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Abstract
We consider the problem of estimating a sparse dynamic Gaussian graphical model with

L1 penalized maximum likelihood of structured precision matrix. The structure can consist
of specific time dynamics, known presence or absence of linksin the graphical model or
equality constraints on the parameters. The model is definedon the basis of partial correla-
tions, which results in a specific class precision matrices.A priori L1 penalized maximum
likelihood estimation in this class is extremely difficult,because of the above mentioned
constraints, the computational complexity of theL1 constraint on the side of the usual
positive-definite constraint. The implementation is non-trivial, but we show that the com-
putation can be done effectively by taking advantage of an efficient maximum determinant
algorithm (SDPT3) developed in convex optimization. For selecting the tuning parameter,
we compare several selection criteria and argue that the traditional AIC and BIC should not
expect to work. We compare our method with related methods, such asglasso(Friedman
et al. 2007).

Key words: Covariance Selection; Lasso;SDPT3 Algorithm; Penalized likelihood;
Gaussian Graphical Model; Structured Correlation Matrix.

1 Introduction

A multivariate Gaussian graphical model (GGM) for an undirected graphG is defined in terms
of its Markov properties. Variables, i.e. nodes in the graph, are independent conditional on a
separating set. In other words, letX = (X1, X2, . . . , Xp)

T be a multivariate Gaussian vector,
then an undirected edge is drawn between two nodesi andj, if and only if the corresponding
variablesXi andXj are conditionally dependent given the remaining variables. LetG = (X,E)
be an undirected graph with vertex setX = {X1, ..., Xp} and edge setE = {eij}, where
eij = 1 or 0 according to whether verticesi andj are adjacent inG or not. The GGM model
N(G) consists of all p-variate normal distributionsNp(µ,Σ), for arbitrary mean vectorsµ and
covariance matricesΣ, assumed nonsingular, for which the concentration or precision matrix
Θ = Σ−1 satisfies the following linear restriction

eij = 0 ⇔ θij = 0.

The modelN(G) has also been called a covariance selection model (Dempster1972) and a
concentration graph model (Cox 1996, Chapter 2). The readeris referred to Whittaker (1990,
Chapter 6) for statistical properties of these models, including methods for parameter estima-
tion, model testing and model selection. The modelN(G) also can be defined in terms of
pairwise conditional independence. IfX = (X1, . . . , Xp)

T ∼ Np(µ,Σ), then

θij = 0 ⇔ Xj ⊥ Xi|X{−(i,j)} ⇔ ρij = 0

where

ρij = −
θij

√

θijθij
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denotes the partial correlation betweenXi andXj , i.e. the correlation betweenXi andXj

givenX{−(i,j)}. This suggests that the determination of the graphG, can be based on the set of
sample partial correlationŝρij arising from independent and identically distributed observations
X ∼ Np(µ,Σ), wheren >> p is assumed in order to guarantee positive definiteness of the
sample covariance matrix. In other words, given a random sampleX we wish to estimate the
concentration matrixΘ. Of particular interest is the identification of zero entries in the con-
centration matrixΘ = {θij}, since a zero entryθij = 0 indicates the conditional independence
between the two variablesXi andXj given all other variables.

Graphical models are probability models for multivariate random variables whose indepen-
dence structure is characterized by a conditional independence graph. The standard theory of
estimating GGMs can be exploited only when the number of measurementsn is much higher
than the number of variablesp. This ensures that the sample covariance matrix is positivedef-
inite with probability one. Instead, in most application, such as microarray gene expression
data sets, we have to cope with the opposite situation(n ≪ p). Thus, the growing interest in
"smalln, largep" problems, requires an alternative approach. In problems where the number of
nodes is large, but the number of links are relatively few pernode, sparse inference ofΘ in the
framework of a GGM is useful, because:

• it reduces the complex high dimensional object into simpler, low dimensional objects;

• it groups the variables into several sets;

• it highlights that some variables are crucial;

• it asserts that some variables will be sufficient to predictother ones.

Estimating the dimensionality of the GGM model is complicated issue. The standard ap-
proach is greedy stepwise forward-selection or backward-deletion, and parameter estimation
is based on the selected model. In each step the edge selection or deletion is typically done
through hypothesis testing at some levelα. It has long been recognized that this procedure does
not correctly take account of the multiple comparisons involved (Edwards, 2000). Another
drawback of the common stepwise procedure is its computational complexity. To remedy these
problems, Drton and Perlman (2004) proposed a method that produces conservative simultane-
ous1 − α confidence intervals, and use these confidence intervals to do model selection in a
single step. The method is based on asymptotic considerations. Meinshausen and Buehlmann
(2006) proposed a computationally attractive method for covariance selection that can be used
for very large Gaussian graphs. They perform neighbourhoodselection for each node in the
graph and combine the results to learn the structure of a Gaussian concentration graph model.
They showed that their method is consistent for sparse high-dimensional graphs. However, in
all of the above mentioned methods, model selection and parameter estimation are done sepa-
rately. The parameters in the concentration matrix are typically estimated based on the model
selected. As demonstrated by Breiman (1996), the discrete nature of such procedures often leads
to instability of the estimator: small changes in the data may result in very different estimates.

Here, we propose a sparse dynamic Gaussian graphical model with L1 penalty of structured
correlation matrix that does model selection and parameterestimation simultaneously in the
Gaussian concentration graph model. We employ anL1 penalty on the off-diagonal elements
of the correlation matrix. This is similar to the idea of theglasso(Friedman, 2007). TheL1

penalty encourages sparsity and at the same time gives shrinkage estimates. In addition, we can
model arbitrary, locally additive models for the precisionmatrix, while explicitly ensuring that
the estimator of the concentration matrix is positive define. This is achieved via an efficient
semi-definite programming algorithm(SDPT3).
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The remainder of the paper is organized as follows. In Section 2, we provide the problem of
gaussian profile likelihood model and the linked with the maximum determinant problem. The
type of model will be specified. In Section 3, we describe the algorithmSDPT3 to solve the
optimization problem, the general idea and the implementation of the method as well.

2 Dynamic Gaussian graphical model for networks

The graph structure of the Gaussian graphical model describes the conditional independence
structure between the variables. The two main applicationsof this conditional independence are
either (i) modular dependency structures and (ii) Markovian dependency structures. The former
are used in expert systems or flow-chart descriptions of causal structures, whereas the latter is
typical for spatio-temporal forms of (in)dependence. A dynamic gaussian graphical model for
a network contains both types of conditional dependence: a Markovian dependence structure
would capture that temporal relatedness of nearby observations, which is broken by one (or
more) conditioning, intervening observations. The network itself has an internal relatedness
due to the modular structure of the network: the results of the observed outcomes at the nodes
flow through the links to the other nodes, thereby affecting neighbouring vertices. Due to its
computational tractibility is the multivariate normal distribution uniquely suited as an initial
model for a dynamic graphical model. For example, its conditional independence structure is
simply characterized in terms of zeros in the inverse of its covariance matrix,

Θ = Σ−1.

If we measure a univariate outcome atp nodes acrossT discrete time-points, then initially we
describe the dataX as coming from a multivariate normal distribution:

X ∼ NpT (µ,Θ−1).

In many practical example, it may be the case that only a single replicateX has been observed.
Estimation will only be possible if we are willing to impose restrictions on the parameters.
There are two types of restrictions that we will consider: sparsity restrictions and model defini-
tions.

2.1 Sparsity restrictions of the precision matrix

The arrival of the high-throughput era in genomics has seen an explosion of data gathering: for
a fraction of the amount of time and money it used to cost to monitor the level of a particular
gene or protein, now thousands are monitored. Nevertheless, the underlying physical reality
will not have changed as a result of our data-gathering. The particular protein that used to bind
to the promotor region of the particular gene will still do so: the fact that we monitor thousands
of genomic variables has not made the genomic reality itselfany more difficult. Obviously,
this reality is certainly highly complex, but at the same time it is also highly structured as DNA
sequences are highly specific for binding to particular proteins. Therefore, the genomic network
can be thought to be highly sparse set of relations between thousands of genomic players, such
as DNA, mRNA and proteins. Obviously, we don’t know exactly which links should be assumed
to be zero, but we want to create a model that encourages zeroes between the vertices.

Furthermore, the fact that we are considering dynamic models with observations of the ge-
nomic system spaced in time, it is probably sufficient to assume – especially given the usual
spacing of genomic observations – the existence of first or atmost second order Markov depen-
dence. This means that large part of the precision matrix canbe filled with zeroesa priori.
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2.2 Model restrictions of the precision matrix

Given the sparsity of the data, it is essential to define models that are finely tuned to be able to
estimate interesting quantities of interest. For example,we have seen in the previous paragraph
that Markov assumptions are sensible ways to reduce the dimensionality of the estimation prob-
lem. Additionally, given that the temporal correlation is probably not particularly important, it
makes sense to compromise a little on the amount of variableswe use to model it. For example,
makes sense to restrict the attention to models in which

∀i, t : cor(xi,t, xi,t−1|x−i) = ρ.

This reduces the number of parameters inΘ by pT − 1. Moreover, it may, in certain circum-
stances, be sensible to assume that the genomic network at each time-point is the same. This
reduces the number of parameters by(T − 1)p2.

2.3 Maximum Likelihood

The most simple model is the unconstrainedΘ with no penalty on the elementsθij on the
precision matrixΘ. The log-likelihood forµ andΘ = Σ−1 based on a random sampleX =
(X(1), . . . , X(n)) is

l(µ,Σ;X) ∼=
n

2
log |Θ| −

1

2

n
∑

i=1

(Xi − µ)T Θ (Xi − µ) (1)

up to a constant not depending onµ andΘ. Even ifS = 1
n

∑n
i=1(Xi − X̄)(Xi − X̄)T is of full

rank (only ifn > pT ), the matrixS−1 will not be ’sparse’. To achieve ’sparse’ graph structure
and to obtain a better estimator of the concentration matrix, we introduce anL1 penalty on the
likelihood, i.e. we want a minimizerΘ of

− log |Θ| + trace(ΣS) (2)

subject to
∑

i6=j

|θij | ≤ t,

over the set of positive definite matricesΘ. Heret ≥ 0 is a tuning parameter.
The constraint as formulated above does not penalize the diagonal ofΘ. We could also

choose not to penalize links that we know are there or time-dependencies which are so low-
dimensional that it is not worth penalizing.

3 Max Determinant optimization problem

The non-linearity of the objective function, the positive definiteness constraint and the struc-
tured correlation make the optimization problem non-trivial. We take advantage of the connec-
tion of the penalized likelihood and the the the max-determinant optimization problem (Vander-
berghe et al. 1996). We make use of the SDPT3 algorithm (Toh) to manage higher dimensional
problems. We consider the optimization problem:

min cTβ + log|Θ(β)| (3)

subject toΘ(β) ≥ 0
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F (β) ≥ 0

Lβ = b;

where the optimization variable is the vectorβ ∈ Rm. The functionsΘ : Rm → Rl×l and
F : Rm → Rn×n are affine:

Θ(β) = Θ0 + β1Θ1 + . . .+ βmΘm

F (β) = F0 + β1F1 + . . .+ βmFm,

whereΘi = ΘT andFi = F T
i . The inequality signs in (3) denote matrix inequalities,i.e.,

Θ(β) > 0 meanszT Θ(β)z ≥ 0 for all nonzeroz andF (β) ≥ 0 meanszTF (β)z ≥ 0 for all z.
We will refer to problem (3) as amaxdet problem.

Themaxdet problem is a convex optimization problem, i.e. the objective functioncTβ +
log|Θ(β)|, is convex(on {x : Θ(β) ≥ 0}, and the constraint set is convex. The current
version ofSDPT3, version 4.0, is designed to solve conic programming problems whose con-
straint cone is a product of semidefinite cones, second-order cones, nonnegative orthants and
Euclidean spaces; and whose objective function is the sum oflinear functions and log-barrier
terms associated with the constraint cones. This means thatit is possible to solve more gen-
eral problems thenmaxdet algorithm. The algorithm implemented in SDPT3 is an infeasible
primal-dual path-following algorithm, at each iteration,it first computes a predictor search di-
rection aimed at decreasing the duality gap as much as possible. After that, the algorithm
generates a Mehrotra-type corrector step with the intention of keeping the iterates close to the
central path. However, it does not impose any neighbourhoodrestrictions. Initial iterates need
not be feasible the algorithm tries to achieve feasibility and optimality of its iterates simultane-
ously. The algorithms can start with an infeasible startingpoint. However, the performance of
these algorithms is quite sensitive to the choice of the initial iterate so it is desirable to choose an
initial iterate that at least has the same order of magnitudeas an optimal solution of theSQLP .

4 Simulation Study

We consider a small simulation study withn = 10 replicates, whereby we samplep = 5
independent vertices with time-correlation acrossT = 2 time points. The true model forΘ,
therefore, is matrix with 2 identical5× 5 diagonal matrices on its diagonal and with 2 identical
5 × 5 diagonal matrices on its off-diagonal. The number of true parameters inΘ is therefore 2,
one for the diagonal term and one or the off-diagonal term. Wefit 5 different models. Three are
versions of the glasso model (Friedman et al. 2007): the default glasso considers the full10×10
matrix, glasso1 considers the 15 parameter model with a freediagonal and free off-diagonal,
and glasso2 considers the 35 parameter model with two free5 × 5 diagonal blocks and a off-
diagonal matrix with only entries on its diagonal. Furthermore, we consider 2 constrained
dynamic models: MaxDet3 has tree parameters, a diagonal, the off-diagonal entries of the
diagonal blocks and the diagonal of the off-diagonal blocks, and MaxDet400 considers a model
with 20 parameters, consisting of two identical, but free, matrices on the diagonal and an off-
diagonal matrix with a free diagonal and the rest zeroes.
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