
Limit and shakedown analyses by Symmetric Boundary Element 
Method 

Filippo Cucco1, Silvio Terravecchia2, Liborio Zito2 

1Facoltà di Ingegneria e Architettura, Università Kore di Enna, Italia 
E-mail: filippo.cucco@unikore.it 
2 Dipartimento di Ingegneria civile, ambientale, aerospaziale, dei materiali, Università 
di Palermo, Italia 
E-mail: silvioterravecchia@gmail.com, zitoliborio@tiscali.it 
 
Keywords:  SBEM, Shakedown, Convex optimization. 
 
SUMMARY. A reformulation of the static approach to evaluate directly the shakedown and limit 
multipliers by using the Symmetric Boundary Element Method for multidomain type problems 
[1,2] is shown. The present formulation utilizes the self-equilibrium stress equation [3-5] 
connecting the stresses at the Gauss points of each substructure (bem-e) to plastic strains through a 
stiffness matrix (self stress matrix) involving all the bem-elements in the discretized system. The 
numerical method proposed is a direct approach because it permits to evaluate the multiplier 
directly as lower bound through the static approach. The analysis has been performed as a 
costrained optimization problem, solved through mathematical programming methods. In this 
approach the optimization problem has been rephrased in the canonic form of a Convex 
Optimization, in terms of discrete variables, and implemented by using Karnak.sbem code [6] 
coupled with the MatLab. 

1 SHAKEDOWN ANALYSIS VIA SBEM AND CONVEX OPTIMIZATION 
The multidomain Symmetric Boundary Element Method (SBEM), developed by some authors 

[1,2], is utilized to riformulate the static shakedown theorem [3,4], which represents a powerful 
tool for providing directly, by means of mathematical programming techniques, the safety 
condition of a structure. The proposed strategy uses the self-equilibrium stress equation [3,5] to 
define the self-equilibrium stress field employed in the classical shakedown approach. This 
equation connects stresses, computed at each bem-e Gauss point, to plastic strains through an 
influence matrix (self-stress matrix).  

Then the shakedown multiplier is obtained as a constrained optimization problem within the 
canonical form of a Convex Optimization (CO) in terms of discrete variables. 

1.1 Self-equilibrium stress equation via multidomain SBEM  
The proposed strategy uses the stress equation [5], obtained by means of a displacement 

approach of the SBEM, to define the self-equilibrium stress field =σ Zpp . Indeed, the following 
equation: 

 ˆ= +βσ Zp σe   (1) 

provides the stress at the strain points of each bem-e as a function of the volumetric plastic strain 
p  and of the external actions σ̂e , the latter amplified by β . The matrix Z , defined as the self-

stress influence matrix of the assembled system, is a square matrix having 3mx3m dimensions, 



with m bem-elements, fully-populated, non-symmetric and semi-definite negative. The evaluation 
of this matrix only involves the knowledge of the material elastic characteristics and of the 
structure geometry within a discretization process. 

The reader can refer to Zito et al. [5] for a more detailed discussion of the characteristics of this 
equation introduced for a multidomain SBEM problem. 

1.2 Shakedown analysis as a CO problem 
In order to evaluate the shakedown multiplier directly, the classic shakedown approach was 

rephrased by means of SBEM for multidomain type problems. In the hypothesis of a von Mises 
yield function, which is a convex quadratic function, the static theorem leads to a numerical 
optimization problem of a linear objective function subjected to linear and quadratic constraints. 
Therefore the analysis was developed by solving a constrained nonlinear optimization problem 
using known mathematical programming methods. 

The present formulation couples a multidomain SBEM procedure with nonlinear optimization 
techniques through the introduction of the self-equilibrium stress field, defined in eq.(1). 

According to the shakedown theorem, the safety condition for the structure is guaranteed by a 
stress state satisfying the yield condition, the latter rephrased in terms of discrete variables, i.e.: 

 [ ] 0≤σiF  (2) 

with i = 1....v  the basic load and  

 ˆ= +σ σ σe p
i i   (3) 

representing the total stress as the sum of the elastic stress vector σ̂e
i , due to external actions, and 

the self-equilibrium stress vector σ p .  
The classical static approach makes it possible to obtain the shakedown factor shβ  as the 

maximum of the shakedown factors β  for which the structure does not fail: 
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Since the self-equilibrium stress vector σ p  is a function of the volumetric plastic strain vector 
p , through the following relation: 

 =σ Z pp   (5) 

the optimization problem can be written as follows: 
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or in explicit form: 
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where m is the bem-e number. 
In the hypothesis of the von Mises yield law, the present approach allows one to write the 

problem through the optimization of an objective linear function subjected to quadratic constraints 
only: 
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where M  is a constants matrix and σiy  the uniaxial yield stress. 
In order to solve the previous problem, the general form of a CO problem was rewritten as 

follows: 
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where B  is a symmetric positive matrix and y  is the unknown quantity vector. 
The canonical form (9) is obtained by collecting in the B  matrix  the constant terms of eq.(8), 

i.e. for the j-th bem-e: 
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and in compact form: 

 1 0= − ≤y B yT
ij ijF   (11) 

The shakedown problem can be rewritten as follows: 
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where the vector 1 0 0−=cT  has been introduced. 
Problem (6), in the form (12), was implemented by coupling the Karnak.sbem code [6] with a 

Matlab 7.6.0 optimization toolbox.  
In this procedure, using multidomain SBEM, it was also possible to reduce the size of the 

problem. Indeed, since this method introduces a domain discretization exclusively in the zones of 
potential store of the plastic strains, the remaining part of the structure can be considered as made 
up of elastic macroelements, and therefore governed by few boundary variables. This aspect 
makes the strategy proposed computationally advantageous. 

2 CONCLUSIONS 
A new strategy utilizing the Multidomain SBEM for rapidly performing shakedown analysis as 

a convex optimization problem has been shown. The present multidomain approach, called 
displacement method [1], makes it possible to consider step-wise physically non-homogeneous 
materials and obtains a self-equilibrium stress equation regarding all the bem-elements of the 
structure. It provides a nonlinear optimization problem solved as a CO problem. Furthermore, the 
strategy  makes it possible to introduce a domain discretization exclusively in the zones involved 
by plastic strain storage, leaving the rest of the structure as elastic macroelements, thus governed 
by few boundary variables. It limits considerably the number of variables in the nonlinear analysis 
and makes the proposed strategy extremely advantageous. The procedure is implemented within 
the Karnak.sbem code, coupled with optimization toolbox Matlab 7.6.0. 
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