

Role of electrostatic interactions in the fibrillogenesis of lysozyme

Samuele Raccosta^{1,2}, Vincenzo Martorana¹ and Mauro Manno¹

- 1. Institute of Biophysics at Palermo, National Research Council of Italy, Via U. La Malfa 153, 90146 Palermo, Italy.
- 2. Department of Physical and Astronomical Sciences, University of Palermo, Via Archirafi 36, 90123 Palermo, Italy.

AIM: Highlighting the role of repulsive electrostatic interactions in protein unfolding and self-assembly, with a focus on the formation of elongated fibrillar aggregates.

Model system: Hen Egg-White Lysozyme

DSC

pH=7: lysozyme is stabilized by surface salt bridges.

pH=2: all protonable residues are positive, salt bridges are broken, intramolecular repulsive interactions destabilize lysozyme.

Above 45 °C lysozyme changes conformation reversibly.

CD and trp-PL spectra show respectively the decrease of \alpha-structure [Arnaudov et al. 2005] \alpha and the concomitant exposure of trp to the solvent above 60 °C.

Intermolecular interactions at high temperature

- data: compressibility curves at different a) Experimental temperatures.
- b) 1st result: Swelling of lysozyme at high temperature.
- c) 2^{nd} result: Second virial coefficient (B_2) has no dependence upon temperature.

Lysozyme as a charged sphere with counterions collapsed on its surface (Manning condensation).

Order of magnitude of B_2 is explained by a screened intermolecular electrostatic repulsion.

• calculated

Temperature [°C]

Effective hydrodynamic radius

- * High protein charge reduces protein stability towards unfolding.
- Self-assembly at high T due to the exposure of hydrophobic residues is slowed down by the strong electrostatic repulsive interaction ———— more stable solution and organized aggregation.
- * The coexistence of monomers and oligomers suggests a competing effect of hydrophobic and electrostatic interaction
- * The kinetics of fibril formation, their morphology and recent FTIR results [Freire et al. 2009] suggest that oligomers may be on-pathway fibril precursor.
- * No relevant secondary mechanisms of fibrillation

Slow conformational changes (60-65 °C): two-state transition

Wavelength [nm] *Tertiary structure:* red-shidt of emission (isosbestic point at 368 nm)

Fibrillation kinetics by Static and Dynamic Light Scattering

diffusion coefficient distribution P(D)

Intensity autocorrelation functions g2(t)

-LAG PHASE:

Coexistence of Monomers $(R_h \approx 1 nm)$ and Oligomers $(R_h \approx 10 nm)$ AFTER A FEW DAYS

Appearence of **Fibrils** and other big aggregates $(R_h > 80 \text{ nm})$

AFM. Typical size of fibrils is 20 nm in width, few microns in length, 50 nm in axial periodicity.

At 70 °C amorphous aggregates are in competition with fibrils.

Amorphous aggregation is enhanced if some salt (20-200 mM) is added in solution. If incubation temperature is lower fibrils are formed even if salt is added [Hill et al. 2009]

Mork in progress

- 1) Study more deeply of the protein-protein interactions at different temperatures and incubation times by SAXS
 - Characterization of structure by SAXS