Sparse model-based network inference using
Gaussian graphical models

Ernst Wit and Antonio Abbruzzd

I Johann Bernoulli Institute, University of Groningen
2 Statistics Department, University of Palermo

Abstract

We consider the problem of estimating a sparse dynamic @augsaphical model with
L1 penalized maximum likelihood of structured precision rixaffhe structure can consist
of specific time dynamics, known presence or absence of Imkise graphical model or
equality constraints on the parameters. The model is defindlde basis of partial correla-
tions, which results in a specific class precision matriéepriori L; penalized maximum
likelihood estimation in this class is extremely difficutecause of the above mentioned
constraints, the computational complexity of the constraint on the side of the usual
positive-definite constraint. The implementation is nowidl, but we show that the com-
putation can be done effectively by taking advantage of Aciefiit maximum determinant
algorithm (SDPT3) developed in convex optimization. Fdestng the tuning parameter,
we compare several selection criteria and argue that ttititnaal AIC and BIC should not
expect to work. We compare our method with related methadd) asglasso(Friedman
et al. 2007).

Key words: Covariance Selection; Lass8] PT'3 Algorithm; Penalized likelihood;
Gaussian Graphical Model; Structured Correlation Matrix.

1 Introduction

A multivariate Gaussian graphical model (GGM) for an uncliee graphz is defined in terms
of its Markov properties. Variables, i.e. nodes in the gragrle independent conditional on a
separating set. In other words, I8t = (X, X, ..., X,)” be a multivariate Gaussian vector,
then an undirected edge is drawn between two no@esl 7, if and only if the corresponding
variablesX; and.X; are conditionally dependent given the remaining varialilesG = (X, E)

be an undirected graph with vertex s€t = {X;,..., X,,} and edge setl = {e;;}, where
e;; = 1 or 0 according to whether verticésandj are adjacent itz or not. The GGM model
N(G) consists of all p-variate normal distributions (., ), for arbitrary mean vectors and
covariance matrices, assumed nonsingular, for which the concentration or pi@timatrix

© = X! satisfies the following linear restriction

eij:0<:>9ij20.

The modelN (G) has also been called a covariance selection model (Denti&1@) and a
concentration graph model (Cox 1996, Chapter 2). The readeferred to Whittaker (1990,
Chapter 6) for statistical properties of these modelsuiticlg methods for parameter estima-
tion, model testing and model selection. The modél>) also can be defined in terms of
pairwise conditional independence Xf= (X, ..., X,)T ~ N, (i, X), then

0i; =0 X; L Xi| X)) < pi =0

where




denotes the partial correlation betwe&n and X, i.e. the correlation betweeN,; and X
given X_; ;. This suggests that the determination of the gré@plan be based on the set of
sample partial correlations; arising from independent and identically distributed otagons

X ~ Ny(u,X), wheren >> p is assumed in order to guarantee positive definiteness of the
sample covariance matrix. In other words, given a randonpsaii we wish to estimate the
concentration matri®. Of particular interest is the identification of zero ergria the con-
centration matribo© = {6;;}, since a zero entr§;; = 0 indicates the conditional independence
between the two variable’s; and.X; given all other variables.

Graphical models are probability models for multivarisgedom variables whose indepen-
dence structure is characterized by a conditional indepecelgraph. The standard theory of
estimating GGMs can be exploited only when the number of oreasents: is much higher
than the number of variables This ensures that the sample covariance matrix is posigfe
inite with probability one. Instead, in most applicationck as microarray gene expression
data sets, we have to cope with the opposite situdtiorg p). Thus, the growing interest in
"smalln, largep" problems, requires an alternative approach. In problehergithe number of
nodes is large, but the number of links are relatively fewrpmte, sparse inference 6fin the
framework of a GGM is useful, because:

« it reduces the complex high dimensional object into simpbsv dimensional objects;
* it groups the variables into several sets;

* it highlights that some variables are crucial;

* it asserts that some variables will be sufficient to prediber ones.

Estimating the dimensionality of the GGM model is complethtssue. The standard ap-
proach is greedy stepwise forward-selection or backwatdtidn, and parameter estimation
is based on the selected model. In each step the edge selectiteletion is typically done
through hypothesis testing at some levelt has long been recognized that this procedure does
not correctly take account of the multiple comparisons imed (Edwards, 2000). Another
drawback of the common stepwise procedure is its compui@tmmplexity. To remedy these
problems, Drton and Perlman (2004) proposed a method thdtipes conservative simultane-
ous1 — « confidence intervals, and use these confidence intervalg toatlel selection in a
single step. The method is based on asymptotic considesatMeinshausen and Buehlmann
(2006) proposed a computationally attractive method feagance selection that can be used
for very large Gaussian graphs. They perform neighbourtsatection for each node in the
graph and combine the results to learn the structure of aseausoncentration graph model.
They showed that their method is consistent for sparse dhigiensional graphs. However, in
all of the above mentioned methods, model selection andwetea estimation are done sepa-
rately. The parameters in the concentration matrix arecaflyi estimated based on the model
selected. As demonstrated by Breiman (1996), the discagteanof such procedures often leads
to instability of the estimator: small changes in the datg nesult in very different estimates.

Here, we propose a sparse dynamic Gaussian graphical maddlwpenalty of structured
correlation matrix that does model selection and paranestgmation simultaneously in the
Gaussian concentration graph model. We employ. apenalty on the off-diagonal elements
of the correlation matrix. This is similar to the idea of thlasso(Friedman, 2007). Thé,
penalty encourages sparsity and at the same time givekabearestimates. In addition, we can
model arbitrary, locally additive models for the precisioatrix, while explicitly ensuring that
the estimator of the concentration matrix is positive defifiis is achieved via an efficient
semi-definite programming algoritht® D PT'3).
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The remainder of the paper is organized as follows. In Se&jave provide the problem of
gaussian profile likelihood model and the linked with the maxm determinant problem. The
type of model will be specified. In Section 3, we describe tlgerdthm S D PT'3 to solve the
optimization problem, the general idea and the implemamatf the method as well.

2 Dynamic Gaussian graphical model for networks

The graph structure of the Gaussian graphical model desctlie conditional independence
structure between the variables. The two main applicatéttss conditional independence are
either (i) modular dependency structures and (ii) Markowdapendency structures. The former
are used in expert systems or flow-chart descriptions ofatatigictures, whereas the latter is
typical for spatio-temporal forms of (in)dependence. Aaync gaussian graphical model for
a network contains both types of conditional dependenceagdwian dependence structure
would capture that temporal relatedness of nearby obsengtwhich is broken by one (or
more) conditioning, intervening observations. The nelwitself has an internal relatedness
due to the modular structure of the network: the results efoibserved outcomes at the nodes
flow through the links to the other nodes, thereby affectiemhbouring vertices. Due to its
computational tractibility is the multivariate normal tlibution uniquely suited as an initial
model for a dynamic graphical model. For example, its coowgtl independence structure is
simply characterized in terms of zeros in the inverse ofdtsaciance matrix,

0=x""

If we measure a univariate outcomepatodes acros$’ discrete time-points, then initially we
describe the dat& as coming from a multivariate normal distribution:

X~ NPT(M7 ®_l>'

In many practical example, it may be the case that only asirgglicateX has been observed.
Estimation will only be possible if we are willing to imposestrictions on the parameters.
There are two types of restrictions that we will considearspiy restrictions and model defini-
tions.

2.1 Sparsity restrictions of the precision matrix

The arrival of the high-throughput era in genomics has seesxplosion of data gathering: for
a fraction of the amount of time and money it used to cost toitopthe level of a particular
gene or protein, now thousands are monitored. Neverthdalessinderlying physical reality
will not have changed as a result of our data-gathering. Hnigolar protein that used to bind
to the promotor region of the particular gene will still do siee fact that we monitor thousands
of genomic variables has not made the genomic reality its®}f more difficult. Obviously,
this reality is certainly highly complex, but at the samediitis also highly structured as DNA
sequences are highly specific for binding to particularginst. Therefore, the genomic network
can be thought to be highly sparse set of relations betwemrs#mds of genomic players, such
as DNA, mRNA and proteins. Obviously, we don’t know exactlyigh links should be assumed
to be zero, but we want to create a model that encouragesszeeb@een the vertices.

Furthermore, the fact that we are considering dynamic nsodiéh observations of the ge-
nomic system spaced in time, it is probably sufficient to assy especially given the usual
spacing of genomic observations — the existence of first most second order Markov depen-
dence. This means that large part of the precision matribbediiled with zeroes priori.
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2.2 Model restrictions of the precision matrix

Given the sparsity of the data, it is essential to define notthelt are finely tuned to be able to
estimate interesting quantities of interest. For exampéehave seen in the previous paragraph
that Markov assumptions are sensible ways to reduce thendior&lity of the estimation prob-
lem. Additionally, given that the temporal correlation i®bpably not particularly important, it
makes sense to compromise a little on the amount of varia@asse to model it. For example,
makes sense to restrict the attention to models in which

VZ,t : Cor(l’i7t,$i’t_1‘l’_i) = p.

This reduces the number of parameter®iby p7T" — 1. Moreover, it may, in certain circum-
stances, be sensible to assume that the genomic networkhatieege-point is the same. This
reduces the number of parametershy— 1)p?.

2.3 Maximum Likelihood

The most simple model is the unconstrairtedvith no penalty on the elements; on the
precision matrix9. The log-likelihood fory, and® = ¥~! based on a random sample =
(XM XM s

n

U, 25 X) = glogl@l - %Z(Xi — 'O (X;—p) (1)

i=1

up to a constant not depending prand©. Even ifS = 1 "  (X; — X)(X; — X)T is of full
rank (only ifn > pT'), the matrixS—! will not be 'sparse’. To achieve 'sparse’ graph structure
and to obtain a better estimator of the concentration matrintroduce arl.; penalty on the
likelihood, i.e. we want a minimize® of

—log |©| + tracgX.S) (2)

subject to) _ (0] < t,
i#j
over the set of positive definite matric®s Heret > 0 is a tuning parameter.
The constraint as formulated above does not penalize tigoigh of ©. We could also
choose not to penalize links that we know are there or tinpeddencies which are so low-
dimensional that it is not worth penalizing.

3 Max Determinant optimization problem

The non-linearity of the objective function, the positivefiditeness constraint and the struc-
tured correlation make the optimization problem non-#iviVe take advantage of the connec-
tion of the penalized likelihood and the the the max-deteami optimization problem (Vander-
berghe et al. 1996). We make use of the SDPT3 algorithm (Tomenage higher dimensional
problems. We consider the optimization problem:

min ¢34 log|©(B)| (3)

subject to©(3) > 0
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F(B) =0
LGB = b;

where the optimization variable is the vectorc R™. The functions® : R — R™>! and
F: R™ — R™" are affine:

@(ﬂ) = @04—61@1 +...—|—ﬂm@m

F(B)=Fo+ BiFi+ ...+ BnFh,

where®; = ©T and F; = F'. The inequality signs in (3) denote matrix inequalities,
O(8) > 0 means:TO(B)z > 0 for all nonzeroz and F'(3) > 0 means:” F(3)z > 0 for all 2.
We will refer to problem (3) as awaxdet problem.

The maxdet problem is a convex optimization problem, i.e. the objexfunctionc’ 3 +
log|®(0)], is convex(on {x : ©(F) > 0}, and the constraint set is convex. The current
version ofSD PT'3, version 4.0, is designed to solve conic programming prableshose con-
straint cone is a product of semidefinite cones, second~aatees, nonnegative orthants and
Euclidean spaces; and whose objective function is the suimezr functions and log-barrier
terms associated with the constraint cones. This meangt isgbossible to solve more gen-
eral problems themaxdet algorithm. The algorithm implemented in SDPT3 is an infekesi
primal-dual path-following algorithm, at each iteratidanfirst computes a predictor search di-
rection aimed at decreasing the duality gap as much as pessiiter that, the algorithm
generates a Mehrotra-type corrector step with the intardgfdkeeping the iterates close to the
central path. However, it does not impose any neighbourhesitictions. Initial iterates need
not be feasible the algorithm tries to achieve feasibilitg aptimality of its iterates simultane-
ously. The algorithms can start with an infeasible starpomt. However, the performance of
these algorithms is quite sensitive to the choice of thainterate so it is desirable to choose an
initial iterate that at least has the same order of magniasden optimal solution of th€Q) L P.

4  Simulation Study

We consider a small simulation study with = 10 replicates, whereby we sample= 5
independent vertices with time-correlation acr@ss-= 2 time points. The true model fap,
therefore, is matrix with 2 identical x 5 diagonal matrices on its diagonal and with 2 identical
5 x 5 diagonal matrices on its off-diagonal. The number of truepeeters irD is therefore 2,
one for the diagonal term and one or the off-diagonal termfiVedifferent models. Three are
versions of the glasso model (Friedman et al. 2007): thautteftasso considers the fulD x 10
matrix, glassol considers the 15 parameter model with adiegonal and free off-diagonal,
and glasso?2 considers the 35 parameter model with twadsfreé diagonal blocks and a off-
diagonal matrix with only entries on its diagonal. Furthers) we consider 2 constrained
dynamic models: MaxDet3 has tree parameters, a diagoralpffidiagonal entries of the
diagonal blocks and the diagonal of the off-diagonal blpeksl MaxDet400 considers a model
with 20 parameters, consisting of two identical, but freatnces on the diagonal and an off-
diagonal matrix with a free diagonal and the rest zeroes.

References

Bozdogan, H. Haughton, D.M.A (1998). Information comptgxiriteria for regression mod-
els. Computation Statistics & Data Analysis 28: 51-76.

27



Kullback Leibler - AIC Kullback Leibler - AveCVerror

25 an as 40
L L L L
a0

20
L

5
5

P

e I I ==

T T T T T T
Glasso Glassal Gasso2 Mawdetd  Maxdedad Glasso Glassal Gasso2 Mawdetd  Maxdedad

10

Kullback Leibler - BIC Kullback Leibler - ICOMP

as

an

a0
25

20

-] .

4 = e e

T T T T T T
Glasso Glassal Gasso2 Mawdetd  Maxdedad Glasso Glassal Gasso2 Mawdetd  Maxdedad

10

Figure 1: Average Kullback-Leibler divergence across 5 simulationdifferent selection criteria of
the tuning parameter, namely AIC, Average cross-validatoror, BIC and ICOMP (Bozdogan and
Haughton 1998).
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