Relapsing or refractory idiopathic thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: the role of rituximab

Domenica Caramazza, Gerlando Quintini, Ignazio Abbene, Alessandra Malato, Giorgia Saccullo, Lucio Lo Coco, Rosa Di Trapani, Roberto Palazzolo, Rita Barone, Giuseppina Mazzola, Sergio Rizzo, Paolo Ragonese, Paolo Aridon, Vincenzo Abbadessa, and Sergio Siragusa

Idiopathic thrombotic thrombocytopenic purpura–hemolytic uremic syndrome (TTP-HUS) is a rare disease responsive to treatment with plasma exchange (PE) but with a high percentage of relapse or refractory patients. A severe deficiency of ADAMTS-13 (<5% of normal activity), congenital or caused by an autoantibody, may be specific for TTP and it has been proposed that severe ADAMTS-13 deficiency now defines TTP. B cells play a key role in both the development and the perpetuation of autoimmunity, suggesting that B-cell depletion could be a valuable treatment approach for patients with idiopathic TTP-HUS. This review of the literature focuses on the role of rituximab, a chimeric monoclonal antibody directed against CD20 antigen expressed by B lymphocytes, in patients with relapsing or refractory TTP-HUS with or without ADAMTS-13 deficiency, suggesting that rituximab may produce clinical remission in a significant proportion of patients. Rituximab therapy reduces plasma requirement and avoids complications related to salvage-immunosuppressive therapy. In conclusion, rituximab provides an effective, well-tolerated, and safe treatment option for patients with idiopathic TTP-HUS, thus giving an alternative approach to the current treatment based on PE.

Thrombotic thrombocytopenic purpura (TTP) is a rare disorder characterized by thrombocytopenia, microangiopathic hemolytic anemia, neurologic and renal abnormalities, and fever; however, since the above-reported diagnostic criteria do not distinguish TTP from hemolytic uremic syndrome (HUS), the comprehensive term TTP-HUS has been found to be more suitable.1 In the absence of treatment the mortality rate is approximately 90% but decreases to 10% or less when immediate plasma exchange (PE) is initiated.2-8 Because of its dramatic effect on short- and long-term outcome, it is now suggested to begin PE even when all the above criteria, in absence of alternative diagnosis, are not fulfilled.2,3,5,8-10 The evident advantage of early initiation of therapy along with the decreased diagnostic threshold has resulted in a sevenfold increase of patients treated with PE for TTP-HUS from 1981 to 1997.11

TTP symptoms are related to the presence of von Willebrand factor (VWF)-rich platelet (PLT) thrombi in arterioles and capillaries. VWF is a multimeric plasma glycoprotein crucial for both PLT adhesion and aggregation, especially at the high shear rates in the

ABBREVIATIONS: HUS = hemolytic uremic syndrome; PE = plasma exchange; TTP = thrombotic thrombocytopenic purpura.

Address reprint requests to: Sergio Siragusa, MD, Cattedra ed U.O. di Ematologia con trapianto, Azienda Ospedaliera Universitaria Policlinico “Paolo Giaccone” di Palermo, Via del Vespro 127, I-90127 Palermo, Italy; e-mail: sergio.siragusa@unipa.it.

Received for publication February 20, 2010; revision received May 4, 2010, and accepted May 7, 2010.
doi: 10.1111/j.1537-2995.2010.02763.x

TRANSFUSION **:**:**:** **:** **
microvasculature. The size of VWF multimers is physiologically regulated in vivo by a specific metalloprotease called ADAMTS-13 (a disintegrin-like and metalloprotease with thrombospondin Type 1 repeats). A severe deficiency of ADAMTS-13 (<5% of normal activity) may be specific for TTP and it has been proposed that severe ADAMTS-13 deficiency now defines TTP. ADAMTS-13 deficiency, caused by an autoantibody, provides a possible explanation for the effectiveness of PE (removal of the autoantibody by apheresis; supply of ADAMTS-13 by plasma replacement). Although its measurements have been suggested to guide treatment decisions, at the present it is not possible to establish the sensitivity of ADAMTS-13 deficiency for identifying patients who may respond or not to PE. Therapy with PE should be implemented in all patients with TTP and continued until resolution of signs and/or symptoms and normalization of laboratory tests; this can require long-term therapy. However, approximately 10% to 20% of TTP-HUS patients show lack of response; in those refractory patients, different types of immunosuppressive treatment have been proposed but unsuccessfully, including steroids or immunosuppressive or immunomodulating agents. It has been reported that splenectomy may induce a remission rate of 50% to 100% in refractory or relapsing TTP patients, but some authors reported a high rate of relapses mainly in those patients with severe ADAMTS-13 deficiency. Such findings were not confirmed by others who reported few relapses in a large cohort of TTP patients undergoing splenectomy.

Rituximab, a chimeric monoclonal antibody directed against the CD20 antigen present on B lymphocytes, is used in lymphoma patients and those with rheumatoid arthritis. Its action relies on clearance of B lymphocytes responsible for antibody production by complement-dependent cytotoxicity, antibody-dependent cellular cytotoxicity, or directly by inducing apoptosis. The presence of ADAMTS-13 antibody-mediated deficiency makes rituximab an ideal drug in TTP-HUS, especially in those patients who are refractory to PE therapy. Although high promisingly, case series only have reported efficacy and safety of this anti-CD20 in TTP-HUS patients, thus leaving unresolved questions regarding target population, timing of initiation, duration of treatment, and usefulness of concomitant PE. This review examines the evidence base supporting the use of rituximab in the treatment of refractory or relapsed TTP.

MATERIALS AND METHODS

Data search

Information for this review was compiled by searching PubMed and Medline databases for articles published from October 2002 up to October 2009. Only articles published in English were considered. “Search” terms included “thrombocytopenic,” “thrombotic,” “purpura,” “ADAMTS 13,” “hemolytic,” “uremic,” and “syndrome” in association with “refractory,” “relapsing,” “plasma exchange,” “rituximab,” “monoclonal,” “anti-CD20,” and “antibody.” References were chosen based on the evidence of rituximab treatment in idiopathic refractory or relapsing TTP-HUS and on the chronologic order of reporting it in the literature.

Definition of outcomes

Remission was defined as sustained normal PLT count, absence of clinical manifestations of TTP, and cessation of PE. Refractory TTP was defined as failure to achieve either a normal PLT count after 7 days of PE or deterioration in clinical symptoms despite standard therapy during the first episode of TTP. Relapsing TTP was defined as deterioration of clinical and laboratory findings occurred after sustained remission.

REVIEW OF THE LITERATURE

A comprehensive list of article cited in this review is published in Table 1. The earliest report about acute refractory TTP treated successfully with rituximab involved two cases. Fankouri and coworkers conducted a prospective multicenter open-label study to test the efficacy of rituximab in the therapeutic or prophylactic treatment of 11 patients with TTP caused by the presence of inhibitory antibodies against ADAMTS-13. Six patients with an episode of acute refractory TTP and five patients with relapsing TTP and persistence of anti-ADAMTS-13 were treated. Target of treatment was to maintain ADAMTS-13 of more than 10%. Rituximab was given in courses of four weekly doses of 375 mg/m² and it led to clinical remission in all cases, decreasing to not detectable level antibodies to ADAMTS-13, and increasing ADAMTS-13 activity from 18% to 75%.

The largest case series involving a first episode of acute refractory and relapsing idiopathic TTP was published by Scully and coworkers. Twenty-five patients received rituximab in conjunction with PE because of progressive clinical disease or deterioration in laboratory variables, despite intensive standard therapy. In relapsing TTP, rituximab was started if antibody to ADAMTS-13 was demonstrated during previous episodes. On admission all patients received intravenous (IV) methylprednisolone daily for 3 days. In total, 14 cases have been reported that fulfilled the criteria of acute refractory TTP: 12 cases had ADAMTS-13 activity of less than 5%, one case had 12% enzyme activity, and one case had no measured baseline ADAMTS-13 activity but had normal ADAMTS-13 activity after 6 weeks of treatment elsewhere with PE and prednisolone. Thirteen patients had
TABLE I. Published studies on rituximab in patients with refractory or relapsing idiopathic TTP-HUS from October 2002 up to October 2009

<table>
<thead>
<tr>
<th>Reference</th>
<th>Number of patients</th>
<th>Age (years), range (median)</th>
<th>Sex</th>
<th>Refractory TTP-HUS/relapsing TTP-HUS</th>
<th>ADAMTS-13 activity <5% (n)</th>
<th>Therapy before rituximab</th>
<th>Therapy during rituximab</th>
<th>Time from diagnosis to rituximab</th>
<th>Rituximab doses, cycles (n)</th>
<th>Clinical remission</th>
<th>Follow-up (months), range (median)</th>
<th>Side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemnitz et al., 2002</td>
<td>2</td>
<td>37, 39</td>
<td>0/2</td>
<td>0/2</td>
<td>12</td>
<td>PE, Cs, V</td>
<td>PE, Cs, V</td>
<td>11-12 days</td>
<td>375 mg/m², 2-4</td>
<td>2</td>
<td>None</td>
<td>12, 2</td>
</tr>
<tr>
<td>Guttermann et al., 2002</td>
<td>3</td>
<td>40, 54, 62</td>
<td>0/3</td>
<td>0/3</td>
<td>2</td>
<td>PE, Cs, AZA, CMP,</td>
<td>PE</td>
<td>135-521 weeks</td>
<td>375 mg/m², 4-8</td>
<td>2, PR(1)</td>
<td>Mid</td>
<td>2, 23, 17</td>
</tr>
<tr>
<td>Safah et al., 2004</td>
<td>5</td>
<td>25-52 (37)</td>
<td>NA</td>
<td>50/5</td>
<td>NA</td>
<td>PE, Cs, V, S</td>
<td>NA</td>
<td>3½-23 months</td>
<td>375 mg/m², 4</td>
<td>4</td>
<td>Mid</td>
<td>9-13 (11)</td>
</tr>
<tr>
<td>Ahmad et al., 2004</td>
<td>4</td>
<td>53-61 (57)</td>
<td>0/4</td>
<td>3</td>
<td>PE, Cs, CMP, V,</td>
<td>PE, Cs, V, Pl</td>
<td>PE</td>
<td>45-90 days</td>
<td>375 mg/m², 2-4</td>
<td>4</td>
<td>None</td>
<td>6-14 (11)</td>
</tr>
<tr>
<td>Reddy et al., 2005</td>
<td>5</td>
<td>56-70 (37)</td>
<td>0/5</td>
<td>0</td>
<td>PE, S, V, A, AZA,</td>
<td>PE</td>
<td>PE</td>
<td>35-120 weeks</td>
<td>375 mg/m², 4</td>
<td>5</td>
<td>None</td>
<td>10-21 (NA)</td>
</tr>
<tr>
<td>Koulova et al., 2005</td>
<td>2</td>
<td>40, 45</td>
<td>2/0</td>
<td>20</td>
<td>NA</td>
<td>PE, Cs, S, V</td>
<td>PE</td>
<td>22, 60 weeks</td>
<td>375 mg/m², 4</td>
<td>1</td>
<td>None</td>
<td>5, 10</td>
</tr>
<tr>
<td>Mittward et al., 2005</td>
<td>1</td>
<td>20</td>
<td>0/1</td>
<td>10</td>
<td>NA</td>
<td>PE, Cs</td>
<td>PE</td>
<td>18 days</td>
<td>375 mg/m², 1</td>
<td>1§</td>
<td>Mild</td>
<td>9</td>
</tr>
<tr>
<td>Scott and Schizophrenic, 2005</td>
<td>1</td>
<td>21</td>
<td>0/1</td>
<td>10</td>
<td>PE, Cs</td>
<td>PE</td>
<td>PE</td>
<td>39 days</td>
<td>340 mg/m², 4</td>
<td>1</td>
<td>None</td>
<td>5</td>
</tr>
<tr>
<td>Fankouri et al., 2005</td>
<td>11</td>
<td>21-60 (40)</td>
<td>6/5</td>
<td>6/5</td>
<td>4</td>
<td>PE, Cs, S, V, CSA, IVIG, R</td>
<td>CS, Pl</td>
<td>1-1460 weeks</td>
<td>375 mg/m², 4</td>
<td>11</td>
<td>Mid</td>
<td>1-9 (NA)</td>
</tr>
<tr>
<td>Yassa et al., 2005</td>
<td>1</td>
<td>36</td>
<td>0/1</td>
<td>1/0</td>
<td>NA</td>
<td>PE, Cs</td>
<td>NA</td>
<td>40 days</td>
<td>375 mg/m², 3</td>
<td>1</td>
<td>None</td>
<td>6</td>
</tr>
<tr>
<td>Darabi and Berg, 2006</td>
<td>2</td>
<td>39, 82</td>
<td>0/2</td>
<td>20</td>
<td>2</td>
<td>PE, Cs, V</td>
<td>PE, Cs, V</td>
<td>11-42 days</td>
<td>375 mg/m², 4</td>
<td>2</td>
<td>None</td>
<td>NA</td>
</tr>
<tr>
<td>Nieva et al., 2006</td>
<td>2</td>
<td>32, 69</td>
<td>0/2</td>
<td>20</td>
<td>1</td>
<td>PE, Cs</td>
<td>PE</td>
<td>105, 7 weeks</td>
<td>375 mg/m², 4, 2</td>
<td>2</td>
<td>PR(2)</td>
<td>None NA</td>
</tr>
<tr>
<td>Scully et al., 2006</td>
<td>25</td>
<td>23-67 (44)</td>
<td>6/19</td>
<td>14/11</td>
<td>16</td>
<td>PE, Cs, V</td>
<td>PE</td>
<td>At least 7 days</td>
<td>375 mg/m², 2-8</td>
<td>25</td>
<td>Mid</td>
<td>1-33 (10)</td>
</tr>
<tr>
<td>Heidel et al., 2007</td>
<td>8</td>
<td>21-77 (50)</td>
<td>1/7</td>
<td>3/5</td>
<td>0</td>
<td>PE, Cs, C, IVIG</td>
<td>PE, Cs</td>
<td>NA</td>
<td>375 mg/m², 2-8</td>
<td>8</td>
<td>Mid</td>
<td>2-51 (45.8)</td>
</tr>
<tr>
<td>Pelino and Sarode, 2007</td>
<td>2</td>
<td>14, 41</td>
<td>NA</td>
<td>9/2</td>
<td>0</td>
<td>PE, Cs</td>
<td>PE</td>
<td>208, 256 weeks</td>
<td>375 mg/m², 4</td>
<td>2</td>
<td>None</td>
<td>37, 21</td>
</tr>
<tr>
<td>Kamera et al., 2007</td>
<td>2</td>
<td>26, 38</td>
<td>0/2</td>
<td>20</td>
<td>0</td>
<td>PE, Cs, CSA</td>
<td>Cs</td>
<td>8, 3 weeks</td>
<td>375 mg/m², 2-1</td>
<td>1, PR(1)</td>
<td>None</td>
<td>5, 3</td>
</tr>
<tr>
<td>Rüfer et al., 2007</td>
<td>1</td>
<td>63</td>
<td>0/1</td>
<td>1/0</td>
<td>1</td>
<td>PE, Cs, Pl, V, S</td>
<td>PE, Cs, Pl</td>
<td>67 days</td>
<td>375 mg/m², 4</td>
<td>1</td>
<td>None</td>
<td>4</td>
</tr>
<tr>
<td>Chow et al., 2007</td>
<td>2</td>
<td>36, 80</td>
<td>1/1</td>
<td>20</td>
<td>NA</td>
<td>PE, V</td>
<td>PE, IVIG</td>
<td>23-55 days</td>
<td>375 mg/m², 1-2</td>
<td>2</td>
<td>None</td>
<td>16, 18</td>
</tr>
<tr>
<td>Jasti et al., 2008</td>
<td>12</td>
<td>36-59 (42)</td>
<td>2/10</td>
<td>11/1</td>
<td>6</td>
<td>PE, Cs</td>
<td>PE, Cs</td>
<td>2-16 days</td>
<td>375 mg/m², 4-12</td>
<td>10**</td>
<td>None</td>
<td>1-79 (NA)</td>
</tr>
<tr>
<td>Arici and Trendelenburg, 2008</td>
<td>1</td>
<td>15</td>
<td>0/1</td>
<td>1/0</td>
<td>NA</td>
<td>PE, Cs</td>
<td>PE, Cs</td>
<td>NA</td>
<td>100 mg/m², 12</td>
<td>1</td>
<td>No data available</td>
<td>NA</td>
</tr>
<tr>
<td>Lalmuanpuii et al., 2009</td>
<td>1</td>
<td>52</td>
<td>0/1</td>
<td>1/0</td>
<td>1</td>
<td>PE, Cs</td>
<td>PE, Cs</td>
<td>3 days</td>
<td>NA, four doses over a 3-week period</td>
<td>1</td>
<td>None</td>
<td>8</td>
</tr>
<tr>
<td>Scaramucci et al., 2009</td>
<td>4</td>
<td>26-50 (32)</td>
<td>0/4</td>
<td>40</td>
<td>NA</td>
<td>PE, Cs</td>
<td>PE</td>
<td>10-23 days</td>
<td>375 mg/m², 4</td>
<td>4</td>
<td>Mid</td>
<td>4-12 (10)</td>
</tr>
<tr>
<td>Ling et al., 2009</td>
<td>13</td>
<td>23-71 (42)</td>
<td>4/9</td>
<td>67</td>
<td>11</td>
<td>PE, Cs, C, V, S</td>
<td>PE, Cs, V</td>
<td>NA</td>
<td>375 mg/m², 4</td>
<td>12</td>
<td>None</td>
<td>13-84 (24)</td>
</tr>
<tr>
<td>Elliott et al., 2009</td>
<td>4</td>
<td>24-44 (23)</td>
<td>1/3</td>
<td>3/1</td>
<td>2</td>
<td>PE, Cs</td>
<td>NA</td>
<td>1-13 days</td>
<td>375 mg/m², 4</td>
<td>4</td>
<td>None</td>
<td>5-41 (10)</td>
</tr>
<tr>
<td>Caramazza et al., 2007</td>
<td>4</td>
<td>16-53 (40)</td>
<td>3/1</td>
<td>3/1</td>
<td>2†</td>
<td>PE, Cs</td>
<td>Cs low-dose tapering</td>
<td>1-13 days</td>
<td>375 mg/m², 4</td>
<td>4</td>
<td>None</td>
<td>3-11 (10)</td>
</tr>
</tbody>
</table>

* Range in studies with number of patients < 3.
† Range in studies with number of patients > 3.
§ One case not reported.
¶ Acute respiratory failure with cardiogenic shock.
** Two patients died during initial treatment.
†† One case ADAMTS-13 activity 40%, one case ADAMTS-13 activity 100%.
A = aspirin; AZA = azathioprine; C = cyclophosphamide; CMP = cyclophosphamide; Cs = corticosteroid; CSA = cyclosporin A; F = female; IVIG = intravenous immunoglobulin; M = male; NA = data not available; PI = plasma infusion; R = rituximab; S = splenectomy; V = vincristine.
evidence of an inhibitor to ADAMTS-13 and/or IgG antibodies to ADAMTS-13 on admission. All patients received a weekly IV rituximab infusion for 4 weeks immediately after PE. The median ADAMTS-13 activity 3 months after four rituximab doses of 375 mg/m² was 90% (range, 29%-109%) and there was also a significant decrease in IgG antibody titer with no evidence of an inhibitor in any patient (p < 0.0001). Rituximab determined rapid improvement of clinical features and laboratory variables within a median of 11 days after initiation of therapy; the drug was well tolerated and no relapse of TTP occurred during a median follow up of 10 months (range, 1-33 months).

Ling and coworkers62 presented 13 patients with refractory or relapsing TTP treated with rituximab. Twelve of them (92%) achieved complete response; no subsequent relapses occurred with median follow-up of 24 months.

Subsequently Jasti and colleagues54 described 12 patients with TTP (11 with refractory and one with relapsed disease) treated with rituximab. Of the 11 patients treated during the first episode of TTP, nine maintained remission for more than 59 months (range, 1-79 months). Two patients died during treatment. Regarding patients treated because of relapsed TTP, he maintained complete remission for 2 years. Then, due to a second relapse, he was treated again with rituximab and even in this case he maintained complete remission for 22 months. Rituximab was effective and maintain remission for more than 21 months even when a third relapse occurred.

Considering all the reports present in Table 1, 76 of 118 (64%) had refractory and 42 of 118 (36%) had relapsed TTP. Among refractory patients 67 of 76 (88%) achieved remission to rituximab treatment, with a median follow-up of 10 to 24 months. Among relapsed patients, all achieved complete remission after a median follow-up of 10 to 45.5 months. Since no specific regimen with anti-CD20 has been proven to be effective in these, therapy is mainly empirical. In the majority of studies evaluated, rituximab was administrated along with PE or immunosuppressive drugs (Table 1). In the largest study in acute refractory cases, the median numbers of PEs before rituximab and after the first rituximab infusion were 13 and 9, respectively.49 In the series by Fankouri and coworkers,12 patients prospectively included during a refractory acute TTP had PE discontinued before treatment with rituximab. In place of PE, plasma infusions (15-25 mL/kg/day) were continued and progressively tapered after the induction of complete remission (CR). In some cases (21/118; 18%) complete remission was achieved after two or three infusions of rituximab at a dose of 375 mg/m² at weekly intervals, while in others (17/118; 14%) this was achieved after eight administrations. In one patient rituximab was given at 100 mg/m² in 12 weekly infusions.54

Serious side effects were not reported during or after rituximab administration except in one case, 6 hours after the drug infusion when the patient presented acute respiratory failure and cardiogenic shock.44 In our experience (Table 2) in relapsed or refractory TTP-HUS (with or without ADAMTS-13 deficiency) rituximab was given at the dose of 375 mg/m² a shot a week for 1 month without other drugs except steroids.

DISCUSSION

Idiopathic TTP-HUS is a life-threatening disease still difficult to properly manage. Standard therapy is PE performed daily, until resolution of symptoms and/or normalization of laboratory values (recovery of PLT count, increase of hemoglobin [Hb], decrease of lactate dehydrogenase [LDH], and absence of peripheral schistocytes). The discovery that deficiency of ADAMTS-13 may be related to the severity and prognosis of idiopathic TTP-HUS has now been suggested to test such marker, at the diagnosis or during remission, for identifying patients at high risk for recurrent TTP-HUS.15-18 However, some uncertainties still remain since ADAMTS-13 deficiency does not allow the detection of all patients who may be appropriately diagnosed as TTP-HUS.9,34,37 Moreover, it is not possible to establish the sensitivity of ADAMTS-13 deficiency for identifying patients who may respond or not to PE; therefore, at the present, there are no sufficient data to safely manage TTP patients on ADAMTS-13 detection.

PE is an effective treatment for TTP because of the clearance of antibodies against ADAMTS-13 protease while it is not very effective in case of secondary TTP. Consequently, it has been postulated that PE may not be effective in patients without ADAMTS-13 deficiency but some reports have been proven that it does.9,34,37 For these reasons, PE remains the standard treatment for idiopathic TTP-HUS independently from ADAMTS-13 detection.

Despite the considerable improvement in survival with daily PE in patients with idiopathic TTP-HUS, there is a subset of patients with either delayed or absent response to this treatment.8,35 In fact, approximately 10% to 20% of TTP-HUS patients are refractory (even after several procedures) or (early) relapsed early.52 However, in these cases, additional therapy with immunosuppressive drugs (such as steroids, cyclophosphamide, or cyclosporine) has not been proven to be beneficial.14,30,31

Rituximab administration has been proven to be effective in the treatment of acute refractory or relapsing idiopathic TTP-HUS in patients with and without ADAMTS-13–inhibitory antibodies38-55 even if, in this last case, its mechanism of action is unclear. Kameda and colleagues34,37 postulated that B-cell depletion by anti-CD20 may reduce excessive cytokine production in patients with secondary TTP and thus maintaining the level of von
Willebrand multimers within the normal range. Similarly, this mechanism may also explain the success of PE in patients without ADAMTS-13 deficiency or in those with secondary TTP-HUS. Moreover, rituximab had determined the disappearance of ADAMTS-13 inhibitors. Thus, this drug may play a primary role in high-risk TTP patients, defined as those who maintain low levels of ADAMTS-13 and characterized by high probability of relapsing. This antibody might also be used as maintenance therapy in this group of patients even after a sustained clinical and laboratory remission. Rituximab may play also an important role as alternative treatment in patients not eligible for PE because of serious related complications such as nephropathy, pancreatitis, and cerebral ischemia occurring during TTP.

Our and other results are promising about the use of rituximab in TTP patients but there is still a lack of reliable data on timing schedule, dosage, long-term maintenance and side effects. In Fig. 1 is proposed a flow chart for using rituximab according to the evidence of published studies. Although the optimal dose of rituximab in this setting has not been fully established, standard treatment of 375 mg/m² once weekly for 4 weeks looks effective and safe. The effectiveness of a different schedule of therapy, such as dose of 375 mg/m² once or twice or a reduction of the single administered dose, needs further study.

Obviously, it is necessary to balance risks and benefits of different options. PE is expensive and often associated with complications related to venous access including infection, catheter thrombosis, hypoxemia, hypotension, and transfusion reaction. Rituximab is usually well tolerated and reactions are usually mild without causing discontinuation of the drug. However, rarely potentially life-threatening complications have been reported, such as progressive multifocal leukoencephalopathy, viral infections, cardiovascular events, and renal toxicity.

New clinical trials are now ongoing and hopefully they will furnish a response about the optimal management of refractory or relapsed TTP patients including the role of rituximab and the need for ADAMTS-13 detection.

In the meantime, rituximab has been proven to be effective in the treatment of relapses and may be used in high-risk patients. Furthermore this anti-CD20 may be a therapeutic option in idiopathic TTP-HUS patients, with or without ADAMTS13 deficiency, who fail to respond after 7 to 14 days of standard treatment.

CONFLICT OF INTEREST

The author(s) certify that they have no affiliation with or financial involvement in any organization or entity with a direct financial interest in the subject matter or materials discussed in this
REFERENCES

47. Daraibi K, Berg AH. Rituximab can be combined with daily plasma Exchange to achieve effective B-cell depletion and clinical improvement in acute autoimmune TTP. Am J Clin Pathol 2006;125:592-7.

