, Enrico Sergio MAZZUCHELLI 79
CHANGES: THE BRIDGE BETWEEN THE PAST AND THE FUTURE
Vladimir BREZAR 87

USING AXIOMATIC DESIGN IN THE DESIGN OF REDUNDANT THERMODYNAMIC SYSTEMS - AN APPLICATION TO HOTELS
André FELICIO, Miguel CAVIQUE 95

THE MODERN MOVEMENT HOUSING STRATEGIES IN LATIN AMERICA
Alejandro PÉREZ-DUARTE FERNÁNDEZ 103

BIOMASS CHP SYSTEM DESIGN STRATEGIES AND TOOLS ON SUSTAINABILITY FOR HOUSING BASED ON NEURAL NETWORK
Fahriye Enda ÇAĞAL, Mert TOLON 109

NOTHING IS PERMANENT. GPS’ FOR SUSTAINABLE VALUES OF BUILDINGS AND CITIES IN CHANGE
Peter SCHMID, Gabriella PAL-SCHMID 117

OVERVIEW OF THE INTERNATIONAL RATING SYSTEMS FOR SUSTAINABLE TOURIST ACCOMMODATIONS: LEARNING FROM VERNACULAR FOR SUSTAINABLE ARCHITECTURAL DESIGN
Rengin BECEREN ÖZTÜRK, Arzu ISPALAR ÇAHANTIMUR, Ayşen ÇELEN ÖZTÜRK 133

MINOR BUILDING ENVIRONMENTAL IMPACT ASSESSMENT IN THE EARLY DESIGN PHASE: A QUALITY-ORIENTED METHODOLOGY WITH SUPPORTING TOOLS
Francesco SCARLATTI, Rachele PEREGO 141

CREATIVITY IN ARCHITECTURE: THE COGNITIVE PROCESS
Giovanni RABINO, Dino BORRI, Rossella STUFANO MELONE 149

‘NEARLY ZERO ENERGY BUILDING’. DESIGN STRATEGIES AND BEATS INFLUENCE ON ARCHITECTURAL DESIGN
Enrico Sergio MAZZUCHELLI, Marita WALLHAGEN 155

SMART SOLUTIONS FOR SOLAR ADAPTIVE FAÇADE PRELIMINARY STUDIES FOR AN INNOVATIVE SHADING DEVICE
Michele SAUCHELLI, Gabriele LOBACCARO, Gabriele MASERA, Francesco FIORITO 163

FULL-SCALE TESTING OF HOME ENVIRONMENTS: ACCESSIBILITY OF THE BATHROOM
Antonio FRATTARI, Michela DALPRÀ, Cecilia PIFFER 173

EVALUATION OF ENERGY PERFORMANCE ON LIGHTING BY USING DIALUX AND BEP-TR'
Arzu CILASUN, Murat ANBARCI 181

A SIMPLIFIED METHOD FOR THE ASSESSMENT OF FAÇADE SURFACE TEMPERATURES
Rossano ALBATICI, Francesco PASSERINI, Nicola PEDENZINI 189

SOLAR CHIMNEY DESIGN FOR PASSIVE COOLING OF APARTMENT BUILDINGS IN MEDITERRANEAN CLIMATE
Francesco IANNONE, Alessandro GORGOGLIONE 207

ANALYSIS OF BUILDINGS BASED ON THE MATERIALS LCA DATA
Milan PORHINCAK, Adriana ESTOKOVA 215

HOUSEHOLD CARBON EMISSIONS IN MULTI-STOREY RESIDENTIAL BUILDINGS IN HONG KONG
Zsuzsa SZALAY, Tamás CSOKNYAI 233

THE ROAD TO NEARLY ZERO-ENERGY BUILDINGS
Miqdad Haidar AL-JAWADI, Jamal Abed Al Wahid AL-SUDANI 243

DOME GEOMETRICAL SHAPES IDEALITY IN THERMAL PERFORMANCE
Miqdad Haidar AL-JAWADI, Jamal Abed Al Wahid AL-SUDANI 243
MEASURES OF WATER EFFICIENCY IN BUILDINGS. COMFORT AND
PERFORMANCE ISSUES
Armando SILVA-AFONSO, Carla PIMENTEL-RODRIGUES 251

RESPONDENTS’ COMFORT AND PRODUCTIVITY IN SMART INDOOR
ENVIRONMENT-CASE STUDY
Ivana PILIPOVÁ, Silvia VILČEKOVÁ 259

STATISTICAL ANALYSIS OF ARCHITECTURAL CONFIGURATION
ASSOCIATED WITH HEATING ENERGY PERFORMANCE
Zehra Tuğçe KAZANASMAZ, İlknur UYGUN, Gülden Gökçen AKKURT, Cihan TURHAN, Kenan Evren EKMEN 267

125 CASES OF NEW SOCIAL DESIGN HOUSES COMPARED
Cecilia BOLOGNESI, Paolo MAZZOLENI 275

NEARLY ZERO ENERGY BUILDING IN LECCO
MODERN TECHNOLOGICAL BUILDING COMPARED TO AN ANCIENT
VILLA
Matteo BRASCA, Oscar Luigi PAGANI, Kanza RAUF 283

EMPHASIZING RESILIENCE AT THE LOCAL LEVEL TO BUILD DISASTER
RESISTANCE AND SUSTAINABILITY: AN EMERGENCY MANAGER’S
PERSPECTIVE
Kay Collett GOSS 291

USING THE HOME FOR INCOME GENERATION. HOME BASED
ENTERPRISES AND IMPLICATIONS FOR HOUSING POLICY IN NIGERIA
Cynthia ADEOKUN, Eziyi IBEM 297

PLACE AFFILIATION IN SUBURBAN GATED COMMUNITIES:
EXAMPLES FROM IZMIR, TURKEY
Gülner BALLİCE, Ebru BENGİSU 305

THE ADAPTABLE BUILDING. RESEARCH AND EXPERIMENTATION FOR
CONTEMPORARY SOCIAL HOUSING
Elisabetta PANI 311

AN EXPERIMENTAL INVESTIGATION OF THE WIND FORCES ON TREES
Pietro Giuseppe CRESPI, Alberto FRANCHI, Nicola LONGARINI, Aly Mousaad ALY 319

MODELLING OF ADVANCED DAYLIGHTING SYSTEMS TO EVALUATE
ILLUMINANCE AND UNIFORMITY
Zehra Tuğçe KAZANASMAZ, Pelin FIRAT 325

THE INTEGRATION OF VEGETATION IN SOCIAL HOUSING. STATE OF THE
ART AND PERSPECTIVES
Oscar Eugenio BELLINI, Laura DAGLIO 333

THE TRANSFORMATION OF THE ‘HOUSE’, DESIGNED FOR THE ‘FUTURE’
Erinç ONBAY, Meltem AKSOY 341

ECO-SUSTAINABLE ARCHITECTURES OF COMPLEX SHAPE: USE OF
DIGITAL AND PHYSICAL MODELS
Maria Annunziata PIGNATARO, Giulio ZANI, Gabriele LOBACCARO 349

AN INNOVATIVE TALL BUILDING CONCEPTION.
A SPHERICAL CONTAINER
Antonio MIGLIACCI, Guglielmo MOZZONI, Nicola LONGARINI 359

THE DILEMMA OF RESIDENTIAL COMPOUNDS DESIGN IN EGYPT
Nagwa SHERIF 367

MORPHOLOGICAL ANALYSIS OF ROOMING HOUSE TYPOLOGY IN
NIGERIA
Akunnaya Pearl OPOKO 375
FROM SOIL-CEMENT TO GEOPOLYMERIZED SOIL BLOCKS
Carlos BEDOYA MONTOYA, Olga YEPES GAVIRIA 533

CELLULOSE FILLERS FOR IN-SITU CONCRETE. TOWARD A TRULY GREEN SOLUTION
Hunter CAIRNS 539

A REVIEW: WASTE TYPES IN SUSTAINABLE CONSTRUCTION PROJECTS
Senem SEYIS, Esin ERGEN, Emilio Mario Ruggero PIZZI 547

ARCHITECTURAL APPS FOR SMARTPHONES: FOUR FINISHED CASES
César MARTÍN-GÓMEZ, Francisco Javier NIETO, Elena MIRA 557

MONITORING SYSTEM FOR ENERGY MANAGEMENT OF BUILDINGS. DESIGN OF MODELS AND SENSOR NETWORKS FOR SUPPORTING CONTROL SYSTEMS
Roberta ANSUINI, Massimo LEMMA, Alberto GIRETTI 565

ADAPTIVE AND PREDICTIVE CONTROL FOR ENERGY MANAGEMENT OF BUILDINGS
Alessandro CARBONARI, Massimo VACCARINI, Roberta ANSUINI 573

MAINTENANCE OF PAINTED INTERIOR WALLS BASED ON VIRTUAL REALITY TECHNOLOGY
Alcinia Zita SAMPAIO, Daniel ROSARIO 581

THE ENI VILLAGE AT CORTE DI CADERO (ITALY)
Stefania MORNATI 589

IN-SITU THERMAL RESISTANCE EVALUATION OF WALLS USING AN ITERATIVE DYNAMIC MODEL
António Jóse Barreto TADEU, Nuno SIMÕES, Inês SIMÕES, Filipe PEDRO, Leopold ŠKERGET 597

THERMAL PERFORMANCE OF WINDOWS: EXPERIMENTAL VALIDATION OF NUMERICAL RESULTS
Nuno SIMÕES, Joana PRATA, Saúl MARTINS, António Jóse Barreto TADEU 607

BENCHMARKS FOR SUSTAINABLE LEVELS OF WATER CONSUMPTION IN RESIDENTIAL BUILDINGS
Vitor ABRANTES, Frederico ARAÚJO FERREIRA 617

OPTIMIZATION OF THERMAL INSULATING CELLULOSE PANELS FOR SUSTAINABLE BUILDING ENVELOPE
Marta MUSITELLI, Paola GARBAGNOLI, Barbara DEL CURTO, MariaPia PEDEFERRI 625

MECHANICAL AND HYDROTHERMAL RESEARCH OF CORNSTALK THERMAL INSULATION BLOCKS
David BOZSAKY 633

PERFORMANCE ANALYSIS OF INNOVATIVE VACUUM INSULATION PANEL
Antonio DE VECCHI, Simona COLAJANNI, Elsa SANFILIPPO 641

APPLICABILITY OF A NEW PRODUCT DEVELOPMENT PROCESS FOR FLOOR COVERINGS
Nihal ARIOĞLU, Asiye ÇOLAKOĞLU, Mete Hakan DUMAN, Mahmure Övül ARIOĞLU AKAN 649

TECHNOLOGICAL EVOLUTION OF SOCIAL HOUSING 1940-2005. THE BUILDINGS OF PATRONAT MUNICIPAL DE L’HABITATGE DE BARCELONA
Roger MORENO MEGIAS, Joan Lluís ZAMORA i MESTRE 657

CHARACTERIZATION OF THE CONCRETE SAMPLES EXPOSED TO THE WASTEWATER
Vlasta ONDREJKÁ HARBULAKOVA, Adriana ESTOKOVA, Eva TERPAKOVA, Nadezda STEVULOVA, Katarina FORAIOVA 665
INTRODUCTION TO ENVIRONMENTAL ASSESSMENT OF SECONDARY RAW MATERIALS
Marcela ONDOVA, Nadezda STEVULOVA 673

AESTHETIC PROBLEMS RELATED TO USING OF MGO BOARDS
Marian HOLUB, Magdalena BALINTOVA, Martin LOPUSNIAK, Lenka PALASCAKOVA 681

INCLUSION OF RECYCLED TYRES IN GLASS REINFORCED CONCRETE (GRC) PANELS
José Manuel PASTOR, Luis Daniel GARCÍA, Samuel QUINTANA, Juan PEÑA 689

STRATEGIES FOR THE ENVIRONMENTAL IMPROVEMENT OF MARBLE QUARRIES ACTIVITIES. A MODEL TO EVALUATE IMPACTS AND TO SUPPORT DECISIONS
Monica LAVAGNA, Cinzia Maria Luisa TALAMO, Marco MIGLIORE 697

SELECTION-MODEL FOR ARCHITECT/ENGINEER FOR HOUSING PROJECTS IN SAUDI ARABIA
Sadi ASSAF, Mohammad Ahmad HASSANAIN, Azfar AMMAN 707

QUALITY AND HOUSING: A PROPOSAL FOR THE CONSTRUCTION SUPPLY CHAIN
Giancarlo PAGANIN, Cinzia TALAMO 715

MOBILE CRANE SELECTION BASED ON WORKSPACE REQUIREMENTS AND COST PARAMETERS
Zuzana STRUKOVA, Marian ISTVANIK 723

TEMPORARY AND MOBILE SYSTEMS FOR THE PRODUCTION OF RENEWABLE ENERGY ON SITE
Benedetta BOSSI, Angelo LUCCHINI, Enrico Sergio MAZZUCCHELLI, Marco Lorenzo TRANI 731

LEGAL, ECONOMICS, FINANCIAL POLICIES 739

THE EVALUATION OF KEY PERFORMANCE INDICATORS OF FACILITY MANAGEMENT
Jarmila Rimbalová, Silvia Vilčeková 741

THE LEGALIZATION OF ILLEGAL BUILDINGS: CURRENT SITUATION IN CROATIA
Iva MURAJ, Nikola ARAMBAŠIĆ 749

NIGERIA’S HOUSING FINANCE MECHANISM IN PRE-2012 NATIONAL HOUSING POLICY ERA: MATTERS ARISING
Kabir BALA, Peter KUROSHI, Musu Nuhu MADAWAKI, Shehu Ahmad BUSTANI 757

ASSESSMENT OF RISK OF INJURY TO VARIOUS WORKS
Carlos OLIVEIRA, Vitor ABRANTES, Cristina REIS 767

THE CONCERNS OF SAFETY COORDINATION IN DAMS
Márcio MIEIRO, Cristina REIS, Carlos OLIVEIRA 775

ARCHITECT PROFESSIONAL INSURANCE IN EUROPE. ANALYSIS OF MAIN ASPECTS DEFINING LIABILITY IN ARCHITECTURE
Víctor HERRERA MEDINA, Antonio Eduardo HUMERO MARTÍN 783

SOCIAL HOUSING IN NORTHERN ITALY: THE PUBLIC-PRIVATE-NONPROFIT COOPERATION
Adriano PROPERSI, Giuseppe MASTRILLI, Selin GUNDES 791

SUSTAINABLE REFURBISHMENT: NEW POLICY INITIATIVES FOR NEW ZEALAND’S LEAKING BUILDINGS
Chris MURPHY 801
RECENT ADVANCES IN PRIVATE INITIATIVE OF SOCIAL HOUSING IN ITALY. SOME REMARKS ABOUT ECONOMIC AND FINANCIAL SUSTAINABILITY OF PROJECTS
Roberto CIGOLINI, Maria Luisa DEL GATTO

REFURBISHMENT, REHABILITATION, RESTORATION 815

MODELING THE CONDITION OF BUILDINGS BY REAL FUZZY SETS
Ádám BUKOVICS, László Tamás KÓCZY

BUILDING HERITAGE EVOLUTION FROM PRE-MODERN TO MODERN STAGES IN COSENZA: THE CASE OF COLLE TRIGLIO
Alessandro CAMPOLONGO

OLD BUILDINGS: SUSTAINABLE INTERVENTION IN MASONRY
Ana Ferreira RAMOS, José António Raimundo Mendes da SILVA

THE IMPORTANCE OF BUILDING MAINTENANCE IN REFURBISHMENT AND REHABILITATION
Patrícia Andreia Ventura Pinto FERNANDES ROCHA, Rui Manuel Gonçalves CALEJO RODRIGUES

PALACE OF JUSTICE RAYMUNDO FAORO ACCESS FOR ALL TO BRAZILIAN MODERN HERITAGE SITES
Oscar FERREIRA, Marco MÁXIMO

REHABILITATION OF SANCRAI-ALBA CASTLE FROM TRANSYLVANIA
Adriana MATEI, Narcisa TURCANU, Razvan TURCANU, Tudor Adrian MATEI

URBAN HERITAGE PRESERVATION AS A MEANS FOR SUSTAINABILITY. THE CASE OF THE POMPEY'S PILLAR AREA, ALEXANDRIA, EGYPT
Mohsen Abo Bakr BAYAD, Nevine Gharib REZK,
AN IN SITU DIAGONAL COMPRESSION TEST FOR BRICK WALLS WITH DISPLACEMENT CONTROL ON THE TWO EXTERNAL LAYERS
Alberto FRANCHI, Pietro CRESPI, Flavio PIZZAMIGLIO, Paola RONCA 941

INVESTIGATION ON THE CAUSE OF DAMAGES OF AN HISTORICAL MASONRY INDUSTRIAL PLANT
Paola RONCA, Pietro Giuseppe CRESPI, Alberto FRANCHI, Nicola LONGARINI 947

SEISMIC VULNERABILITY OF A DRY DOCK IN MESSINA, ITALY
Pietro Giuseppe CRESPI, Alberto FRANCHI, Giuseppe SILVESTRO, Marco ZUCCA 955

IDENTIFYING BARRIERS FOR ADOPTING SUSTAINABLE INITIATIVES: A STUDY OF AUSTRALIAN HOUSING
Mark VINES, Georgia WARREN-MYERS, Andrew CARRE, Ron WAKEFIELD 963

EVALUATION OF OPTIONS FOR BUILDING REFURBISHMENT: AN INNOVATIVE DESIGN TOOL SUPPORTING DECISION-MAKERS IN ITALY
Laura Elisabetta MALIGHETTI, Giuliana IANNACCONE, Matteo Francesco RUTA, Carlo Filippo BONACINA, Nadia VILLA, Benedetta BERTANI, Giuseppe TURCHINI, Emilio Mario Ruggero PIZZI, Manuela GRECCHI 971

ENERGY ASSESSMENT AND RETROFITTING OF MEDITERRANEAN HISTORICAL TOWNS
Mariella DE FINO, Giambattista DE TOMMASI, Guido Raffaele DELL'OSSO, Fabio FATIGUSO, Francesco IANNONE, Alessandra PIERUCCI, Albina SCIOTI 977

THE INFLUENCE OF INSULATION ON THE THERMAL INERTIA OF EXISTING RESIDENTIAL BUILDING ENVELOPES
Amr Alaaeldin Abdelreheem ELESAWY, Gabriele MASERA 985

LARGE SCALE BUILDING REFURBISHMENT STRATEGIES IN ITALY: A PROPOSAL OF ‘GEOCLUSTER’ CHARACTERIZATION
Emilio Mario Ruggero PIZZI, Giambattista DE TOMMASI, Antonella Grazia Maria Immacolata Romana GUIDA, Renato Teofilo Giuseppe MORGANTI, Angelo SALEM 993

ENERGY ASSESSMENT AND RETROFITTING OF MEDITERRANEAN HISTORICAL TOWNS
Mariella DE FINO, Giambattista DE TOMMASI, Guido Raffaele DELL'OSSO, Fabio FATIGUSO, Francesco IANNONE, Alessandra PIERUCCI, Albina SCIOTI 977

THE NEW ‘GREEN-HOUSE’ IN ZOGNO
A NEW ZERO-ENERGY REFURBISHMENT
Oscar Luigi PAGANI, Marco BONOMI, Adil AHMED 1041

SHEAR EXPERIMENTAL ANALYSIS OF RC BEAMS STRENGTHENED WITH FRCM
Lorenzo LEARDINI, Giovanni LORETO, Carlo POGGI, Antonio NANNI 1051

ENERGY EFFICIENCY AND TECHNOLOGICAL CONSERVATIVE RECOVERY OF HISTORIC TURKISH WOODEN HOUSES
Emre KISHALI, Rachele PEREGO 1033

THE NEW ‘GREEN-HOUSE’ IN ZOGNO
A NEW ZERO-ENERGY REFURBISHMENT
Oscar Luigi PAGANI, Marco BONOMI, Adil AHMED 1041

THE NEW ‘GREEN-HOUSE’ IN ZOGNO
A NEW ZERO-ENERGY REFURBISHMENT
Oscar Luigi PAGANI, Marco BONOMI, Adil AHMED 1041

RESTORATION OF RESIDENTIAL BUILDINGS IN ROMANIA FACING NZEB CHALLENGES
Mariana BRUMARU 1067
AN EXPERT SYSTEM FOR OPTIMIZING THE RETROFIT OF BUILDING ENVELOPES
Árpád CSÍK, János BALÁZS, Tamás CSOKNYAI, Zsuzsa SZALAY

POST-INDUSTRIAL DEVELOPMENT: A GROWING OPPORTUNITY FOR SUSTAINABLE DEVELOPMENT
Sherine Shafik Ahmed ALY

3D HEAT DIFFUSION SIMULATION USING ITERATIVE 3D TBEM
Catarina SERRA, António Jóse Barreto TADEU, Nuno SIMÕES

THE REHABILITATION OF BRICK COVERING WALLS
Maria de Lurdes BELGAS COSTA, Fernando José Fortes GARRIDO BRANCO, Jorge Morarji Remédios DIAS MASCARENHAS

FABRIC REINFORCED CEMENTITIOUS MATRIX (FRCM) MATERIALS FOR STRUCTURAL REHABILITATION
Giuseppe BIANCHI, Diana ARBOLEDA, Francesca Giulia CAROZZI, Carlo POGGI, Antonio NANNI

FRCM REINFORCED MASONRY WALLS SUBJECTED TO IN-PLANE LOADING
Giorgia PASCUCCI, Saman BABAEI, Carlo POGGI, Antonio NANNI

REHABILITATION OF ‘VILLA DEGLI SPIRITI’ IN MARECHIARO IN NAPLES
Flavia FASCIA

URBAN PLANNING, CITY PLANNING

MEASURING THE NON-MEASURABLE. NEW EPISTEMOLOGICAL FRAMEWORKS IN URBAN RESEARCH
Darko RADOVIĆ

REHABILITATION OF ‘URBINO 2’ SLUM 2. CRITERIA TO UPGRADE THE SAFETY LEVEL IN BUILDINGS DESIGN
Romualdo MONTAGNA, Ettore PANDOLFI, Giorgio AGARBATI

DEFINITION OF A SOFTWARE FOR OUTDOOR POST-EARTHQUAKE EVACUATION SIMULATION. GROUP ATTRACTION DEFINITION USING A SOCIAL FORCE MODEL APPROACH
Marco D’Orazio, Luca Spalazzi, Enrico Quagliarini, Gabriele Bernardini

RENOVATING HOUSING POLICIES TO COPE WITH HOUSING PROBLEMS IN SUDAN
Zuhal Eltayeb AWAD, Amena OSMAN

LICENSED PROCEDURES FOR SOCIAL HOUSING PROJECTS
Maria Luisa DEL GATTO, Antonio INVERNALE, Marzia MORENA

FROM INFORMAL TO PIRATE URBAN SETTLEMENT: A CASE IN DAVAO CITY, PHILIPPINES
Isidoro MALAQUE III

URBAN TRANSFORMATION DEVELOPMENTS TRIGGERED BY NEW LEGAL REGULATIONS IN ISTANBUL
Yurdanur DULGEROGLU-YUKSEL, Ahsen OZSOY, Gulcin PULAT GOKMEN

LETHLAKANE, BOTSWANA: INFORMALITY IN TRANSITION
Gerald STEYN, Keoagile ATAMELANG

RETHINKING NEW COMMUNITIES DEVELOPMENT - WITH REFERENCE TO EGYPT’S 40 YEARS EXPERIENCE
Nasamat ABDEL-KADER, Sayed ETTOUNEY

CRIME PREVENTION IN RESIDENTIAL SETTLEMENTS OR NEW SUSTAINABLE COMMUNITIES-CITIES
Deniz DENIZ, Ahmet Can OZCAN

BRAZILIAN SOCIAL HOUSING POLICY: TOWARD A SUSTAINABLE FUTURE
Luisa PASTORE, Rossella CORRAO
CHANGING IDENTITIES IN PUBLIC OPEN SPACES: REPUBLICAN SQUARE OF BURSA
Sibel POLAT, Neslihan DOSTOGLU 1231

DYNAMICS AND GROWTH DICHOTOMY OF URBAN VILLAGES. CASE STUDY DELHI
Subrata CHATTOPADHYAY, Priyanka DEY, Joel MICHAEL 1241

ENERGY RETROFIT AND URBAN RENOVATION. APPLICATION OF SBTOOL METHOD. A CASE STUDY IN TRAPANI, ITALY
Emanuele CALABRÒ, Chiara DELLA CORTE, Rossella CORRAO, Luis BRAGANÇA, Luisa PASTORE, Guilherme CASTANHEIRA 1253

FEATURES FOR SUSTAINABLE URBAN NEIGHBOURHOOD DEVELOPMENT
Paul STOUTEN 1263

THE SEARCH FOR IDENTITY WITHIN A SOCIETY IN TRANSFORMATION. THE ISSUE OF GATED COMMUNITIES IN EGYPT
Nagwa SHERIF, Ahmed ZAKI 1271

MEASUREMENTS FOR ACHIEVING ECONOMICALLY SUSTAINABLE COMMUNITIES. A CASE STUDY IN HISTORICAL NEIGHBOURHOOD OF ISTANBUL
Suheyla TURK 1279

SUSTAINABLE PLANNING AND HOUSING MARKET PRICES
Ila MALTESE, Ilaria MARIOTTI, Fulvia PINTO 1287

HAZARD ESTIMATION OF EXISTING BUILDINGS IN THE CITIES OF KOCAELI AND ADAPAZARI DUE TO LOCAL SOIL CONDITIONS
Elmon TORAMAN, Derin Nur URAL 1297

A RECOMMENDED RATING SYSTEM FOR THE EXPECTED EARTHQUAKE PERFORMANCE OF BUILDINGS: CASE STUDY FOR TURKEY
Mert TOLON, Derin Nur URAL 1305

RISK ASSESSMENT OF EARTHQUAKE HAZARD IN TURKEY
Cigdem TARHAN, Deniz DENIZ, Sevim PELIN 1313

DENSITY MEASUREMENT OF URBAN SPRAWL - AN APPLICATION ON CLUJ-NAPOCA, ROMANIA
Mihai RACU 1321

RESEARCH OF RAINWATER INFILTRATION IN THE PREŠOV REGION
Gabriela REJDOVJANOVÁ, Martina ZELEŇÁKOVÁ 1327

SPATIALIZING THE SOCIAL. COMPUTATIONAL STRATEGIES FOR INTERVENTION IN INFORMAL SETTLEMENTS
Lila PANAHIZEMI, Andrea ROSSI 1333

URBAN SUSTAINABILITY AND PUBLIC SPACE. A BIOCLIMATIC APPROACH
João CORTESÃO, Fernando BRANDÃO ALVES, Helena CORVACHO 1341

WATER SENSITIVE URBAN PLANNING AND SOIL CONSUMPTION. THE CASE-STUDY OF AVERSA TOWN AND ITS CONURBATION
Salvatore LOSCO, Luigi MACCHIA, Pietro MARINO 1349

LIGHT TEMPORARY TEXTILE STRUCTURES FOR THE MITIGATION OF THERMAL COMFORT. DYNAMIC MODELLING OF MICROCLIMATE AND THERMAL COMFORT IN THE URBAN ENVIRONMENT
Tiziana POLI, Riccardo PAOLINI, Andrea Giovanni MAININI, Gabriele MASERA, Andrea VALLATI 1357

MONITORING OF EIGHT GREEN ROOFS IN MILANO. HYGROTHERMAL PERFORMANCE AND MICROCLIMATE MITIGATION POTENTIAL
Matteo Paolo Giovanni FIORI, Riccardo PAOLINI, Tiziana POLI 1365
The World at IAHS 2013

Participating Countries

FOREWORD

The Proceedings of 'The 39th IAHS World Congress: Changing Needs; Adaptive Buildings; Smart Cities' will introduce abundant innovative ideas with participants from many corners of the world. Against the backdrop of Milan, Italy, this Congress will present a great challenge to all of us: to evaluate our present knowledge and arrive at a new platform where new and innovative concepts are introduced. Housing Science, inherently has a dynamic nature. Innovative change in housing, against a background of economic and technological changes, is inseparable from its existence and applications. The title of the congress reflects this fact as it emphasizes the multi-disciplinary topics that have an impact on issues of Housing Science. More than two hundred manuscripts will analyse and study special issues with respect to planning, sustainability, technology, refurbishments, durability and policies. Their impact will be present in every technical session of the congress, culminating in integrated recommendations for future adaptive buildings and smart cities.

We must realize that the future of our world will depend on how we can plan and manage the potential of the world’s urban centres. We project that the megacities will support over six billion people by the year 2050. This fact will translate into complicated social and economic activities. The societal quality of life will depend on how well we will direct the renewable energy resources for consumption all the while ensuring to protect the environment. The planning and construction of the intelligent buildings will create the smart cities with their complicated infrastructures, the level and success of which will define the boundaries of the quality of life. The success of the smart cities will depend on economics, mobility, environment, culture, and governance to be sustainable.

We are honoured to be the guests of an outstanding European institution of higher learning: Politecnico di Milano – Department of Architecture, Built environment and Construction engineering (ABC). The City of Milan is one of the most historic and cultural cities of Europe. The congress participants, from numerous countries across the globe, will discover the combined values of history, culture and hospitality of Northern Italy. This will prove to be a memorable experience for each congress participant. Being in Milan, has another advantage, as the European Union (EU) is involved in multiple studies on strategies for smart cities and innovations to enhance the lives of their citizens. The key to success is to get populations involved in open innovative processes. The EU also initiated a project on energy efficient cities, Planning for Energy Efficient Cities (PLEEC), predicting difficulties in future energy provisions. There are, as cited, major tasks facing our world. We have to rise to the challenge and reach successful results.

International Association for Housing Science, IAHS, is a non-profit scientific world organization. It was founded at the University of Missouri – USA in 1972. It is enjoying forty-one years of global activities. This year, the Milan World Congress is the 39th successful global event. The Proceedings of all previous congresses are available on the webpage: <www.housingscience.org>. IAHS would like to recognize and express our appreciation to the Politecnico di Milano, and especially to Professor Emilio Pizzi, his colleagues and his extended team who made this a successful global event. We welcome you, each of you, to the 39th IAHS Congress and to Milan. We wish you an enjoyable stay, hoping you will return to your institutions not only with an abundance of new knowledge but also with an abundance of new friends.

Regards to all.

Oktay URAL
Professor Emeritus, The International Association for Housing Science (IAHS), President, Miami, USA.

39th International Association for Housing Science (IAHS) World Congress Honorary Chairman.

Emilio PIZZI
Dean in Charge, School of Architectural Engineering, Politecnico di Milano, Milan, Italy.

39th International Association for Housing Science (IAHS) World Congress Executive Scientific Responsible.
The job of finalising the scientific programme of the Congress, given the number of papers submitted, intensely involved members of the international and local scientific committee who collaborated in the blind review.

It is therefore first of all necessary to express our warm thanks to the Reviewers who played a significant part in the scientific success of the Congress.

Thanks also go to the Authors who were subjected to the ‘harassment’ of the Reviewers: something not frequent in Congresses but normal practice in the most important international scientific circles.

As it was not possible, given the number of papers, to allow all Authors to make an oral presentation, the selection was based on the assessments of members of the National and International Scientific Committee, giving precedence to conclusive research results.

The other papers accepted by the Scientific Committee, of equal interest, were placed in a special and important review session to give all Authors appropriate and important visibility.

The Proceedings were therefore published in two Volumes.

In the first Volume, which includes papers admitted for oral presentation, are papers pertaining to the results of completed research and the documentation of specific and different issues related to the social and cultural specificities of the many countries present at the congress.

In the second Volume, which includes papers admitted to the review session, are papers concerning practical analyses, preliminary studies, product reviews, project presentations and state-of-the-art reports.

The third Volume, entitled ‘Nothing is Permanent’, includes, with attractive graphics, iconic reflections of Peter Schmid in partial collaboration with Gabriella Pál-Schmid with reference to each of the numerous IAHS Congresses in which he has participated. This is a kind and precious gift of Professor Schmid to participants of this Congress, to whom we express our sincere gratitude.

In editing the papers and preparing them for inclusion in the Proceedings, every effort was made to produce a faithful reflection of the Authors’ contributions based on their revised manuscripts.

In preparing the Volumes, particular attention was also paid to the publishing graphic aspects.

Another activity subject to particular attention, due to the fact that Authors of English mother tongue were by far the minority of those present, concerns the opportunity to request a limited linguistic review and for this we apologise to the Authors.

Publication of the Proceedings was made possible by the much-appreciated contribution of the Authors, but also by the behind-the-scenes effort of the Reviewers whose dedication and knowledge should be recognised and to whom we express our gratitude. The scientific level of this congress was the direct result of their respected opinions.

A salient and positive peculiarity of this Congress was the participation of Authors from as many as forty countries. It was therefore an important opportunity to meet that can only foster and broaden the possibilities of establishing scientific relations between the universities and research centres represented.

Reading the Proceedings, therefore, provides an interesting scenario on the global trends of research in the various scientific fields. And this also due to the fact that there are significant contributions for advancement in the various research fields.

One of the first interesting aspects we come across while reading the manuscripts is the infrequent use of the term ‘sustainability’ in the titles and throughout the text. This is in itself surprising as it may indicate a paucity of attention being paid to those problems concerning the correct evolution of urban planning, architecture and building design in terms of a more responsible attitude toward environmental issues and the life of future generations. Indeed, if we get to the heart of the matter, we cannot help but notice how raising awareness about sustainability has become a common – albeit unavowed – narrative, which has in turn become part and parcel of those rules governing the art of research in the industry, while tampering with any planning practices in the process.
The season of meaningless self-celebrations of sustainability, which may still be found in glossy architecture magazines, is seemingly over. A second aspect to highlight is the congress topic dedicated to Urban and City Planning. The World Health Organization of the UNDP highlights the fact that 40% of the world population currently lives in a city and that this percentage will rise to 60% by 2030. In particular, the UNDP (United Nations Development Programme) anticipates that in 2015, in the countries with highest HDI (Human Development Index), the urban population will reach 78.5% of the entire population, with an annual increase of 1.7%. There are many problems related to this global phenomenon. In particular, they require new approaches in growth, policies in order to control so-called Urban Sprawl and Ecological Footprint. In this regard, the issues that figure predominantly are those aimed to safeguard the urban heritage and the urban transformation, to rehabilitate and manage informal settlements as well as reclaim degraded and crime-ridden suburbs plagued by severe social hardship. Equally interesting are those projects/essays highlighting the virtuous changes that have been gradually applied to the urban structure in quite diverse environments. Fewer measures, however, have been taken to curb urban build up in an effort to restrain urban sprawl. Similarly, little has been done to reduce overheating in urban environments as a result of the UHI (Urban Heat Island) phenomenon. In particular, altering the conditions of thermal comfort in urban environments has significant social and health repercussions, which call for greater attention. As can be seen, the topic of Building Design, as one would expect, has the highest number of contributions. Of course many papers were focused on the topic of Nearly Zero Energy Buildings and recourse to renewable energy sources, also in relation to obligations imposed in this regard by the European Community. The topic of forecast modelling of the environmental conditions of buildings for the development of climate sensitive buildings, such as those that characterised the vernacular architecture of the past, appears to have been investigated less. New materials, technologies and the availability of sophisticated simulation models in fact already allow for highly innovative design approaches with respect to the current architectural and technological scenario. Another aspect investigated in detail, in papers characterised by an in-depth engineering approach, concerns seismic events, the corresponding risk analyses, measures to counter the effects and evacuation and reconstruction interventions. Much attention was also placed on a topic currently scarcely studied such as that of housing configuration typology, where approaches related to the specific culture and different socio-economic situations are compared in a very different way. Examining the interventions, also the broad topic of Refurbishment-Rehabilitation-Restoration has a large number of papers that develop historical insights, decision support methodologies and application examples, many of which are again related to energy issues. Some of these use the analysis of technological and architectural models that characterise certain areas (geo-cluster characterization) for the development of large-scale refurbishment strategies. Others concern analyses oriented towards recognition of the thermal behaviour of buildings, necessary to define the interventions. Naturally, many papers focus on intervention techniques also via experimental approaches typical of restoration. In third place is the topic of Innovation-Building technology-Construction. Many are the papers dealing with new materials and systems such as solar screens, vacuum insulation, phase transition materials, photovoltaic panels, glass, textile structure, reflective layers and recycled materials. The energy sector naturally attracts most interest. On the construction industry front on which the topic is developed, papers range from the presentation of quality control methodologies, risk analyses, technological optimisation systems and new experimental methods for material behaviour analysis. Facility management, building condition assessment, construction supply chain, adaptive and predictive analysis, environmental assessment and waste in construction are some of the other topics addressed. Congress topics dedicated to Legal, Economic and Financial Policies and Building Life Cycle on the other hand had fewer interventions than the other topics, but all still very up-to-date and interesting. Regarding the issue of Building Life cycle papers are concentrated in particular on methodological aspects related to risk assessment, service life prediction and maintenance. In conclusion, as a whole the papers present a variegated and selected panorama of approaches, methods, techniques, tools, systems and technologies aimed at improving knowledge of the topics investigated. Certainly their reading will allow a better understanding of the problems that characterize the urban and architecture sector in the various countries and of the issues on which to focus the development of positive collaboration and interaction between the members of such a vast, multicultural and interesting scientific forum.

Witness by my hand.

Professor Sergio CROCE
Professor of Constructive Technologies, Faculty of Civil Architecture, Politecnico di Milano, Milan, Italy.
39th International Association for Housing Science (IAHS) World Congress Executive Scientific Responsible.

Endnotes
The Ecological Footprint measures the amount of biologically productive land and sea area an individual, a region, all of humanity, or a human activity requires to produce the resources it consumes and absorb the waste it generates, and compares this measurement to how much land and sea area is available. More information: <http://www.footprintnetwork.org/en/index.php/GFN/>.
CONFERENCE ORGANISATION

HONORARY CHAIR:
Oktay URAL | International Association for Housing Science (IAHS), Miami, USA.

CHAIR:
Emilio PIZZI | Politecnico di Milano, Milan, Italy.

VICE-CHAIR:
Derin Nur URAL | Istanbul Technical University (ITU), Istanbul, Turkey.

PLANNING COMMITTEE:
Emilio PIZZI | Politecnico di Milano, Milan, Italy.
Sergio CROCE | Politecnico di Milano, Milan, Italy.
Rachele PEREGO | Politecnico di Milano, Milan, Italy.

STEERING COMMITTEE:
Vitor ABRANTES | University of Porto, Porto, Portugal.
Sergio CROCE | Politecnico di Milano, Milan, Italy.
Alberto FRANCHI | Politecnico di Milano, Milan, Italy.
Antonio FRATTARI | University of Trento, Trento, Italy.
Gabriele MASERA | Politecnico di Milano, Milan, Italy.

SECRETARY-IN-GENERAL:
Rachele PEREGO | Politecnico di Milano, Milan, Italy.

MACRO-AREA RESPONSIBLES:
Administrative Area Responsible: Alberto FRANCHI | Politecnico di Milano, Milan, Italy.
Visual Communicating Area Responsible: Gabriele MASERA | Politecnico di Milano, Milan, Italy.
Scientific Area Responsible: Sergio CROCE | Politecnico di Milano, Milan, Italy.

The Conference is pleased to acknowledge the precious support and contribution of:
Montserrat POCH | Politecnico di Milano, Area Comunicazione e Relazioni Esterne, Servizio Comunicazione, Milan, Italy.

The Conference is also pleased to acknowledge the support and contribution of:
Maria BALDO | Politecnico di Milano, Department of Architecture, Built environment and Construction engineering (ABC), Milan, Italy.
Alessandro COLLEONI | Politecnico di Milano, Area Comunicazione e Relazioni Esterne, Servizio Comunicazione, Milan, Italy.
Manuela GHIELMETTI | Politecnico di Milano, Lecco Campus, Technical-Administrative Staff.
Valerio GHERARDANI | Politecnico di Milano, Area Comunicazione e Relazioni Esterne, Servizio Comunicazione, Milan, Italy.
Lucia LUISE | Politecnico di Milano, Department of Architecture, Built environment and Construction engineering (ABC), Milan, Italy.
Mario Sergio MEGHA | Politecnico di Milano, Department of Architecture, Built environment and Construction engineering (ABC), Milan, Italy.
Flavio PIZZAMIGLIO | Consortium for Structural Engineering Constructions in Europe (CIS-E), Milan, Italy.
Mascia SGARLATA | Politecnico di Milano, Area Comunicazione e Relazioni Esterne, Servizio Comunicazione, Milan, Italy.
Alessandro ZICHI | Consortium for Structural Engineering Constructions in Europe (CIS-E), Milan, Italy.
Mariagrazia REBASTI | Politecnico di Milano, School of Architectural Engineering, Milan, Italy.
BUILDING DESIGN
PERFORMANCE ANALYSIS OF INNOVATIVE VACUUM INSULATION PANEL

Antonio DE VECCHI*, Simona COLAJANNI*, Elsa SANFILIPPO*

* Università di Palermo, Dipartimento di Architettura (DARCH), Palermo, Italy.

Keywords: Advanced Materials; Building Technologies; Insulating Performance; Retrofit; Thermal Conductivity.

Abstract
Thermal insulation has become one of the central themes in energy behaviour improvement. The use of insulating materials, from the thermal and hygrothermal aspect, allows the reduction of the heat transfer in each of the technical elements increasing their thermal inertia. Even if the research has led to the use of innovative materials with high values of thermal insulation, one of the main problems, which is difficult to resolve, is the thickness of the building envelope to reach levels of transmittance that can allow considerable savings of energy and CO₂ emissions. With this objective the VIP (Vacuum Insulation Panel) technology in building applications is an innovative solution to obtain very low values of thermal conductivity, with reduced thicknesses. This latter aspect is even more relevant in the energy retrofit of constructions, where the request for an adjustment to higher levels of energy efficiency requires an addition of insulating material layers. In particular, the VIP consist of an open cell structure, made with different kinds of materials, for the realization of an evacuated chamber and an envelope to maintain the very low internal pressure (10⁻⁵⁻¹⁻³ mBar).

The Dipartimento di Architettura of the Università of Palermo has developed a research study on VIP applications in buildings. The study has been developed by different steps:
- Study of the state of the art, with particular reference to commercially available systems and institutional systems.
- Evaluation of the critical issues during the production and installation phases;
- Reviews of the thermal and mechanical performances;
- Research for new materials adaptable to the VIP technology.

The paper will show some aspects of the research such as the benefits of each solution through a cost-benefit analysis that can provide useful information for an appropriate choice aimed at reducing costs and at improving energy performance.

1. Vacuum as Thermo-Acoustic Insulation
Vacuum is a space in which there is no matter or in which the pressure is lower than the atmospheric pressure, and not necessarily null. The lowest pressures currently achievable in laboratory are about 10⁻¹³ Pa (through special ionization vacuum gauges tested as early as the Second World War).

Thermal conductivity of a material depends on its density and on collisions between the gas particles. It increases with the number of particles per unit volume, for this reason gas blocks heat very well: the conductivity of dehydrated air, argon and krypton are respectively 0.025 W/m²K, 0.01772 W/m²K and 0.00949 W/m²K.

The vacuum system is the best way to reach a low thermal conductivity because it eliminates heat transfer by conduction and convection, allowing only the radiation component. Moreover, vacuum offers a further advantage because it does not depend on the cavity thickness, but it has a constant thermal conductivity.

Vacuum technologies have been developed gradually thanks to the advances in industry and research. Experimentations are numerous and cover a wide range of application: metallurgical, food and aerospace industries, systems for controlled nuclear fusion, microelectronics, surface science, etc.

Also for buildings one of the most recent challenges is exploiting the characteristics of vacuum for thermo-acoustic insulation.

VIP technology offers an interesting evolution in insulation and allows for the substitution of conventional insulation materials with an increased level of insulation (from 5 to 10 times greater) as well as a reduction in the space required.

2. VIP (Vacuum Insulation Panels)
The Vacuum Insulation Panels, widely known as ‘VIP’, use the properties of the insulating vacuum in order to obtain high thermal performance using small thicknesses.

To eliminate heat flow by gas conduction, it is necessary to evacuate the gap at pressures of the order of 10⁻¹⁻¹⁻³ mbar. Instead, to reduce heat transfer by solid conduction, i.e. the one that occurs between surfaces delimiting the evacuated gap, it is necessary to minimize the number of points of contact between the above mentioned surfaces, limiting thermal bridges.

VIP are used in building either as opaque or transparent structures. Regarding the former, the low conductivity of the vacuum is exploited through sandwich panels consisting of a solid internal evacuated block called ‘core’.

In the case of transparent surfaces, instead, an important VIP technology innovation is VIG (Vacuum Insulation Glasses), which allow the creation of glass walls with low transmittance (of the order of 0.5 W/m²K), through a vacuum chamber a fraction of a millimetre thick.

3. Opaque Panels
VIP technology allows obtaining opaque insulating panels of a few millimetres (the most common thicknesses are between 10 and 40 mm) with a low transmittance value (ranging from 0.12 to 0.50 W/m²K).

Opaque VIP include a solid inner core, surrounded by a permeable felt that provide mechanical stability and protection for the core. The package thus composed is in turn enclosed by an outer covering, usually consisting of a plastic or aluminium envelope, which protects it and makes the core impermeable to air and water and at a constant pressure considerably lower than the atmospheric pressure (between 0.1 and 20 mbar).

3.1. VIP Core
To ensure vacuum condition and low pressure within the panel, it is necessary to realize the core with a porous material and with an open structure, from which the air contained inside the pores can be evacuated. These materials must comply with a few requirements: very small pore diameter, open cell structure, low water content, impermeability to infrared radiation and resistance to a very low pressure of mbar.

As regards to the heat transmission inside the panels, the convective contribution can be neglected by using materials with a pore size such as to break the convection inside the cavity. For this reason, micro or nano-structured materials are preferable for the realization of the core materials, in which it is possible to achieve the necessary vacuum condition for a low thermal conductivity with a small pore size.

The heat contribution by solid conduction depends not only on the choice of a material with
low thermal conductivity, but also on the minimization of the points of contact between the surfaces delimiting the evacuated gap. Moreover the water content of the material affects the thermal conductivity of the core: the conductivity increases with the increase of water content. The heat transmission by radiation can also be opposed by covering the walls of the inner container with reflective materials, able to limit the permeability to infrared radiation.

The last critical parameter is the strength of its microstructure, which has to support the low pressures to which it is subjected in order to ensure the vacuum between particles. The pressure inside of a VIP is a few mbar, consequently, the pressure load on the panel is close to 1 bar, so the core material must be stable enough so that pores do not collapse when the air is removed [1].

Currently the commercially available, most used materials for the realization of the core are glass fibres, fumed silica and polyurethane foam [3]. As a result of studies carried out on these materials and the technical characteristics of the different VIP panels available in the market, the most effective solution in terms of thermal performance and durability is obtained with fumed silica powder. This material is considered the best both for the small pore size and for the very low thermal conductivity λ.

Moreover, the vacuum insulation panels in fumed silica, unlike other products, have a higher durability, ranging from 30 to 50 years, compared with durability of polyurethane VIP (15 years) and of glass wool VIP (only 5 years). VIP may be of different sizes, thicknesses and geometries and may achieve different levels of transmittance. Considering a panel with a 1000x600x20 millimetres fumed silica core, the transmittance value U is equal to 0.22 W/m2$^\circ$K.

3.2. The Envelope

The most critical component of a vacuum insulation panel is the outer envelope, responsible for maintaining the vacuum inside the panel. Indeed it must satisfy important requirements in the long term, such as: low oxygen permeation, low permeation to water vapour, high mechanical strength, low thermal conductivity and compatibility with other construction materials (adhesives, foams, chalk). The VIP envelopes are made with polymer film laminates and/or aluminium (thickness ranging from 7 to 12 μm) able to ensure the required characteristics of the VIP panel. Several layers of films can be used by rolling or welded metal sheets. Sometimes it is also necessary to insert a special device able to absorb the gases accumulated over time for permeation and degassing and which may considerably deteriorate the vacuum level decreasing panel performance. This device able to absorb gas is called ‘getter’ and it is dimensioned in relation to the characteristics of the panel, to its working conditions and to the expected duration. However, the use of fumed silica powder as core material increases the tolerable internal pressure by more than an order of magnitude. In this way fumed silica can maintain low thermal conductivity to a much lower value threshold than other materials, even for growing values of the pressure.

![Figure 1. Thermal conductivity of air as a function of pore diameter [2].](image1)

3.3. Discussion: Limits of Applicability

One of the greatest difficulties related to the construction and use of vacuum panel technology is the maintenance of the performance and the vacuum condition over time. Indeed the pressure inside the core is subject to increase, with consequent deterioration of the vacuum in the panel due to the diffusion of gases present in the environment through the outer envelope which surrounds the core (gas permeation), and subsequently the gas release from part of the outer film and of the filling material (thermal desorption). Even during the processing and the sealing steps, gas residues could get trapped inside, leading to a more rapid deterioration of the panel thermo-insulation characteristics. In particular, the envelope sealing is responsible for the oxygen and water vapour permeation through the sealing edges. The permeation is proportional to the joint length, to the thickness and to the permeability of the sealant material.

![Figure 2. VIP Components.](image2)

![Figure 3. VIP with fumed silica core wrapped in laminated aluminium foil.](image3)
To limit the gas permeation inside the panel, special materials are used, obtained by the rolling of various polymeric layers, sometimes also metallic or inclusive of an aluminium continuous sheet, able to perform the function of the gas-barrier almost absolute [4]. Another problem which affects the VIP thermal behaviour regards the thermal bridge between core and envelope, generated by the high thermal conductivity of dense materials used as the barrier (often aluminium) compared to the porous material of the core.

4. Transparent Panels
The technology of VIG panels (Vacuum Insulated Glass) derives from the already widely diffused technology of insulating glass. The introduction of insulating glass has reduced heat transmission by convection and conduction in transparent panels up to current solutions with triple glazing and Krypton gas, able to reach transmittance values comparable, or even lower, to those of common opaque insulating panels. Some manufacturers have implemented a further evolution of the concept of insulating glass, aiming to achieve better results in terms of thermal insulation. Thanks to the realization of the vacuum gap in the glass panel it is possible to eliminate the heat transfer by conduction and convection between the glass panes. The thermal benefit is not dependent on the cavity thickness, allowing to leave a few tenths of millimetre between a pane and the other.

Table 1: Comparison of transmittances obtained with different types of glass.

<table>
<thead>
<tr>
<th>GLASS TYPE</th>
<th>Single glass (6mm)</th>
<th>Insulating glass with air (6-16-6 mm)</th>
<th>Insulating glass with argon (6-16-6mm)</th>
<th>Insulating glass with krypton (6-16-6 mm)</th>
<th>VIG (0.00133 Pa) (3-0.2-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U (W/mK)</td>
<td>5.7</td>
<td>2.8</td>
<td>2.5</td>
<td>2.2</td>
<td>1.1</td>
</tr>
</tbody>
</table>

The system can be composed with different solutions that include two or three glass panes (hardened, tempered, laminated with or without low-emissivity treatment) sealed at the edges with glass-plates, metal foils or other materials based on organic-inorganic polymer. The air is extracted from the cavity by a valve applied on one of the outer panes.

4.1. Discussion: Limits of Applicability
However, the benefits of VIG panels for the building envelope insulation are also accompanied by different problems concerning their design and implementation. They require the integration of different aspects such as the choice of sealing material, that has to be airtight but cannot reach too high melting temperatures in order to avoid damage to the low-emissivity treatment of the inner part of the glass pane. To obtain a good seal it is necessary to have loss rates less than or equal to 10-12 mbar l/s. Moreover, the realization of the vacuum determines high pressures (10 Pa) which require the insertion of the mesh of spacers with a consequent decrease in the insulating capacity. The pitch of the mesh must conciliate the thermal bridges which are determined by the stresses that the sheets must tolerate and also the diameter of each spacer must be small, in order to reduce the visual impact, and also resistant to the pressure stress generated between the glass panes [5].

On this issue different experiments are currently in progress, these are verifying the best value in terms of performance and cost. Currently these limits of applicability have produced the negative effect of a low panels diffusion on the European market.

5. Conclusion. Cost-Benefit Ratio
Economic evaluations to verify the application convenience have been developed as regards the two vacuum panels analysed (opaque and transparent). In particular the results, for the transparent panels, have been not included because the obtainable data was still referred a too restricted application field. Instead, in opaque panels applications, the different energy savings measures have been compared by economic aspects. The mathematics financial methods have been used to evaluate the convenience of an initial investment with the future economic saving that is generated by the system itself during its work. The analysis was carried out through the elaboration of the thermal load for an office work. The analysis was carried out through the elaboration of the thermal load for an office considering: in summer an external temperature of 35 °C with an internal temperature of 26 °C, in winter an external temperature of 5 °C with an internal temperature of 20 °C. Finals simulations have shown the VIP application is more convenient, after a greater number of years in comparison with conventional thermal insulation panels (EPS). This can be deduced from the results, in particular the reduction of the annual energy requirements and the consequent economic saving.

Table 2: Comparison of the general assessment of costs.

<table>
<thead>
<tr>
<th></th>
<th>Traditional structure</th>
<th>EPS</th>
<th>VIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation cost (€/m²)</td>
<td>0,00</td>
<td>14,00</td>
<td>75,00</td>
</tr>
<tr>
<td>Initial investment</td>
<td>0,00</td>
<td>181,44</td>
<td>972,00</td>
</tr>
<tr>
<td>Annual energy requirements (KWh)</td>
<td>1602,13</td>
<td>995,91</td>
<td>752,43</td>
</tr>
</tbody>
</table>
In order to verify the actual cost/benefit analysis, the pay-back time and the net present value (NPV) have been used. The first financial indicator showed that the thermal insulation in EPS generates profits in a shorter time (1 year and 1 month) compared with vacuum insulation panels (4 years and 4 months), because the VIP system request an high initial investment.

The VIP technology application produced an higher annual economic saving, so the NPV (Net Present Value) has been used to calculate the saving in a specific number of years used as a reference.

Through this financial method, it was possible to detect the preference of the investment with EPS insulation until the fourteenth year of operation, over this period the use of VIP system is more convenient.

Figure 5. Graphical representation of financial indicators.

Notes
(1) In a region of space devoid of matter collisions between particles cannot occur. Actually, the vacuum would be a perfect insulator if it did not let pass another form of thermal energy, namely the infrared radiation transmitted by all the warm bodies.

(2) When the ‘mean free path’, which is the average distance travelled by a particle between two successive collisions, reaches values that are in the order of magnitude higher than the one of the pores, the conductivity of the gas is null.

(3) The system Spacia consists of two sheets separated by a series of support pillars (micro spacers) with a thickness of 0.2 mm and 0.5 mm in diameter in order to keep uniform the empty space. The pillars are distant 20 mm from each other. The edge of the glass is sealed with a glass weld joint compatible with the expansion coefficient of the float glass.

List of References
39th International Association for Housing Science (IAHS) Editors

OKTAY URAL
Professor Emeritus at Florida International University, USA. Founding President of the International Association for Housing Science. Fellow and Life Member of the American Society of Civil Engineers, Editor in Chief of the International Journal for Housing Science, USA. Author of several books. Recipient of numerous Academic Awards.

EMILIO PIZZI
Full Professor and Dean of the School of Building Engineering Architecture at the Politecnico di Milano. Member of the Advisory Board for the Architecture of the Politecnico di Milano. Member of the Steering Committee of the Association E2B Energy Efficient Building of the European Commission. Worked in the field of building design, mainly focused on the problems related to accommodation and social housing. Among his most important works achieved in the last few years, the new Como Campus of Politecnico, the ‘Clinica di Malattie Infettive’ of the Policlinico San Matteo of Pavia with Giampaolo Calvi and the School of Law of the Università di Trento with Mario Botta. He also worked with the team of the restoration of the Teatro alla Scala di Milano as Quality Controller for the architectural works.

SERGIO CROCE
Formerly Full Professor at Politecnico di Milano; currently Adjunct Professor at the School of Civil Architecture, Politecnico di Milano. Member of Editorial Board of several international scientific journals. Member of the Consultative Commission of the DACD (Dipartimento Ambiente Costruzioni e Design), SUPSI of Lugano, Switzerland. PC CIB Commendation from the International Council for Research and Innovation in Building and Construction received in 2009. Author of several books, including the last one (2013) with Tiziana Poli entitled ‘Transparency. Facciate in vetro tra architettura e sperimentazione’.

© 2013 IAHS (International Association for Housing Science) 39th World Congress on Housing Science, Milan, Italy.
The right to be identified as Editors of this work has been asserted in accordance with the IAHS 2013 Copyright. All rights are reserved in all countries: IAHS 2013 publications may not be translated, stored in a retrieval system, or totally/partially reproduced or adjusted by any means. No part of this publication may be reproduced in any form or by any means, electronic, mechanical, or otherwise without the prior permission in writing of the 39th International Association for Housing Science (IAHS) World Congress Executive Scientific Responsible.
Digital (and Print) Publication completed in September 2013.