Third International Conference on Smart Materials and Nanotechnology in Engineering

Jinsong Leng
Yoseph Bar-Cohen
In Lee
Jian Lu
Editors

5–8 December 2011
Shenzhen, China

Organized by
Harbin Institute of Technology (China)

Sponsored by
National Institute of Standards and Technology (United States)
Asia Pacific Committee of Smart and Nano Materials
Advanced Materials Research Centre, Nanyang Technological University (Singapore)
The National Natural Science Foundation of China (China)
Chinese Society of Composite Materials (China)
Chinese Materials Research Society (China)
Chinese Society of Aeronautics and Astronautics (China)
The Chinese Society of Theoretical and Applied Mechanics (China)

Published by
SPIE

Volume 8409
The papers included in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. The papers published in these proceedings reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from this book:

ISSN 0277-786X
ISBN 9780819490872

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org

Copyright © 2012, Society of Photo-Optical Instrumentation Engineers

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/12/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print and on CD-ROM. Papers are published as they are submitted and meet publication criteria. A unique, consistent, permanent citation identifier (CID) number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online, print, and electronic versions of the publication. SPIE uses a six-digit CID article numbering system in which:

- The first four digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B … 0Z, followed by 10-1Z, 20-2Z, etc.

The CID number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages. Numbers in the index correspond to the last two digits of the six-digit CID number.
Contents

Part One

xv Conference Committee
xxi Introduction

MODELING AND SIMULATIONS OF SMART MATERIALS AND STRUCTURES

8409 02 Variational principle and vibration properties of functionally graded circular plate with temperature changes [8409-23]
T. Fan, G. Zou, Harbin Engineering Univ. (China)

8409 03 Nonlinear vibration and bifurcation analysis of simply supported beam laminated with superelastic shape memory alloy (SMA) layers [8409-45]
Z. Zhang, Tianjin Univ. (China) and Nanyang Institute of Technology (China); Z. Wu, Tianjin Univ. (China)

8409 04 A model on the thermomechanical behavior of smart polymers considering evolution of natural configurations [8409-166]
Q. Zhang, Q.-S. Yang, G.-H. Shi, Beijing Univ. of Technology (China)

MAGNETIC MATERIALS

8409 05 Temperature stability and durability of MR fluids [8409-13]
P. Zhang, L. Tang, E. Yue, S.-A. Luo, G. Zhao, Chongqing Instrument Materials Institute (China)

8409 06 Fabrication and characterization of relaxor-ferroelectric 0.55Pb(Ni1/3Nb2/3)O3-0.45Pb(Zr0.3Ti0.7)O3 ceramics with sintering aid [8409-128]
J. Du, J. Qiu, K. Zhu, H. Ji, Y. Chen, Nanjing Univ. of Aeronautics and Astronautics (China)

8409 07 Monte Carlo simulation on the magnetization rotation near magnetic morphotropic phase boundary [8409-176]
S. Wei, X. Song, S. Yang, J. Deng, Y. Wang, Xi’an Jiaotong Univ. (China)

NANOTECHNOLOGY FOR ENERGY HARVESTING, CONVERSION AND STORAGE

8409 08 Improving the electrochemical performance of LiFePO4/C by doping magnesium trisilicate [8409-111]
W. Chen, S. Zhao, H. Ding, B. Li, C. Nan, Tsinghua Univ. (China)

8409 09 Thermoelectric properties of polythiophene/MWNT composites prepared by ball-milling [8409-151]
D. Wang, L. Wang, W. Wang, X. Bai, J. Li, Shenzhen Univ. (China)
ACOUSTIC METAMATERIALS

8409 0A
Non-velocity-based analysis of passive ultrasonic signal for source location detection in composite plates: a pilot study [8409-18]
Z. M. Hafizi, Univ. of Southern Queensland (Australia) and Univ. Malaysia Pahang (Malaysia); J. Epaarachichi, K. T. Lau, Univ. of Southern Queensland (Australia)

8409 0B
Determination of the acoustical parameters of sintered porous metals [8409-39]
B. Zhang, Ningxia Univ. (China) and Liverpool Univ. (United Kingdom); J. Zhu, W. Zhang, Ningxia Univ. (China)

8409 0C
Optimization of sound absorbing performance for gradient multi-layer-assembled sintered fibrous absorbers [8409-40]
B. Zhang, Ningxia Univ. (China) and Liverpool Univ. (United Kingdom); W. Zhang, J. Zhu, Ningxia Univ. (China)

8409 0D
Piezoelectric cantilevers optimization for vibration energy harvesting [8409-65]
J. Cao, S. Zhou, X. Ren, B. Cao, Xi'an Jiaotong Univ. (China)

THERMOMECHANICAL BEHAVIOR OF NITI SHAPE MEMORY ALLOY

8409 0E
Numerical investigation of the mechanical behaviour of shape memory bulk metallic glass composites (Invited Paper) [8409-24]
W. Yan, G. Tilvawala, Monash Univ. (Australia); Q. Kan, Southwest Jiaotong Univ. (China)

8409 0F
An energy-based fatigue failure model for super-elastic NiTi alloys under pure mechanical cyclic loading [8409-46]
Q. Kan, G. Kang, Southwest Jiaotong Univ. (China); W. Yan, Monash Univ. (Australia); Y. Dong, C. Yu, Southwest Jiaotong Univ. (China)

8409 0G
Design of a new FSMA-based actuator for nanoplacement applications [8409-86]
E. Asua, A. Sadeghzadeh, J. Feuchtwanger, A. Garcia-Arribas, V. Etxebarria, Univ. del País Vasco (Spain)

8409 0H
Isothermal recovery response and constitutive model of thermoset shape memory polymers [8409-130]
H. Tan, Harbin Institute of Technology (China); T. Zhou, Harbin Institute of Technology (China) and Qiqihar Univ. (China); Y. Liu, L. Lan, Harbin Institute of Technology (China)

APPLICATIONS OF ELECTROACTIVE POLYMERS

8409 0I
An IPMC driven micropump with adaptive on-line iterative feedback tuning [8409-03]
K. C. Aw, W. Yu, A. J. McDaid, S. Q. Xie, The Univ. of Auckland (New Zealand)

8409 0J
Optimal force control of an IPMC actuated micromanipulator for safe cell handling [8409-04]
A. J. McDaid, K. C. Aw, S. Q. Xie, E. Haemmerle, The Univ. of Auckland (New Zealand)
Polypyrrole coated rubber as flexible strain sensor for large strain measurement [8409-33]
A. P. Tjahyono, K. C. Aw, The Univ. of Auckland (New Zealand); J. Travas-Sejdic, The Univ. of Auckland (New Zealand) and MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand)

ENGINEERED MULTIFUNCTIONAL NANOCOMPOSITES

Composite oxide powders [8409-10]
X. H. Xie, X. R. Yan, Anhui Univ. of Science and Technology (China); J. Xie, Fudan Univ. of Science and Technology (China); S. Y. Liu, Anhui Univ. of Science and Technology (China)

Comparative study of photocatalytic oxidation on the degradation of formaldehyde and fuzzy mathematics evaluation of filters [8409-154]
H. Yu, Ocean Univ. of China (China); J. Zhang, The Chinese Univ. of Hong Kong (Hong Kong, China)

Monitoring of surface-fatigue crack propagation in a welded steel angle structure using guided waves and principal component analysis [8409-199]
M. Lu, The Hong Kong Polytechnic Univ. (Hong Kong, China); Y. Qu, Harbin Engineering Univ. (China); Y. Lu, Monash Univ. (Australia); L. Ye, The Univ. of Sydney (Australia); L. Zhou, Z. Su, The Hong Kong Polytechnic Univ. (Hong Kong, China)

Model for temperature-dependence modulus of glass/epoxy composite [8409-107]
J. Feng, H. Wang, Z. Guo, H. Hu, J. Zhang, Shanghai Univ. (China)

NANOMATERIALS AND NANOTECHNOLOGIES FOR ENERGY HARVESTING AND STORAGE

Lateral epitaxial overgrowth of ZnO films on a seed layer buffered MgAl2O4 substrate in water [8409-58]
Y. B. Zhang, S. Li, The Univ. of New South Wales (Australia); G. K. L. Goh, A*STAR Institute of Materials Research and Engineering (Singapore)

Preparation and energy-saving application of polyurethane/phase change composite materials for electrical water heaters [8409-155]
Y. Hu, T. Zhao, X. Wu, M. Lai, C. Jiang, R. Sun, Shenzhen Institutes of Advanced Technology (China) and The Chinese Univ. of Hong Kong (Hong Kong, China)

Nanograins-grafted nanorods of MoO2/carbon composite for supercapacitor application [8409-188]
R. Chen, Shenzhen Institutes of Advanced Technology (China), The Chinese Univ. of Hong Kong (Hong Kong, China), and Univ. of South China (China); S. Yu, R. Sun, Shenzhen Institutes of Advanced Technology (China) and The Chinese Univ. of Hong Kong (Hong Kong, China); Y. Zhao, Univ. of South China (China)

DAMPING ENHANCEMENT USING SMART AND NANOMATERIALS

Vibration characteristics of piezoelectric fiber composites under thermo-electro-mechanical loadings [8409-21]
J.-S. Kim, Kumoh National Institute of Technology (Korea, Republic of)
Damping properties of fiber reinforced composite suitable for stayed cable [8409-22]
J. Li, B. Sun, Y. Du, Shijiazhuang Tiedao Univ. (China)

Identification of impact force acting on a cantilever beam using inverse technique [8409-31]
S. L. Gombi, Gogte Institute of Technology (India); D. S. Ramakrishna, Jawaharlal Nehru National College of Engineering (India)

Study on the possibility of cellulose-based electroactive paper sensor (Invited Paper) [8409-82]
H. S. Kim, Dongguk Univ. (Korea, Republic of); J. Kim, Inha Univ. (Korea, Republic of)

Time domain nonlinear SMA damper force identification approach and its numerical validation [8409-119]
L. Xin, B. Xu, J. He, Hunan Univ. (China)

Axial collapse characteristics of CFRP composites with stacking conditions under the hygrothermal [8409-126]
Y. Yang, Dongkang College (Korea, Republic of); J. Choi, W. Hwang, J. Son, H. Kook, Chosun Univ. (Korea, Republic of); K. Im, Woosuk Univ. (Korea, Republic of); J. Sim, I. Yang, Chosun Univ. (Korea, Republic of)

Development of a stress sensor based on the piezoelectric lead zirconate titanate for impact stress measurement [8409-136]
Y. Liu, B. Xu, L. Li, B. Li, Hunan Univ. (China)

Enhanced shock and vibration isolator for the attenuation of low-frequency vibration and high-frequency pyroshock loads [8409-145]
J.-H. Han, Korea Advanced Institute of Science and Technology (Korea, Republic of); S.-H. Youn, H.-K. Jeong, Y.-S. Jang, Korea Aerospace Research Institute (Korea, Republic of)

Synthesis and characterization of nano-CeO₂ by detonation method [8409-20]
Z. Han, L. Xie, O. Ni, B. Li, C. Chao, Y. Xie, Nanjing Univ. of Science and Technology (China)

Study on the synergistic effects of graphene/carbon nanotubes polymer nanocomposites [8409-121]
C. Kostagiannakopoulou, G. Maroutsos, G. Sotiriadis, A. Vavouliotis, V. Kostopoulos, Univ. of Patras (Greece)

Analysis on micro-damages of carbon fibre intensity [8409-66]
W. Bian, Harbin Institute of Technology (China); S. Li, Harbin Institute of Technology (China) and Weihai Tuzhnan Fibre Co., Ltd. (China); B. Wang, Weihai Tuzhnan Fibre Co., Ltd. (China)

Piezoceramic materials shear response: approximate modal coupling and analysis (Invited Paper) [8409-94]
A. Benjeddou, Institut Supérieur de Mécanique de Paris (France)
Modeling and numerical analysis of a three-dimensional shape memory alloy shell structure [8409-142]
P. Zhao, J. Qiu, H. Ji, M. Wang, R. Nie, Nanjing Univ. of Aeronautics and Astronautics (China)

Transient modeling on the coupled chemo-mechanical behaviors of hydrogels in an aqueous environment [8409-178]
L. H. Ma, Q. S. Yang, Beijing Univ. of Technology (China)

SHAPE-MEMORY POLYMERS

Investigation of buckling behavior of carbon nanotube/shape memory polymer composite shell [8409-108]
G. Shi, Q. Yang, Q. Zhang, Beijing Univ. of Technology (China)

SMART SENSOR APPLICATIONS IN STRUCTURAL HEALTH MONITORING

Magnetorheological visco-elastomer and its application to suppressing microvibration of sandwich plates [8409-16]
Z. Ying, H. Chen, Zhejiang Univ. (China); Y. Ni, The Hong Kong Polytechnic Univ. (Hong Kong, China)

Curing residual strain monitoring in different layer of Gr/epoxy laminated composites using embedded optical fiber Bragg grating sensors [8409-29]
M.-Y. Hsieh, L. Tsai, C.-C. Chiang, National Kaohsiung Univ. of Applied Sciences (Taiwan); C.-L. Lin, Central Taiwan Univ. of Science and Technology (Taiwan); B.-L. Fang, National Kaohsiung Univ. of Applied Sciences (Taiwan)

Time reversal DORT method applied to Lamb wave damage detection [8409-70]
W. Qu, Wuhan Univ. (China); D. J. Inman, Univ. of Michigan (United States)

An impact source locating system using fiber Bragg grating rosette array [8409-90]
C. S. Shin, B. L. Chen, National Taiwan Univ. (Taiwan)

Characterization of piezoelectric paint and its refinement for structural health monitoring applications [8409-137]
C. Yang, C.-P. Fritzen, Univ. Siegen (Germany)

NANOMATERIALS FOR BIOENGINEERING

Preparation of scaffolds based on bulky sutures for cell therapy [8409-49]
Y. H. Park, Korea Institute of Industrial Technology (Korea, Republic of); H. J. Chun, Medical College of Catholic Univ. (Korea, Republic of); S. J. Kim, Korea Institute of Industrial Technology (Korea, Republic of)
NANOMATERIALS SYNTHESIS AND CHARACTERIZATION

8409 1E Novel hybrid organic/inorganic 2D photonic quasicrystals with 8-fold and 12-fold diffraction symmetries [8409-74]
L. Petti, M. Rippa, R. Capasso, Istituto de Cibernetica, CNR (Italy); M. Zanella, L. Manna, Fondazione Istituto Italiano di Tecnologia (Italy); J. Zhou, Ningbo Univ. (China); W. Song, Institute of Material Technology and Engineering (China); P. Mormile, Istituto de Cibernetica, CNR (Italy)

8409 1F Cell fouling resistance of PEG-grafted polyimide film for neural implant applications [8409-114]
D. N. Heo, D. H. Yang, J. B. Lee, M. S. Bae, H. N. Park, I. K. Kwon, Kyung Hee Univ. (Korea, Republic of)

NANOMATERIAL APPLICATION

8409 1J Smart and nanomaterials for performance enhancement of space structures (Invited Paper) [8409-113]
H. Baier, L. Datashvili, S. Rapp, Technische Univ. München (Germany)

8409 1K Surfactant-free hydrothermal synthesis and sensitivity characterization of Pd-doped SnO₂ nanocrystals on multiwalled carbon nanotubes [8409-163]
R. Tan, Ningbo Univ. (China); Y. Guo, W. Shen, K. Jiang, Ningbo Institute of Material Technology and Engineering (China); T. Xu, Ningbo Univ. (China); W. Song, Ningbo Institute of Material Technology and Engineering (China)
Part Two

FUNCTIONAL MATERIALS

8409 1L The stab resistant properties of Kevlar/STF composites [8409-68]
J. Zhao, Shenzhen Academy of Aerospace Technology (China); H. Cao, Shenzhen Academy of Aerospace Technology (China) and Harbin Institute of Technology (China); X. Li, J. Wan, K. Wang, J. Zhang, Shenzhen Academy of Aerospace Technology (China)

8409 1M Demodulation of a fiber Bragg grating strain sensor by a multiwavelength fiber laser [8409-71]
S. Cong, Y. Sun, Y. Zhao, L. Pan, Harbin Institute of Technology (China)

8409 1N Study on active vibration control for high order mode of flexible beam using smart material piezoelectric ceramic [8409-81]
D. Wu, Beihang Univ. (China); L. Huang, Beihang Univ. (China) and Yanshan Univ. (China); M. Mu, Y. Wang, S. Wu, Beihang Univ. (China)

8409 1O A study on collapse behavior and energy absorption capability of Al/CFRP hybrid structural member [8409-122]
W.-C. Hwang, Chosun Univ. (Korea, Republic of); K.-S. Lee, DACC Aerospace Co., Ltd. (Korea, Republic of); Y.-J. Yang, Dongkang College (Korea, Republic of); J.-H. Choi, Chosun Univ. (Korea, Republic of); J.-A. Jung, Songwon College (Korea, Republic of); C.-S. Cha, Dongkang College (Korea, Republic of); I.-Y. Yang, Chosun Univ. (Korea, Republic of)

MEMBRANES AND ELASTOMERS

8409 1P Multiple modal vibration control of a beam using photostrictive actuators [8409-26]
J. Lian, S. Zheng, Nanjing Univ. of Aeronautics and Astronautics (China)

8409 1Q Multiple-Kolmogorov-Avrami-Ishibashi polarization switching kinetics model for \(\text{Bi}_{16}\text{Nd}_{0.85}\text{Ti}_{3}\text{O}_{12} \) thin films [8409-48]

8409 1R Rapid crystallization of ferroelectric lead zirconate titanate thin films by microwave heating [8409-72]
X. W. Wang, Institute of Metal Research (China) and Henan Normal Univ. (China); Z. J. Wang, M. W. Zhu, Y. Q. Zhang, Z. D. Zhang, Institute of Metal Research (China)

NANOTECHNOLOGY IN CIVIL ENGINEERING MATERIALS

8409 1S Solar-reflective coating as a cooling overlay for asphalt pavement (Invited Paper) [8409-97]
H. Wang, Harbin Institute of Technology (China); G. Xu, Jinan Civil Construction Co. Ltd. (China); D. Feng, J. Zhong, N. Xie, Harbin Institute of Technology (China)
SMART MATERIALS APPLICATIONS

8409 1T The FBG-based monitor of liquid-solid-phase transitions and its potential sensing applications [8409-57]
K. Later, J. Zhu, J. Zhang, W. Sun, L. Yuan, Harbin Engineering Univ. (China)

8409 1U Damage detection of concrete beam based on embedded PZT impedance transducer encapsulated by cement [8409-67]
D. Wang, Huazhong Univ. of Science and Technology (China) and Shenzhen Oceanpower Industrial Co., Ltd. (China); H. Zhu, Huazhong Univ. of Science and Technology (China); J. Yuan, J. Li, Tongji Univ. (China); Y. Li, Huazhong Univ. of Science and Technology (China)

8409 1V Application of fiber Bragg grating sensors in monitoring fatigue failure of NiTi rotary endodontic instruments [8409-87]
C. Y. Liu, C. S. Shin, National Taiwan Univ. (Taiwan)

8409 1W Approach to a creation of silicon-silicide smart materials for silicon-based thermoelectronics and photonics [8409-105]

8409 1X Active control using control allocation for UAVs with seamless morphing wing [8409-106]
Z. Wang, Y. Sun, Beijing Institute of Technology (China); D. Yang, S. Guo, Cranfield Univ. (United Kingdom)

8409 1Y Analytical solutions for smart materials with chemo-mechanical couplings [8409-172]
H. Tian, Q. Yang, Beijing Univ. of Technology (China)

8409 1Z Effect of clay modification on the morphological, mechanical, and thermal properties of epoxy/polypropylene/montmorillonite shape memory materials [8409-101]
H. Tan, H. Sun, Y. Liu, L. Tong, X. Du, Harbin Institute of Technology (China)

ACTUATORS AND SENSORS

8409 20 Preliminary study of lever-based optical driven micro-actuator [8409-15]
C.-L. Lin, Central Taiwan Univ. of Science and Technology (Taiwan); Y.-H. Li, Feng Chia Univ. (Taiwan); C.-T. Lin, National Taiwan Univ. (Taiwan); C.-C. Chiang, National Kaohsiung Univ. of Applied Sciences (Taiwan); Y.-J. Liu, Feng Chia Univ. (Taiwan); T.-T. Chung, National Taiwan Univ. (Taiwan); P. L. Baldeck, Central Taiwan Univ. of Science and Technology (Taiwan) and LiPhy, CNRS, Joseph Fourier Univ. (France)

8409 21 Micromechanical models for the effective electromechanical properties of cellular piezoelectret polymer film (Invited Paper) [8409-25]
Y. Wan, L. Xie, Z. Zhong, Tongji Univ. (China)

8409 22 Linear electrochemical gel actuators [8409-80]
S. Goswami, C. J. McAdam, L. R. Hanton, S. C. Moratti, Univ. of Otago (New Zealand)
Preparation and characterization of a conductive polymer/electroactive paper actuator [8409-95]
M. V. Ramos, N. Afroj, A. A. Al-Jumaily, A. Uddin, J. Robertson, Auckland Univ. of Technology (New Zealand)

Dynamic modeling of dielectric elastomer actuators with sandwich structure [8409-117]
B.-X. Xu, Technische Univ. Darmstadt (Germany); A. Theis, R. Mueller, M. Klassen, Technische Univ. Kaiserslautern (Germany); D. Gross, Technische Univ. Darmstadt (Germany)

Bolted joint looseness damage detection using electromechanical impedance measurements by PZT sensors [8409-118]
M. Chen, B. Xu, Hunan Univ. (China)

A smart nonharmonic magnetic composite with novel sensor applications [8409-129]
M. Yin, S. Phillips, Benedict College (United States); H. Zhang, M. Wescott, Y. Jeong, T. Datta, Univ. of South Carolina (United States); R. Tsu, The Univ. of North Caroline at Charolotte (United States)

Piezoelectric cantilevers energy harvesting in MEMS technique [8409-133]
Y. Shang, The Key Lab. of Electronics Engineering College of Heilongjiang Province (China); C. Qiu, H. Liu, X. Chen, Heilongjiang Univ. (China); W. Qu, The Key Lab. of Electronics Engineering College of Heilongjiang Province (China); Y. Dou, Heilongjiang Univ. (China)

Analytical solution for one-dimensional chemo-mechanical coupling behavior of intelligent polymer gel [8409-182]
Q. Yang, H. Tian, Beijing Univ. of Technology (China)

Accuracy improvement of distributed optical fiber Raman temperature sensor system based on dynamic calibration [8409-190]
Z.-X. Jin, H.-J. Cui, F. Ning, X.-Q. Li, Y. Zhu, Chongqing Univ. (China)

ELECTROACTIVE POLYMERS AND THEIR APPLICATIONS

A novel approach to predict the pin load distribution of multiple bolt-jointed composite laminate based on the circuit model [8409-88]

Electrochromic device based on D-A type viologen (Invited Paper) [8409-200]
M. Li, J. Zheng, S. Chen, C. Xu, Univ. of Science and Technology of China (China)

Electroactive and large area V2O5 film prepared via ultrasonic spraying [8409-205]
Y. Wei, M. Li, J. Zheng, C. Xu, Univ. of Science and Technology of China (China)
<table>
<thead>
<tr>
<th>Poster Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8409 2D</td>
<td>Development of two vision estimation algorithms for robot vision control scheme</td>
<td>J. K. Son, W. S. Jang, Y. G. Sung, Chosun Univ. (Korea, Republic of); Y. J. Yang, Dongkang College (Korea, Republic of)</td>
</tr>
<tr>
<td>8409 2E</td>
<td>Nanoporous ZnO prepared by electrochemical anodization deposition</td>
<td>L. S. Chuah, Z. Hassan, S. K. Mohd Bakhori, Univ. Sains Malaysia (Malaysia)</td>
</tr>
<tr>
<td>8409 2F</td>
<td>Fabrication and characterization of heterojunction solar cells of hexadecafluorophthalocyanine/metal phthalocyanine</td>
<td>A. Suzuki, A. Mizuno, T. Oku, T. Akiyama, The Univ. of Shiga Prefecture (Japan); Y. Yamasaki, Orient Chemical Industries Co., Ltd. (Japan)</td>
</tr>
<tr>
<td>8409 2G</td>
<td>Study on CO$_2$ laser weldability of Fe-Mn-Si shape memory alloy</td>
<td>C. Zhou, C. Lin, L. Liu, Dalian Maritime Univ. (China)</td>
</tr>
<tr>
<td>8409 2H</td>
<td>Study on the cell size effect of steady state thermal performance of metallic honeycomb sandwich panels</td>
<td>Y. Lai, S. Sun, Nanchang Hangkong Univ. (China)</td>
</tr>
<tr>
<td>8409 2I</td>
<td>Effective properties analysis of a piezoelectric composite including conducting phase using a numerical homogenization approach</td>
<td>H. Zhang, X. He, R. Wang, L. Hao, Harbin Institute of Technology (China)</td>
</tr>
<tr>
<td>8409 2J</td>
<td>Structure and static analysis of a new umbrella-shaped keel concentrator</td>
<td>X. Yao, B. Fu, J. Dai, R. Lu, Lanzhou Univ. of Technology (China); P. Zhao, Northwestern Polytechnical Univ. (China); C. He, Lanzhou Institute of Physics (China)</td>
</tr>
<tr>
<td>8409 2K</td>
<td>Fabrication and super-hydrophilic property of transparent TiO$_2$/SiO$_2$ film from sol-gel process</td>
<td>R. Zhang, Y. Zhang, C. Xu, L. Yu, F. Lv, China Univ. of Geosciences (China)</td>
</tr>
<tr>
<td>8409 2L</td>
<td>Dielectric property of all-organic composite film composed of cobalt phthalocyanine and poly(vinylidene fluoride)</td>
<td>L. Yu, Y. Zhang, W. Tong, J. Shang, F. Lv, China Univ. of Geosciences (China); S. Ke, H. Huang, The Hong Kong Polytechnic Univ. (Hong Kong, China)</td>
</tr>
<tr>
<td>8409 2M</td>
<td>Field test of a fiber laser seismic system</td>
<td>W. Zhang, F. Li, Y. Liu, Institute of Semiconductors (China)</td>
</tr>
<tr>
<td>8409 2N</td>
<td>Preparation of graphene sheets/polymide nanocomposite films by in-situ polymerization</td>
<td>B. Shen, Y. Zhang, L. Yu, F. Lv, J. Shang, China Univ. of Geosciences (China)</td>
</tr>
<tr>
<td>8409 2O</td>
<td>The Martensitic transformation and shape memory effect of Fe-Mn-Si alloy with different deformation condition</td>
<td>L. Liu, C. Lin, C. Zhou, Dalian Maritime Univ. (China)</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>8409 2P</td>
<td>Strain monitoring of dual-room box-girder during prestressing tension based on fiber Bragg grating sensor</td>
<td>D. Wang, Huazhong Univ. of Science and Technology (China) and Shenzhen Oceanpower Industrial Co., Ltd. (China); T. Jin, H. Zhu, Huazhong Univ. of Science and Technology (China); W. He, M. Li, Shenzhen Oceanpower Industrial Co., Ltd. (China)</td>
</tr>
<tr>
<td>8409 2Q</td>
<td>Motion of deformable ring made of IPMC</td>
<td>A. Firouzeh, A. Alasty, M. Ozmaeian, Sharif Univ. of Technology (Iran, Islamic Republic of)</td>
</tr>
<tr>
<td>8409 2R</td>
<td>Monitoring of fatigue crack under complex environment using guided waves</td>
<td>J. Tang, G. Yan, X. Xu, Nanjing Univ. of Aeronautics and Astronautics (China)</td>
</tr>
<tr>
<td>8409 2S</td>
<td>Material characterization of several resin systems for high temperature carbon fiber reinforced composites</td>
<td>S. H. Yoon, J. O. Oh, Kumoh National Institute of Technology (Korea, Republic of); D. H. Choi, S. W. Lee, Hankuk Fiber Co., Ltd. (Korea, Republic of)</td>
</tr>
<tr>
<td>8409 2T</td>
<td>Research of carbon composite material for nonlinear finite element method</td>
<td>J. H. Kim, Chosun Univ. (Korea, Republic of); M. Garg, AlphaSTAR Corp. (United States); J. H. Kim, Chosun Univ. (Korea, Republic of)</td>
</tr>
<tr>
<td>8409 2U</td>
<td>The research on optimal design using FEM (finite elements method) analysis for ultraprecision six-axis nano-stage</td>
<td>N. Kwak, J.-Y. Kim, Chosun Univ. (Korea, Republic of)</td>
</tr>
<tr>
<td>8409 2V</td>
<td>Energy absorption characteristics of lightweight structural member by stacking conditions</td>
<td>J. Choi, Chosun Univ. (Korea, Republic of); Y. Yang, Dongkang College (Korea, Republic of); W. Hwang, Chosun Univ. (Korea, Republic of); S. Pyeon, Dongkang College (Korea, Republic of); H. Min, Sunghwa College (Korea, Republic of); I. Yeo, I. Yang, Chosun Univ. (Korea, Republic of)</td>
</tr>
<tr>
<td>8409 2W</td>
<td>A study on performance improvement of thermoelectric cooling system by a vibrating piezoelectric actuator</td>
<td>H.-S. Yoon, J.-Choi, Y.-K. Oh, Chosun Univ. (Korea, Republic of)</td>
</tr>
<tr>
<td>8409 2X</td>
<td>Nondestructive evaluation of composite applying ultrasound-infrared thermography technique and finite element analysis</td>
<td>S.-H. Choi, J.-Y. Kim, S.-H. Kim, Chosun Univ. (Korea, Republic of); C.-H. Kim, Korea Nondestructive Examination Co., Ltd. (Korea, Republic of)</td>
</tr>
<tr>
<td>8409 2Y</td>
<td>Local damage detection for steel rebar by impedance measurements of PZT sensors</td>
<td>J. Kuang, B. Xu, Hunan Univ. (China)</td>
</tr>
<tr>
<td>8409 2Z</td>
<td>A unified analysis of solidification in Bridgman crystal growth</td>
<td>M.-F. Lu, Chienkuo Technology Univ. (Taiwan)</td>
</tr>
</tbody>
</table>
8409 31 Molecular modelling of structure and deformation mechanisms of auxetic behaviour in the \(\alpha \)-quartz structures [8409-149]
Y. T. Yao, Harbin Institute of Technology (China) and Univ. of Bolton (United Kingdom);
A. Alderson, K. L. Alderson, Univ. of Bolton (United Kingdom)

8409 32 Influence of physical parameters on residual stresses of polymer composites during the cure process [8409-156]
H. Wang, J. Feng, Z. Guo, H. Hu, Shanghai Institute of Applied Mathematics and Mechanics (China); J. Zhang, Shanghai Univ. (China)

8409 33 Solvothermal synthesis and characterization of nanocrystalline NaNbO3 and NaTaO3 powders [8409-157]
J. Yang, Shanghai Maritime Univ. (China) and Yantai Univ. (China); H. Chen, Shanghai Maritime Univ. (China); Z. Wang, B. Liu, Y. Fan, Yantai Univ. (China)

8409 34 Progress in patch repair of aerospace composite structures [8409-160]
W. Hou, W. Zhang, Q. Tang, Beihang Univ. (China)

8409 35 Pd-Ag film coated LPG for hydrogen sensing [8409-169]
Y. Fang, F. Duan, Tianjin Univ. (China); M. Zhang, L. Wang, Y. Liao, Tsinghua Univ. (China)

8409 36 Properties of magnetorheological fluid with stable processing [8409-170]
L. Tang, E. Yue, S. Luo, P. Zhang, G. Zhao, D. Zhang, B. Yang, Chongqing Instrument Materials Institute (China)

8409 37 A surface crack monitoring sensor for metallic structures [8409-189]
J. Du, H. Ding, Y. He, R. Cui, Air Force Engineering Univ. (China); Z. Yu, Institute of Metal Research (China)

8409 38 Effects of heat treatment process on microstructure and mechanical properties of Mg-5Zn-\(\times \)Er alloys [8409-193]
S. Li, X. Zhao, K. Liu, Z. Wang, W. Du, Beijing Univ. of Technology (China)

8409 39 One-sided ultrasonic inspection to detect flaws in CFRP composite solid laminates [8409-204]
K.-H. Im, G. Zhang, Woosuk Univ. (Korea, Republic of); D. K. Hsu, D. Barnard, Iowa State Univ. (United States); S.-K. Kim, Chonbuk National Univ. (Korea, Republic of); Y.-J. Yang, W.-C. Hwang, I.-Y. Yang, J.-W. Park, Chosun Univ. (Korea, Republic of)

8409 3A Characterization of high damping TiNi shape memory alloy [8409-144]
Z. Yuan, J. Hu, H. Zhang, W. Miao, M. Zhu, Grikin Advanced Materials Co., Ltd. (China)

Author Index
Conference Committee

Honorary Chairs

Shanyi Du, Harbin Institute of Technology (China)
Ken P. Chong, National Institute of Standards and Technology (United States)

Conference Chair

Jinsong Leng, Harbin Institute of Technology (China)

Conference Cochairs

Yoseph Bar-Cohen, California Institute of Technology (United States)
In Lee, Korea Advanced Institute of Science and Technology (Korea, Republic of)
Jian Lu, City University of Hong Kong (Hong Kong, China)

Conference Secretary

Yongtao Yao, Harbin Institute of Technology (China)

Program Committee

Anand K. Asundi, Nanyang Technological University (Singapore)
Ron Barrett, University of Kansas (United States)
Kexin Chen, The National Natural Science Foundation of China (China)
Zhen Chen, University of Missouri-Columbia (United States)
Hejun Du, Nanyang Technological University (Singapore)
Wolfgang Ecke, IPHT Jena (Germany)
Daining Fang, Tsinghua University (China)
Wei Gao, University of Auckland (New Zealand)
Ephrahim Garcia, Cornell University (United States)
Jihua Gou, University of Central Florida (United States)
Zhanhu Guo, Lamar University (United States)
Jae-Hung Han, Korea Advanced Institute of Science and Technology (Korea, Republic of)
Jiecai Han, Harbin Institute of Technology (China)
Xiaodong He, Harbin Institute of Technology (China)
Haiyan Hu, Nanjing University of Aeronautics and Astronautics (China)
Weimin Huang, Nanyang Technological University (Singapore)
Dan Inman, Virginia Polytechnic Institute and State University (United States)
Peiwen Ji, The National Natural Science Foundation of China (China)
Yilan Kang, Tianjin University (China)
Jaehwan Kim, Inha University (Korea, Republic of)
Kwang Jin Kim, University of Nevada (United States)
Vassili Kostopoulos, University of Patras (Greece)
Alan Kin-tak Lau, Hong Kong Polytechnic University (Hong Kong, China)
Quan Li, Kent State University (United States)
Kim Meow Liew, City University of Hong Kong (Hong Kong, China)
Shih-Chi Liu, National Science Foundation (United States)
Yinong Liu, University of Western Australia (Australia)
Tianjian Lu, Xi'an Jiaotong University (China)
Tianwei Ma, University of Hawaii (United States)
Yiu-Wing Mai, The University of Sydney (Australia)
Qingguo Meng, The National Natural Science Foundation of China (China)
Jinping Ou, Harbin Institute of Technology (China)
Qibing Pei, University of California, Los Angeles (United States)
Gangding Peng, University of New South Wales (Australia)
Huaxin Peng, University of Bristol (United Kingdom)
Kara Peters, North Carolina State University (United States)
Jeremy Ramsden, Cranfield University (United Kingdom)
Mark A. Rumsey, Lockheed Martin Corporation (United States)
Taher Saif, University of Illinois at Urbana-Champaign (United States)
Dongwei Shu, Nanyang Technological University (Singapore)
Gangbing Song, University of Houston (United States)
Ji Su, NASA Langley Research Center (United States)
Liyong Tong, The University of Sydney (Australia)
Vijay K. Varadan, University of Arkansas (United States)
Zhishen Wu, Ibaraki University (Japan)
Yongming Xing, Inner Mongolia University of Technology (China)
Binshi Xu, National Laboratory of Surface Engineering of Materials (China)
Huibin Xu, Beijing University of Aeronautics and Astronautics (China)
Lin Ye, The University of Sydney (Australia)
Sung Ho Yoon, Kumoh National Institute of Technology (Korea, Republic of)
Lin Zhang, Aston University (United Kingdom)
Xinmin Zhang, National High-tech R&D Program, Ministry of Science and Technology of China (China)
Weihong Zhong, Washington State University (United States)
Zheng Zhong, Tongji University (China)
Gang Zhou, Loughborough University (United Kingdom)
Limin Zhou, The Hong Kong Polytechnic University (Hong Kong, China)
Yichun Zhou, Xiangtan University (China)
David Zimcik, NRC Institute for Aerospace Research (Canada)
Session Chairs

1. Modeling and Simulations of Smart Materials and Structures
 Yinong Liu, The University of Western Australia (Australia)
 Yongtao Yao, Harbin Institute of Technology (China)

2. Magnetic Materials
 Haibao Lu, Harbin Institute of Technology (China)
 Zhichun Zhang, Harbin Institute of Technology (China)

3. Nanotechnology for Energy Harvesting, Conversion and Storage
 Liwu Liu, Harbin Institute of Technology (China)
 Dagang Wang, Shenzhen University (China)

4. Acoustic Metamaterials I
 Xiaoming Zhou, Beijing Institute of Technology (China)
 Junyi Cao, Xi’an Jiaotong University (China)

5. Thermo-Mechanical Behavior of NiTi Shape Memory Alloy
 Guozheng Kang, Southwest Jiaotong University (China)
 Wenyi Yan, Monash University (Australia)

6. Applications of Electroactive Polymers
 Kean C. Aw, The University of Auckland (New Zealand)

7. Engineered Multifunctional Nanocomposites (I)
 Zhanhu Guo, Lamar University (United States)
 Dapeng Cao, Beijing University of Technology (China)

8. Nanomaterials and Nanotechnologies for Energy Harvesting and Storage (I)
 Haitao Huang, The Hong Kong Polytechnic University (Hong Kong, China)
 Y. B. Zhang, The University of New South Wales (Australia)

9. Damping Enhancement Using Smart and Nano Materials (I)
 Jae-Hung Han, Korea Advanced Institute of Science and Technology (Korea, Republic of)
 Jianzhi Li, Shijiazhuang Tiedao University (China)

10. Nano-Composite (I)
 Xuchuan Jiang, University of New South Wales (Australia)
 Xinghua Xie, Anhui University of Science and Technology (China)

11. Analysis and Modeling
 Ayech Benjeddou, Institut Supérieur de Mécanique de Paris (France)
<table>
<thead>
<tr>
<th>Section</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Engineered Multifunctional Nanocomposites (II)</td>
<td>Zhanhu Guo, Lamar University (United States)</td>
</tr>
<tr>
<td>13 Nanomaterials and Nanotechnologies for Energy Harvesting and Storage (II)</td>
<td>Huiqing Fan, Northwestern Polytechnical University (China)</td>
</tr>
<tr>
<td></td>
<td>Haitao Huang, The Hong Kong Polytechnic University (Hong Kong, China)</td>
</tr>
<tr>
<td>14 Damping Enhancement Using Smart and Nano Materials (II)</td>
<td>Jae-Hung Han, Korea Advanced Institute of Science and Technology (Korea, Republic of)</td>
</tr>
<tr>
<td></td>
<td>Jianzhi Li, Shijiazhuang Tiedao University (China)</td>
</tr>
<tr>
<td>15 Nano-Composite (II)</td>
<td>Xuchuan Jiang, University of New South Wales (Australia)</td>
</tr>
<tr>
<td></td>
<td>Xinghua Xie, Anhui University of Science and Technology (China)</td>
</tr>
<tr>
<td>16 Shape-Memory Polymers</td>
<td>Andreas Lendlein, Helmholtz-Zentrum Geesthacht (Germany)</td>
</tr>
<tr>
<td>17 Smart Sensor Applications in Structural Health Monitoring</td>
<td>C. S. Shin, National Taiwan University (Taiwan, China)</td>
</tr>
<tr>
<td>18 Nanomaterials for Bioengineering</td>
<td>Kazuo Umemura, Tokyo University of Science (Japan)</td>
</tr>
<tr>
<td>19 Nanomaterials Synthesis and Characterization (I)</td>
<td>Xueqing Xu, Guangzhou Institute of Energy Conversion (China)</td>
</tr>
<tr>
<td></td>
<td>Sung Ho Yoon, Kumoh National Institute of Technology (Korea, Republic of)</td>
</tr>
<tr>
<td>20 Nanomaterial Application</td>
<td>Horst Baier, Technische Universität München (Germany)</td>
</tr>
<tr>
<td></td>
<td>Do Sung Huh, Inje University (Korea, Republic of)</td>
</tr>
<tr>
<td>21 Functional Materials (I)</td>
<td>Guojie Wang, University of Science and Technology Beijing (China)</td>
</tr>
<tr>
<td></td>
<td>Shaoxing Qu, Zhejiang University (China)</td>
</tr>
<tr>
<td>22 Membranes and Elastomers</td>
<td>Zhongyang Cheng, Auburn University (United States)</td>
</tr>
<tr>
<td></td>
<td>Zhanjie Wang, Chinese Academy of Sciences (China)</td>
</tr>
<tr>
<td>23 Nanotechnology in Civil Engineering Materials</td>
<td>Xianming Shi, Montana State University (United States)</td>
</tr>
</tbody>
</table>
24 Nanomaterials Synthesis and Characterization (II)
Sung Ho Yoon, Kumoh National Institute of Technology (Korea, Republic of)
Xueqing Xu, Guangzhou Institute of Energy Conversion (China)

25 Smart Materials Applications (I)
Georges Akhras, Royal Military College of Canada (Canada)
Xiangli Zhong, Xiangtan University (China)

26 Functional Materials (II)
Shaoxing Qu, Zhejiang University (China)
Guojie Wang, University of Science and Technology Beijing (China)

27 Actuators and Sensors (I)
Quan Li, Kent State University (United States)
Yongping Wan, Tongji University (China)

28 Photo-luminescent, Electro-luminescent and Phosphorescent Materials
David H. Wang, Air Force Research Laboratory (United States)
Jiguang Li, Northeastern University (China)

29 Micro- and Nano-Electro-Mechanical Systems (MEMS & NEMS)
Hejun Du, Nanyang Technological University (Singapore)
Chengjun Qiu, Heilongjiang University (China)

30 Smart Materials Applications (II)
Xiangli Zhong, Xiangtan University (China)
Georges Akhras, Royal Military College of Canada (Canada)

31 Electroactive Polymers and Their Applications
Chunye Xu, University of Science and Technology of China (China)
Wei Chen, Suzhou Institute of Nano-technology and Nano-bionics (China)

32 Actuators and Sensors (II)
Yongping Wan, Tongji University (China)
Quan Li, Kent State University (United States)
Introduction

The Third International Conference on Smart Materials and Nanotechnology was successfully held 5–8 December in Shenzhen. This unique conference offered many opportunities to communicate with colleagues from a variety of disciplines in universities, companies, factories, and governments from all over the world. As a premier event, this conference promised great excitement, inspiration, and benefits. The conference is the first in what we hope will be a series that encompasses and bridges the rapidly evolving smart materials and the cutting edge nanotechnology for varied applications.

In the last decade, a wide range of novel smart materials have been produced for aerospace, transportation, telecommunications, and domestic applications. Meanwhile, nanotechnology is rapidly developing, permitting control of matter at the level of atoms and molecules that would form the building blocks of smart materials. Thus the combination of these two fields provides many advantages, realizes novel designs that could not be achieved in traditional engineering, and offers greater opportunities as well as challenges.

The conference deals with the integration of smart materials and nanotechnology for applications ranging from bioengineering to photonics, with emphasis on the application in aerospace engineering. It also addresses and predicts novel developments in this field. Discussed were various topics including shape-memory alloys and polymers; electro-active polymers; (EAPs); piezomaterials; electro- and magneto-restrictive materials and fluids; fiber optic sensors; MEMS; sensors and actuators; thermo-electric materials; electro-chromic, photo-chromic, fluorescent, and phosphorescent materials; nanocomposites, and others.

We received about 450 abstracts in response to the call for submissions. Of these we invited authors of 260 abstracts to submit full papers. Eight plenary speakers and 32 keynote speakers were selected to inform and inspire the attendees. A total of 160 papers were presented in 32 oral sessions and 100 papers were presented in poster session.

We would like to take this opportunity to thank the organizing committee, the cooperating organizations, the international scientific committee and every attendee whose support, dedication, and cooperation make this event more exciting, inspiring, and fruitful. This SPIE volume would not have been possible without the support of many colleagues. First and foremost, we wish to express our appreciation for SPIE staff for giving us the opportunity to organize the proceedings with SPIE. Next we thank the reviewers who spent hours reviewing papers in the editorial process.
We hope all the participants benefited from this conference and it should be very interesting to see how the smart materials and nanotechnology field will be further developed at the Fourth International Conference on Smart Materials and Nanotechnology in Engineering in 2013.

Honorary Chair
Shanyi Du
Harbin Institute of Technology (China)

Honorary Chair
Ken P. Chong
National Institute of Standards and Technology (United States)

Chair
Jinsong Leng
Harbin Institute of Technology (China)
Experimental evaluation of the durability of innovative cementitious coatings: photocatalytic activity and colour

Alaimo G.a, Enea D.a, Guerrini G. L.b, Bottalico L.c

aUniversity of Palermo - Department of Architecture, Viale delle Scienze - 90128, Palermo, Italy
bItalcementi S.p.A. – Italcementi Group, Via Marconi 1 – 24010 Petosino, Italy
cC.T.G. S.p.A. - Italcementi Group, Via Camozzi, 124 – 24121 Bergamo, Italy

ABSTRACT

Today, in a world context characterized by high pollution levels and increasingly limited natural resources, even in the building sector, focusing on environmental issues, through energy saving and a more rational use of these resources, both during construction and management, is fundamental. An important contribution in this direction is given by the knowledge of the durability of products and building components, especially when innovative products are applied and no information are available on the reliability and service life. The research concerns the evaluation of the durability of cement-based photocatalytic coatings (“rasanti” in the Italian diction), containing different types of pigments, used for the external finishing of the buildings envelope and applied in low thicknesses on different supports. These products were prepared using photocatalytic cements by Italcementi (TX Active®) The investigated aspects are: the photocatalytic properties, conferring self-cleaning attitude and reduced maintenance to the treated surfaces, and the colorimetric ones, meaning the conservation of colour and giving aesthetic quality to the building envelope. The paper presents some results carried out on TX Active® cement-based coatings, performed according to the ISO 15686 methodology, aimed at defining the Reference Service Life, through accelerated ageing tests in climatic chamber and the corresponding monitoring of photocatalytic and colorimetric properties. The photocatalytic tests were carried out according to the UNI 11247-2010, in terms of NOx abatement capability, and the colour measurements were taken on the CIELAB colour space.

Keywords: Sustainability, durability, photocatalysis, cementitious coatings, color.

1. INTRODUCTION

Recent studies and several applications confirm that photocatalytic products can provide a contribution to the solution of environmental issues, in a context of sustainable development.

Innovative technologies based on photo-active nanomaterials ensure a considerable reduction of harmful substances in the various areas of application: reduction of air pollutants, water and air purification1, 2, 3, 4. These materials, nanometer and/or micrometer-sized semiconductors, available on a large scale and at low cost, base their efficiency on the absorption of UV light energy, resulting in oxidation of harmful substances.

Within the solid semiconductors, the most efficient for applications in the construction industry is titanium dioxide (TiO\textsubscript{2}) due to its wide availability on the market, its high photo-activity, photo-stability and low cost.

Surface coatings’ experimental research led to the definition of products with distinct capability of air pollutants, organic and inorganic reduction and self-cleaning properties.

The application of these products, recently introduced in the market, requires special attention for issues related to durability, particularly according to the Regulation No 305/2011 of the European Parliament, laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC5. The Regulation increases the sustainability aspects of the basic requirements and introduces a new requirement, the seventh, called "Sustainable use of natural resources" which requires, among other aspects, the durability of constructions.
The knowledge of the durability of building products and components, especially for innovative products, for which there is no historical information on the reliability and service life, becomes, therefore, essential.

2. RESEARCH METHODOLOGY AND TESTED MATERIALS

The methodological approach, described by the ISO 15686 "Service Life Planning" and used in this study, provides a comparison of data derived by accelerated aging tests inside climatic chamber and tests of natural aging, in order to derive useful correlations to determine the durability of the materials tested.

Cement-based finishing plasters, rasanti in the Italian diction, with photo-catalytic properties. Tested plasters used were added with three different inorganic pigments - black, yellow and salmon - (Fig. 1), in two formulations, different only in the presence of the photocatalytic principle, i.e. the TX Active® cement dispersed in the matrix.

Figure 1. The three different color samples

The aim of the research, therefore, was to evaluate the behaviour in time of photocatalytic activity, through the standardized procedure described by the UNI 11247, in the Italcementi laboratories of Brindisi, and colorimetric characteristics through colorimetric coordinates measurements, in accordance with the procedures of the UNI 8941.

Premixed plasters were applied on a brick support whose thickness was equal to 1 cm and dimensions were 23 x 30 cm, after the drafting of a 15 mm thickness plaster, natural hydraulic lime based. The thickness applied of decorative plaster, in accordance with the data sheets of products, was equal to 2-3 mm. According to the minimum dimensions required by the UNI 11247, from each 23 x 30 cm sample were obtained six 8 x 8 cm test units (Fig. 2), through dry cutting of the sample.

Figure 2. The schematic drawing of the test units taken on the sample
The samples were coated with a cementitious waterproofing adhesive, 1 cm width all along the edge of the test surface, on the sides throughout the thickness of the sample and on the back over the entire surface of the brick. Overall, 36 test samples were made, 24 of which were set in the climatic chamber and 12 set outdoors on the terrace of the Faculty of Engineering, exposed to the South orientation, with an inclination of 65° from the horizontal (Fig. 3).

![Figure 3. The samples exposed outdoors on the terrace of building 8 of the Faculty of Engineering](image)

3. ACCELERATED AGING OF SAMPLES

The aging cycle was developed considering the weather and climate context of Palermo, characterized by very hot summers and mild winters, as well as the studies carried out by the Italian Durability Group, for over 15 years, in order to obtain a close representation of the alternation of the seasons (Table 1).

<table>
<thead>
<tr>
<th>PHASE A</th>
<th>Actual cycle (Minutes)</th>
<th>Temperature (°C)</th>
<th>Relative Humidity (%)</th>
<th>Theoretic cycle (Minutes)</th>
<th>Duration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain (autumn season)</td>
<td>75</td>
<td>20</td>
<td>95</td>
<td>75</td>
<td>30</td>
</tr>
<tr>
<td>Transition</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold (winter season)</td>
<td>32</td>
<td>2</td>
<td>50</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>Transition</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot-humid (spring season)</td>
<td>107</td>
<td>35</td>
<td>87</td>
<td>115</td>
<td>40</td>
</tr>
<tr>
<td>Transition</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot-dry (summer season)</td>
<td>64</td>
<td>70</td>
<td>56</td>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>300</td>
<td></td>
<td></td>
<td>300</td>
<td>100</td>
</tr>
</tbody>
</table>

PHASE B

| Hot-humid + UV radiation | 120 | 35 | 87 | 120 | |

Each step of accelerated aging was set by the repetition for 48 times of the two phases, A and B, alternating 24 repetitions of the two stages for a total of 336 hours (14 days).

- phase A, 300 min long = 5 h x 24 repetitions = 120 h = 5 d
- phase B, 120 min long = 2 h x 24 repetitions = 48 h = 2 d
- phase A, 300 min long = 5 h x 24 repetitions = 120 h = 5 d
- phase B, 120 min long = 2 h x 24 repetitions = 48 h = 2 d

Total step of accelerated aging = 14 d
The research foresaw the evaluation of the chosen parameters after each step until the completion of the 6th step, being 2016 hours (84 days) of total duration of the accelerated aging period. For each step of the research, a couple of 8 x 8 cm test units were sampled from each 23 x 30 cm sample to evaluate the photocatalytic activity.

4. ANALYSIS AND INTERPRETATION OF EXPERIMENTAL RESULTS

At the end of each step of accelerated aging, the two parameters measured were: photocatalytic activity and color.

4.1 Photocatalytic activity

The evaluation of photocatalytic activity, through the procedure described by the UNI 11247, in continuous mode, was carried on for the entire test units, both those added with the photocatalytic principle and those without. The results available show at time-zero, before setting into the climatic chamber, high photocatalytic activity detected by the dimensionless parameter A_c representing the percentage of nitrogen oxides reduction after 30 minutes by the UV lamp on.

$$A_c = 100\times \frac{(C_B - C_L) \times I_n \times S_n}{C_B \times I \times S} \quad \text{[%]}$$

Where:
- C_B = measured concentration of NOx with UV lamp off [ppb]
- C_L = measured concentration of NOx with UV lamp on [ppb]
- I_n = measured Irradiance [W mq$^{-1}$]
- I = nominal Irradiance [20 W mq$^{-1}$]
- S_n = measured area of the sample [cm2]
- S = nominal area of the sample [64 cm2]

The medium value of the percentage of NOx reduction for the white samples was equal to 40%, for the yellow ones was equal to 32% and for the salmon ones was equal to 18%.

The graph in Fig. 4 reports the values of the photocatalytic activity at time-zero and after six steps of artificial ageing test of the photocatalytic plaster. The results show a good photocatalytic activity up to the third step, equal to about 150 cycles of accelerated aging. Beyond this limit the performance of the products decreases significantly. The white samples, despite an excellent initial value, were those who suffer a faster decrease of the NOx reduction. It is evident that the salmon samples maintain a more uniform value in time, up to the third step of accelerated aging, where the best value is measured among the three different colored samples.

![Photocatalytic plasters](image)

Figure 4. The evolution of photocatalytic activity in terms of nitrogen oxides reduction, after six steps of accelerated aging.
The capability to develop photocatalytic activity by samples free from photocatalytic principle was negligible, therefore the capability to reduce nitrogen oxides depends exclusively on the presence of the photocatalytic principle.

4.2 Color

Colorimetric coordinates measured in the color space L*a*b* (well-known as CIELAB)\(^{11}\), through the use of a spectrophotometer and a colorimeter, showed significant changes since the first step of aging, more evident for the non photocatalytic samples than the photocatalytic ones. Using the coordinate colorimetric and brightness measurements, the more significant colorimetric parameters were calculated: the color difference \(\Delta E^{*}\) and the chroma difference \(\Delta C^{*}\), representative of the aging process of color on the surface of the samples. Particularly, the color difference \(\Delta E^{*}\) represents in the three-dimensional CIELAB color space, the measure of the distance between two points, expressed by a positive number, using the following formula:

\[
\Delta E^{*}_{ab} = \sqrt{(\Delta L^{*2} + \Delta a^{*2} + \Delta b^{*2})}
\]

The chroma difference \(\Delta C^{*}\) represents the measure of the difference of the intensity of a color and chroma is also known as saturation. The chroma difference can be represented in the two-dimensional chromaticity diagram, a* in the x-axis and b* in the y-axis. The measure of the radial distance between two points is expressed by a positive or negative number, depending on the point 1 if it has a radial distance higher or lower than the point 2, meaning the color of point 1 is more brilliant than the color of point 2. The following formula is used to measure the chroma difference:

\[
\Delta C^{*}_{ab} = \sqrt{a_{1}^{*2} + b_{1}^{*2}} - \sqrt{a_{2}^{*2} + b_{2}^{*2}}
\]

In the graph of Fig. 5 the results of the monitoring of color difference for both samples, photocatalytic and not, are reported, after six steps of aging, taking as reference the color at time-zero, equal for all samples of the same color, with or without the photocatalytic principle.

![Figure 5](image)

Figure 5. The evolution of the color difference of the photocatalytic (P) and not photocatalytic samples in terms of \(\Delta E^{*}\)

The photocatalytic plaster samples showed a tendency towards color variation that is about 2 points average lower than non-photocatalytic ones, demonstrating a greater capacity to keep the color over time.

The color difference had an almost linear trend up to 2nd step of aging, remaining fairly constant until the 6th step (up to 4.5 points for photocatalytic samples and 7.3 points for non photocatalytic ones), for both the two different types
The salmon-colored samples tended to better maintain the color over time, compared to yellow and white ones.

In general, the white photocatalytic plaster underwent, during the six steps, the greatest change in color, with ΔE*ab values always greater than those of the other colors. Values were lower for the white non photocatalytic plaster until the third step and then passing through the other colors.

The chromaticity diagrams, a*-b*, showed a tendency to the b* increasing for both the photocatalytic yellow samples, in Fig 6, and non photocatalytic, in Fig 7, with progressive increase of the coordinate b* in the positive y-axis.

The tendency to the b* increasing (yellowing) is higher in samples characterized by the absence of the photocatalytic principle for which the increase of the coordinate b* reached the value of 32, after six steps of aging, while the photocatalytic ones showed the b* value equal to 28.

Similar results were observed for the white and salmon samples.

For the white samples, the tendency to yellowing is greater in those without the photocatalytic principle, the increase of b* reached the value of 13, while the photocatalytic ones showed the b* value of 11.

For samples of salmon color, the increase of b* reached the value of 24 for non-photocatalytic ones and 23 for the others.

The diagrams correlating the chroma difference, ΔC*ab, and the lightness difference, ΔL*, are useful to estimate the evolution of color in terms of visual perception, as they provide qualitative information easy to understand.

The chroma-lightness diagrams Figs. 8-9, relative to white samples, showed ΔC*ab and ΔL* values higher of around 1 point, in favor of non-photocatalytic samples.

The photocatalytic samples had a lower tendency to become greyish than non-photocatalytic ones.

For the yellow samples, compared to non-aged sample, at T0, the chroma difference is almost the same for both types of samples, with values around -5 to -6, while a significant difference is related to the lightness difference: for photocatalytic samples was approximately -3, while for non-photocatalytic ones was about -6.

The photocatalytic samples showed, therefore, a tendency to become darker lower than non-photocatalytic ones.

The salmon-colored samples show very close final values for the chroma difference, around -1, while the photocatalytic samples showed lightness greater than 1 point, at the end of the six cycles of accelerated aging.
4.2.1 Color monitoring of the naturally aged samples

The samples set outdoors underwent the weather conditions of Palermo, the data refer to a period of 12 months of outdoor exposure, since November 2010. Fig. 10 shows the monitoring of the color difference for both the tested samples.

From these results, an initial increase of the color difference on exposure during the winter months (November-January) was experienced, the higher for the non photocatalytic colored plaster (salmon and yellow) and similar for both the white ones. In the following months, it was observed the maintenance of the values for photocatalytic yellow and salmon samples, while for the white samples, the color difference increased, reaching values close to 8 points, after 12 months of natural aging. The salmon-colored samples were the most efficient in maintaining of the color and the maximum color difference measured was equal to 2.73 points for photocatalytic plaster and 3.81 for non-photocatalytic one. The procedure of time rescaling, as codified in the ISO 15686 and UNI 11156, is the comparison of the laboratory accelerated aging data with the measured data on the same materials naturally aged, in the reference climatic context. The comparative analysis of the colorimetric data of natural and accelerated aging allows to determine a time-rescaling factor as the evolution of color is the same after 12 months as one step of accelerated aging, equal to 48 cycles for the salmon samples and the yellow ones. Similar evolution was registered for the other samples. The results show that after 12 months of natural aging color variations were different depending on the pigment and the presence of the photocatalytic principle. The results of photocatalytic activity of samples derived from the external monitoring are not yet available, so the time rescaling is related only to the color and not to the photocatalytic activity.
4. CONCLUSIONS

The photocatalytic activity of plaster samples is very high at time-zero, gradually reducing and maintaining significant values up to the 3rd step, which corresponds to 150 cycles of accelerated aging, beyond which there is a loss of efficiency. The white color stands out, despite of its initial highest value, it shows the faster decrease.

The salmon plaster remains quite uniform over time up to the 3rd step of aging when it reaches the highest value in comparison to the other colored plasters.

The photocatalytic plaster, at the same aging, undergoes color changes of about 2 points average lower than non-photocatalytic one of the same color, demonstrating a greater capability to maintain the color over time.

Also for maintaining the color, the salmon samples maintain higher efficiency, compared with the yellow and white ones.

The time rescaling procedure, related only to color attitude, shows that 12 months of natural aging produce different color variations depending on the pigment and the presence of the photocatalytic principle and on average, one step of accelerated aging corresponds to 12 months of natural aging.

The photocatalytic darker plasters (salmon and yellow) develop more constant photocatalytic activity in time and keep the color better than the white one, more subject to phenomena of yellowing.

In general, for the same composition, the presence of the photocatalytic principle increases the durability of the color of the plaster. Durability is greater for darker colors.

ACKNOWLEDGEMENTS

This work was supported by Hydratite S.r.l. of Palermo for supplying materials and samples of the research and Cascino S.r.l. of Termini Imerese for supplying waterproofing adhesive materials.

REFERENCES

