ACCEPTED MANUSCRIPT

Published version available at: https://www.sciencedirect.com/science/article/pii/S0263822321009612
DOI: https://doi.org/10.1016/j.compstruct.2021.114499

High-fidelity analysis of multilayered shells with cut-outs via the
discontinuous Galerkin method

Giuliano Guarino?®, Vincenzo Gulizzi®, Alberto Milazzo®*
%Department of Engineering, Universita degli Studi di Palermo, 90128, Italy

b Center for Computational Sciences and Engineering (CCSE), Lawrence Berkeley National Laboratory MS 50A-3111,
Berkeley, CA 94720, USA

Abstract

A novel numerical method for the analysis of multilayered shells with cut-outs is presented. In the proposed
approach, the shell geometry is represented via either analytical functions or NURBS parametrizations,
while generally-shaped cut-outs are defined implicitly within the shell modelling domain via a level set
function. The multilayered shell problem is addressed via the Equivalent-Single-Layer approach whereby
high-order polynomial functions are employed to approximate the covariant components of the displacement
field throughout the shell thickness. The shell governing equations are then derived from the Principle
of Virtual Displacements of three-dimensional elasticity and solved via an Interior Penalty discontinuous
Galerkin method over a discretization of the shell modelling domain that is obtained by intersecting a
background structured grid with the level set function defining the cut-outs. To maintain high-order accuracy
even in proximity of the embedded cut-outs, high-order accurate quadrature rules for implicitly-defined
regions are employed to compute the integrals of the method while a cell-merging technique avoids the
presence of overly small cut cells. The combined use of these features represents the novelty of the proposed
method and provides a high-fidelity approach to the analysis of multilayered shells with cut-outs. Numerical
tests are performed to model the static response of a cylindrical shell and a NURBS-based shell with a cut-
out. The obtained results are compared with those obtained using the Finite Element method and show the
accuracy and the computational efficiency of method.

Keywords: Multilayered shells; Cut-outs; Interior Penalty discontinuous Galerkin; High-order modeling;

NURBS; Implicit mesh

1. Introduction

In advanced industrial applications where weight minimization is required, multilayered composite struc-
tures are typically the preferred structural choice as the designer can take advantage of different optimization
strategies involving, for example, the selection of the fibers and the matrix materials, the fibers’ volume

fraction and the stacking sequence [II, 2]. However, in several cases, the design of composite structures must
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comply with non-structural specifications, such as the curved geometry dictated by the aerodynamics re-
quirements in the aerospace industry, and/or must account for the presence of embedded cut-outs, which are
needed for installation and inspection of other components. In such configurations, the use of high-fidelity
computational tools is necessary to resolve the complex distribution of the mechanical fields induced by the
curvature, the material heterogeneity and the regions of stress concentration.

The shell problem is in general a fully three-dimensional (3D) problem requiring fully 3D numerical
models; however, 3D models easily become overly demanding in terms of computational resources. As an
alternative, researchers have introduced the so-called two-dimensional (2D) theories, which are based on
specific assumptions on the behavior of the variables of interests throughout the thickness of the considered
structure and allow reducing the computational costs of the associated numerical models. In the literature,
it is possible to distinguish between the Equivalent Single Layer (ESL) theories and the Layer-Wise (LW)
theories. In ESL theories, see e.g. [3H5], the functions used to expand the displacement field along the
thickness are defined uniquely and are valid for each layer of the multilayered shells; on the other hand, the
Layer-Wise (LW) theories are based on a layer-by-layer expansion so that the displacement field is described
by piecewise functions that at the layers interfaces have only a Cy continuity [6H8]. The variety of theories
that fall in these two categories lead to many formulations, which have been elegantly treated in a unified
fashion by Carrera [0, [I0] via the so-called Carrera Unified Formulation (CUF).

Similarly to the case of three-dimensional elasticity, the solution of the governing equations of shell theories
requires numerical methods because analytical or semi-analytical techniques are limited to very few specific
combinations of geometry, materials and boundary conditions as shown, for instance, in Refs.[TTHI3]. Among
the computational approaches available in the literature, the Finite Element Method (FEM) has been used
extensively in industry and it is still an active research area [I4} [I5]. Several alternative approaches have also
been proposed, among which, the Generalized Differential Quadrature [16] 7], the Ritz method [18-20], the
Isogeometric Analysis approach [2I] are worth mentioning.

The discontinuous Galerkin (dG) method has also gained recent interest for applications involving elliptic
equations [22H24], including those governing the behavior of plates and shells [25H27]. In the dG method the
variables of interest are approximated by polynomials that are discontinuous at the elements interfaces, while
the continuity among nearby elements and the boundary conditions are enforced in a weak sense through
suitable integrals along the elements boundaries. This allows the dG method to be naturally amenable to the
use of general high-order basis functions, generally-shaped mesh elements and domain discretizations with
local h and p refinements.

In the context of high-order plates and shell theories, the dG method has been successfully employed
for the solution of the governing equations of multilayered elastic plates modelled by ESL and LW theories
[28, 29], to multilayered piezoelectric plates modelled by LW theories [30] and to multilayered shells modelled
by ESL theories [31]. To account for the presence of cut-outs, in Refs.[28] 29], the authors combined an easy-

to-generate background grid with an implicit representation of the cut-out geometry via a level set function;



however, their application was focused on multilayered plates.

The aim of this work is then to present an original high-fidelity numerical framework for the analysis of
multilayered shells with cut-outs based on high-order shell theories and the discontinuous Galerkin method.
The framework is termed high-fidelity because it allows the treatment of generally-curved multilayered shells
with generally-shaped cut-outs and it provides a high-order resolution of the mechanical fields of interest
throughout both shell thickness and the shell modelling domain. From the viewpoint of the geometry de-
scription, this is achieved by mapping the shell mid-surface via either user-defined analytic functions or
NURBS parametrizations, which allows the coupling of the proposed scheme with modern computer-aided-
design (CAD) software libraries, and by the use of a level set function to resolve the presence of cut-outs.
From the viewpoint of the high-order solution of the multilayered shell problem, high-order polynomials func-
tions are employed throughout both the shell thickness, following an ESL approach, and the shell modelling
domain, where the governing equations are solved via an Interior Penalty dG method previously developed
for multilayered plates and shells [28] 29] [31] and extended here to the analysis of multilayered shells with
implicitly-defined cut-outs.

The article is organized as follows: Sec. introduces the geometry description, the constitutive behav-
ior and the ESL approximation, which are subsequently used to derive the governing equations of the 2D
boundary-value problem for multilayered shells starting from the Principle of Virtual Displacements from
three-dimensional elasticity; Scc. recalls the Interior Penalty dG scheme for the solution of the governing
equation derived in Sec., while Sec. discusses the details of the application of the dG method for domain
discretizations with embedded cut-outs. In Sec., the proposed method is employed to model the static
response of a cylindrical shell and a NURBS-based shell with an implicitly-defined cut-out. Finally, Sec.@

draws the conclusions and suggests some directions for further developments.

2. Boundary values problem

The considered generic multilayered shell consists of a stacking of Ny homogeneous, orthotropic and
perfectly-bonded layers. The /-th layer has a constant thickness 7¢¢ and occupies the volume V{9 with
boundary V. The volume V of the shell is then the union of the layers’ volumes V = Ué\[:’flvw> and its
boundary is denoted by V. It follows that the shell thickness 7 is given by 7 = Zé\zl @,

In the remainder of the paper, the following conventions are adopted: a quantity referring to the ¢-th
layer is labelled with a superscript (¢), Greek letter indices take values in the set {1,2}, Latin letter indices

take values in the set {1,2,3}, and repeated subscripts imply summation unless explicitly stated otherwise.

2.1. Geometry description

The geometry of the shell is defined starting from the equation of a generic point &g € R? of its mid-surface

xo = xo(&1, &), for {&1, &} € Qe (1)
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Figure 1: NURBS surface with its grid of control points and detail of the covariant basis at a generic surface location.
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Figure 2: (a) Intersection between the zero-contour of the level set function and the shell mid-surface in R3. (b) Shell reference

domain ¢ implicitly defined by the level set function of figure (a).



where & and & are the two curvilinear variables spanning the shell’s reference domain Q¢ C R2. Using

Eq., the following vectors are introduced

oxg 0z as
a; = — a, = — a3 = aj; X ay, and no=++—"7,
|las]|

(2)

where a1 and ao are tangent to the shell mid-surface and n is the orthogonal unit vector to the mid-surface.

Then, the location of a generic point € R? of the shell’s volume is given by

15(61,52,63) = $0(€17£2> +€3n0(§17£2)7 for {51752753} S 95 X I§37 (3>

where I¢, = [—7/2,7/2| is the interval spanned by the curvilinear variable {3. With reference to Eq.7 it
is worth noting that the volume V(¥ of the generic -th layer is identified by = = (&1, &, §§? <& < f;»(,?)
where 5;? and fé? are the thickness coordinates of the ¢-th layer’s bottom and top surfaces, respectively.
Starting from the mapping given in Eq., one defines the local covariant basis, whose i-th vector is
defined as g, = 0z /0¢;, and the local contravariant basis, whose i-th vector is defined g - g; = 5;. and (5;» is
the Kronecker delta function. Additionally, the covariant components and the contravariant components of
the metric tensor are defined as g;; = g, - g; and g”/ = g* - g7, respectively, while g denotes the determinant
of g;; [32]. Finally, the vectors of the contravariant basis can be collected in the columns of the matrix R

such that the covariant components v¢, and the Cartesian components v; of a generic vector are related by
v = Rug, (4)
where ve = {vg,, ve,, v, }T and v = {v1,v2, v3}7.

2.1.1. NURBS-based surface description

In the proposed method, Eq. can be specified either in terms of a user-defined analytical function or in
terms of a NURBS-based parametrizations. Both approaches are considered here since the former is suitable
to generate simple geometries whereas the latter facilitates the coupling of the proposed method with modern
CAD software libraries. However, while employing user-defined analytical functions does not require further
details, it is worth recalling a few definitions for generally-curved surfaces represented via NURBS functions,
which will be used in the numerical tests presented in Sec.. In this section, repeated subscripts do not
imply summation.

The equation &y = x¢(£1,&2) of a point &y belonging to a NURBS surface in the 3D space is defined
starting from a grid of (n 4+ 1) x (m + 1) control points P;; and a set of rational surface basis functions

Sij(&1,&2) as follows
n+1m+1

T0(€1,&) =Y > PiSii(&1, &) (5)

i=1 j=1
The rational basis functions S;;(1,&2) are defined in terms of the one-dimensional B-spline basis functions

as
hijNi g (§1)M;1(&2)

Si’ ) = : )
6 &) s Z;n:tl hijNik(§1)M; 1 (€2)

(6)

(@31



where h;; is the weight of the point P;;, N; x(&1) is the i-th B-spline basis function in the direction &; with
an order k and M ;(&2) is the j-th B-spline basis function in the direction &, with an order I. The B-spline

basis functions are defined piece-wise in a recursive way accordingly to the Cox de Boor formula as

1 for & < ¢ <ttt
N;ia(§) = : (7a)
0 otherwise

(€ =E)Nig-1(8) | (" —Nip1r-1(8)

Nk (§) = s itk _ gi+l J

(7b)

where the £ is a generic element of the so-called knot vector {&*,&2,..., &, ..., &"TF 1} which is a sequence
of non-decreasing value of the curvilinear variable and determines the intervals for the definition of the the
basis functions. If the first and last values are repeated k times, the curve is interpolatory at the first and
the last control points resulting in a B-spline with a so-called open knot vector. Figure shows an example
of a NURBS surface with the corresponding grid of control points (the black dots in the figure); the figure
also shows the detail of the covariant basis at a generic location within the surface. The reader interested in
a comprehensive description of the NURBS theory is referred to the books by Rogers [33] and by Piegl and
Tiller [34].

2.1.2. Implicitly-defined cut-outs

Several approaches could be employed to resolve the presence of cut-outs in multilayered shells. For
example, one could partition the shell reference domain )¢ into multiple patches having different geometry
descriptions, and then suitably combine them together. Here, to retain the relatively simple description of
the shell mid-surface as given in Eq., the cut-outs are implicitly-defined via a level set function of the
curvilinear variables &; and &;.

Consider a reference rectangle I = [¢L V] x [¢£, Y] spanned by the curvilinear variables & and &,
where ¢& and ¢V denotes the limits of the rectangle for the curvilinear variable &,, and its boundary Olle.
To exemplify, for a shell surface described by NURBS functions, II¢ is typically given by [0,1] x [0, 1]. Then,

the reference domain )¢ of a shell with cut-outs is defined as

Qe = {{&1, &2} € The | (61, 62) < 0}, (8)

while its boundary 02 is defined as

00 = {{&1, &} € Al | ¢(&1,82) <0} UTY, (9)

where 'y = {{&,&} € II¢| ¢(£1,&2) = 0} denotes the boundary of the cut-out. It is clear that, for a shell
without cut-outs, Q¢ and 0Q¢ coincide with Il and Ollg, respectively. Moreover, it is worth noting that
the level set function can also be defined in the 3D space as ¢ = ¢(x() and then expressed in terms of the
curvilinear coordinates using Eq.(T)), i.e. ¢ = ¢(wo(&1,&2)) = ¢(&1,&2). Figure ([2h) shows an example of a

case where a cut-out is defined by intersecting a generally-curved surface with a level set function ¢ = ¢ (o).



The corresponding implicitly-defined reference domain )¢ is displayed in Fig.). The discretization of a

generic shell reference domain that is implicitly-defined using the approach described above is examined in

Sec..

2.2. Strain-displacement relations

Let u = {u1,u9,u3}T be the vector collecting the Cartesian components of the displacement field and
¥ = {711,722, V33, Y23, V13, Y12} T be the vector collecting the Cartesian components of the strain field in Voigt
notation. Then, within the small displacement assumption, the relationship between the displacement and

the strain components is written in matrix form as follows

=T, (10)
where the 6 x 3 matrices I; are defined as
[ 1 00 ] [ 0 00 ] [ 0 0 0 ]
0 00 010 0 00
I = 0 00 o= 0 00 and I = 0 0 1 (11)
0 00 0 0 1 010
0 01 0 00 1 0 0
i 010 | i 1 0 0 | i 0 0 0 |

Upon using Eq. in Eq.7 the strain field can be expressed in terms of the covariant components
we{ug, , Ug,, ug, 7 of the displacement fields as

- —L( n X, (12)

K og; ¢ o

where the second equality is obtained via a mere application of the chain rule for differentiation. It is worth
noting that the matrix R and its derivatives OR/0¢; are determined once an explicit expression for the shell
mid-surface equation given in Eq. is chosen. In fact, as briefly discussed in Appendix they
are obtained in terms of the derivatives of the map given in Eq. with respect to the curvilinear coordinates

& and & up to third order.

2.3. Constitutive behavior

The constitutive behavior of a generic ¢-th layer of the multilayered shells is assumed to be orthotropic

in a reference system identified by the unit vectors m§€>, méa and my). At the generic point « € V{9 such

a reference system is determined as follows: my) coincides with ny; m§£> is defined as

14 iy 9
m{" = Rq, (9<">)m, (13)
where the matrix R, (0“)) performs a rotation around the axis ng of the lamination angle ‘) between

the covariant basis vector g, and fiber orientation of the /-th layer my); and mé€> = mfp X m§e>. In this



@ , also expressed

orthotropic reference system, the relationship between the components of the stress field o
in Voigt notation, and the strain field ’7“) is given by
=(t) _ (00 (14)

) is a 6 x 6 matrix whose elements are expressed in terms of the engineering constants [I]. The

where ¢
relationship between the components of the stress field o(*) and the strain field v in the global Cartesian
reference system is finally given as

allh = 40 (15)

0

where the matrix ¢( is obtained from &) by standard transformation procedures [35].

2.4. The Equivalent-Single-Layer theory for shells

In the context of displacement-based Equivalent-Single-Layer theories for multilayered plates and shells,
see e.g. [36], [9] and the references cited therein, suitable assumptions are introduced for the behavior of the
displacement field along the thickness of the multilayered structure. Here, it is assumed that the covariant

components ug, of the displacement field may be written as

N;
ul! (€1, 62.63) = Y Uin(€1,&2) fu(&s), ¥0=1,...,Ny. (16)

k=0
where fj, are known arbitrary functions of the thickness coordinate &3, U, represent the new variables called

generalized displacements and N; is the order of the expansion for the i-th displacement component. It
is noted that, consistently with ESL theories, Eq. provides a through-the-thickness expansion of the
displacement components that is valid for all layers of the shell. This is why f; and U;; are not labelled with
the subscript (¢).

Following the notation introduced in 28], [29] [31], Eq. is written in a more compact form as
ul) = F(&)U(6.6), YE=1,.. Ny, (17)

where F' is a 3 x Ny matrix that opportunely collects the functions fi, and U is a Ny x 1 vector containing
the generalized displacements being Ny = (N7 + N2 + N3 + 3).
Combining Eq. and Eq., the strain in Cartesian coordinates is obtained in terms of the generalized

displacements as
ou

O = JU 4+ T, V=1,...,Ny, (18)
238
where the following matrices have been introduced
¢ OR &3 _dF I
Jo=1,; I F R— d Jo=I,—RF. 19
0 <8$1 ij + axl dfg an @ 8:171 ( )

Eventually, taking into account Eq., the following expression is obtained for the stress in Cartesian
coordinates

ol = o <J0U+JaaU>7 (=1,...,Ny, (20)
Oa

where, unlike the expression of the displacement and the strain fields given in Eqs. and , respectively,

it is clear that the stress field is discontinuous between adjacent layers.



2.5. Governing equations

In the preceding section, the displacement field, the strain field and the stress field have been expressed
as functions of the generalized displacements, which are collected in the vector U and represent the primary
unknowns of the multilayered shell problem. Then, it is possible to show [31] that the static behavior of a

multilayered shell modelled by ESL theories is governed by the following set of differential equations

0 ou oUu = .
- @ <Qa68€ﬁ + Ra3U> + ng@ + SggU = B7 mn Qg, (21)

and the following set of boundary conditions

Vo (Qaﬂ% + RagU) = T, on 895]\[

_ : (22)
U="U, on 08k p

where v, is the a-th component of the unit vector perpendicular to the boundary 92 of the shell reference
domain €2, and 0€¢p and Q¢ are the portions of the boundary where kinematic and mechanical boundary
conditions are applied, respectively. Additionally, in Eqs. and , the following generalized stiffness

matrix, volume loads and boundary loads have been defined

Ne el
Qus=Y_ / J1c I 50 /g des, (23a)
1= ey
Ne o eely
Ru3=> / JTc9 T\ /g des, (23b)
=17y
Ne o eegd!
S5=Y / TTe0 J0\/G dés. (23¢)
=1 ely
Ne o el
B= (FTRTt\/E nigijnj> +Y° ., FTRTb/g dg, (24a)
E=%7/2 =173
N el .
T= Z/@) FTRTE >\/§ n;gn; dés, (24b)
=1 &30

where n; is the i-th Cartesian component of the outer unit normal at a boundary of the shell volume V.
The interested reader is referred to Ref.[31] for a detailed derivation of Egs.(21) and and the related

generalized quantities.

3. Interior Penalty discontinuous Galerkin formulation

The solution of the governing equations given in Sec. is based on the Interior Penalty discontinuous
Galerkin formulation recently proposed for multilayered plates and shells [28] 29] [3T] and recalled in this
section for the sake of completeness.

The domain ¢ is divided into N, non-overlapping elements, which constitute the mesh and where the

generic e-th element has domain Qée) and boundary 5‘(2?3). In the following, quantities associated to the e-th



element are denoted by the subscript (e). Over the mesh, the space Vy,, of discontinuous polynomial basis

functions of maximum degree p is introduced as
Vip = {v £ Qe > R | 0]y € P Ve =1, N} , (25)
13

where Pz(,e) is the space of polynomials with maximum degree p. Similarly, the space V,]l\;’f of discontinuous
polynomial vector field is defined as V}JL\;U = (Vnp)VU. Then, following Refs.[28, 29] [31], the Interior Penalty
dG formulation for Eqs. and reads

B(V,U,)=F(V,B,T,U), VV eV, (26)

where U}, denotes the approximate dG solution of Eqs. and , and the bilinear form B(V,U}) and
the linear form F(V, B, T,U) have the following expressions

ovT 8Uh 8Uh
B = - " T T
(V,Up) /Qh 7€, (Qa,e 985 +Ra3Uh) +V <Ra3 7€, +S33Uh> +
oUy, } {8VT }
— VIIsQ.s5———+RasUpnp+<{—Q.5+VTRL, ¢ [Ur]s+
/Emm[[ | {Q 5 9Es 3Un 2., Q.5 53¢ [Unls
oUy, ovT
— v, VT a+RaU)+( a—I—VTRT>U1/—|—
/th’D (Q T 3Up a6 Q.p 53 | Unvg
s+ [ o e
QQ;L[ 8Q}LD
and
o _ _ T _ _
F(V,B,T,U) = / VB +/ VT — (anaﬂ + VTR/T%) Uvg +/ uwVTU. (28)
Qp N 1219755} afa 12197%5)

The integrals appearing in Eqs. and are usually referred to as broken integrals and are defined as

N
°= MO 29a,
/ 2 / ¢ (290)

and

/ ° = / ‘ o(?) dofle, / * =
Q1 — Joal) Qb

where 39?} denotes the generic i-th interface between two adjacent elements, 892‘3 is the portion of 8(226)

Ne

/ () daQ, / o= / () daQe, (29Db)
80e) N 09y

e=1 £D e=1

where kinematic boundary conditions are enforced and 892\)[ is the portion of 8928) where mechanical
boundary conditions are enforced. Additionally, in Eqs. and ,  is the penalty parameter, while {e}

and [e], are the average and jump operators, respectively, defined as
. 1 ’ - ’ ’
{010 =3 (o +) and [ =1 o) 41, (30)

being e and €’ the indices of two adjacent elements sharing the interface boundary i.
The interested reader is referred to Refs.[28] 29, B1] for a detailed derivation of the Interior Penalty dG

formulation employed in this work.

10



4. Implicitly-defined mesh

The discontinuous Galerkin formulation described in Sec. is not limited to a specific choice of the type
of mesh elements and could be used in combination with different discretization strategies (including, e.g.,
triangular or polygonal elements) provided that the corresponding quadrature rules to evaluate the integrals
appearing in Eqs. and may be available.

In this work, with reference to the implicit representation of the shell reference domain )¢ as discussed
in Sec., the discretization of ()¢ is obtained by intersecting a structured background grid and the
level set function ¢ = ¢(&1,&2). Let Cée) denote a generic cell of the background grid generated for the
reference rectangle II¢ and 805(6) denote its boundary. Then, the domain Qée) and the boundary 8(226) of the

corresponding implicitly-defined mesh element are defined as
(e) _ (o) (e) _ (e) (e)
Q¢ Ce NG and 895 (BC’g NQe)U (C’g NTe). (31)

It follows that the implicitly-defined elements are classified into the following groups: the group of entire
elements, which fall completely inside the shell reference domain §¢; the group of empty elements, which fall
completely outside {2z and the group of partial elements, which are cut by I'c. Because of the arbitrariness
of the level set function, partial elements may include elements with a very small volume fraction, which are
then referred to as small elements. Small elements can cause an ill-conditioning of the final linear system and,
therefore, they are merged with nearby entire elements or partial elements with a sufficiently large volume
fraction. Entire and partial elements used in the merging strategy are then referred to as extended elements.
Figure (3h) shows the element classification when a 9x9 background grid is employed to initially subdivide
the reference rectangle Il¢, whereas Fig.) shows the corresponding implicitly-defined mesh after the small
elements have been merged with their neighbors. As a final remark, it is worth stressing that the domain
and the boundary integrals appearing in Eqs. and require suitable quadrature rules. For entire
elements, which comprise the majority of the mesh elements, these integrals are evaluated using high-order
tensor-product Gauss-Legendre quadrature rules. On the other hand, the domain and the boundary integrals
over partial elements and element boundaries are evaluated using the high-order quadrature rules obtained

using the algorithm developed by Saye [37].

5. Numerical results

In this section, the capabilities of the presented formulation are assessed by testing the static response
of a cylindrical multilayered shell and a generally-curved NURBS-based multilayered shell with a cut-out.
High-order Legendre polynomials are used for both as thickness function of the considered ESL theories and
as basis functions of the Interior Penalty dG scheme. To identify the adopted shell theory, the following
notation is adopted: EDy, n, N, denotes the ESL theory with an order of expansion Nj, Ny and N3 for the
covariant components ug,, ug, and ug,, respectively, of the displacement field. On the other hand, the dG

scheme is identified by order p of the polynomial basis functions. The FSDT is also considered by choosing

11
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Figure 3: (a) Element classification according to their volume fraction. (b) Resulting mesh after the cell-merging strategy.

the EDq19 and introducing the plane stress hypothesis. The properties of the considered shell sections and
materials are reported in Tab. and Tab., respectively. The obtained results are eventually compared
with those obtained with the FEM library Abaqus [38].

5.1. Fuselage panel with window

The first geometry investigated is a cylindrical shell with a cut-out as shown in Fig.@. The dimensions

and the level set are chosen in order to resemble a fuselage panel with a window. The reference surface is

Table 1: Quantities entering the parametric equation of the considered shell reference surfaces.

Fuselage panel NURBS-based shell

Ry 3m H, 50 cm
0y w/12 D, 5cm

Ly 60 cm L, 60cm
af 15 cm a, 8.5 cm

by 22.5 cm d, 3
dy 3 T1, 15 cm

To, 12 cm

12



Table 2: Properties of the considered shell sections.

Shell ID Material Layup Layer(s) thickness
F; (Single-layer) M; [0] 10 cm
Fo (Single-layer) M, [0] 10 cm
F3 (Multilayered) M, [0/90]5 1 mm
Fy (Multilayered) Mo [+45/ — 45]9 1 mm
N; (Single-layer) M, [0] 1 mm
Ny (Multilayered) M, [0/90]5 1 mm
Table 3: Properties of the considered materials.
Material ID Property Component Value
M; (Isotropic) Young’s modulus  E/E, 1
Poisson’s ratio v 0.25
Mj (Orthotropic) Young’s moduli  E4/E, 25
Ey/E,., Es/E, 1
Poisson’s ratios V93, V13, V12 0.25
Shear moduli Go3/E, 0.2
Gi3/E,, Gi2/E, 0.5

13
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Figure 4: Geometry of the fuselage panel with a window in three different views.
mapped by the equation
&
o = | Rysin(&a) | > (32)
Ry cos(&2)

where & € [—Ly/2,+Ly/2] and & € [—0f,+0] and Ry, Ly and 0 are reported in Tab.(1). The level set

function used to define the cut-out is chosen as

$(m0) = af’ — || — (33)

b/ay
where ay, by and dy are also reported in Tab.. The shell has clamped external boundaries, traction-free

boundary conditions along the cut-out, and is subjected to a uniform pressure on the bottom surface identified
by & = x(&1, &2, —75/2) as

= —qrg°. (34)

The four shell sections labelled as F; to Fy4 in Tab. are investigated, and the following non-dimensional

magnitude of the displacement is introduced

_ 73E,
[a] = [ul - ((Lf/2)4qf> . (35)

Consider the point * in Fig.(#k) corresponding to & = &3 = 0 and & = a = arcsin (by/Ry). The value
of |u| at «* is computed using the FSDT and the EDy44 theory and a dG scheme with polynomial order

14



p = 4, and is then compared with the value evaluated at the same location computed using Abaqus S4R
shell elements and C3D20R brick elements. Figures ), ), ) and ) report the obtained results as
functions of the overall number of degrees of freedom of the discrete system for the shell sections Fy, Fo, F3
and F4, respectively, and show how the proposed scheme is able to recover the FEM results. Moreover, by
looking at Fig.), which corresponds to the case of the isotropic shell, one observes no noticeable difference
in the values of the displacement magnitude computed with the FSDT, the ED444 theory and the 3D FEM
model; differently, considering Fig.), which corresponds to the case of the orthotropic shell, it is clear how
the high-order ED 444 reproduces more adequately the 3D FEM solution with respect to the low-order FSDT.

The effect of the polynomial order p on the value of the non-dimensional displacement magnitude [z
evaluated at the same point «* = #(0, o, 0) is shown in Fig.(6); Fig.(6p) is referred to the shell section Fy
modelled with the EDyy4 theory, while Fig.@b) is referred to the shell section F3 modelled with the FSDT.
In both cases, as expected, using p = 6 allows obtaining the converged solution with the smallest number of
degrees of freedom, whereas using p = 2 shows the slowest convergence rate.

Figure @ shows the value of the non-dimensional displacement magnitude |@| as given in Eq. along
the curve identified by varying &; and by keeping constant &2 = « and &3 = 0; the curve is indicated as r in
Fig.(&). Figures (7h), (7b), (7c) and (7) are referred to the shell sections Fy, F2, F3 and Fy, respectively.
In all figures, the results referring to the present approach are obtained using the FSDT theory and a dG
scheme with polynomial order p = 4, whereas the reference solution (the dashed line in the figure) is obtained
using Abaqus S4R shell elements. Also in this case, the obtained results confirm the accuracy of the proposed
method.

The effect of the mesh size on the value of |@| evaluated along the same curve using the FSDT theory
and a dG scheme with polynomial order p = 2 is presented in Figs.) and ) for the shell sections Fo
and F3, respectively. Here, it is interesting to note that the multilayered shell displays a slower convergence
rate as a function of the number of cells in the background grid with respect to the case of the homogeneous
orthotropic shell.

As a concluding remark for the cylindrical shell test, the contour plots of the non-dimensional displace-
ment magnitude as given in Eq. and two selected stress measures are shown in Fig.@, where they are
superimposed on the deformed shape of the top surface of the shell. In particular, Fig.) shows the contour
plot of the non-dimensional displacement magnitude for the shell sections Fy, Fig.@lb) shows the contour plot
of the non-dimensional displacement magnitude for the shell sections Fj, Fig.@k) shows the contour plot of
the non-dimensional Von Mises stress @,,, for the shell sections F, and Fig.@ld) shows the contour plot of the
non-dimensional stress component @11 for the shell sections Fz. To compute the stress measures introduced

above, the stress components are non-dimensional accordingly to the equation

2
_ TF
o= (k) o

where o;; is a generic component of o.

15



© 535}
=
=
g 53}
ey
= —e-DG  (FSDT)
= 525 —a DG (ED,,,)
—0—S4R  (Abaqus)
52l —»>—C3D20R (Abaqus)
| |
104 108
System order
(a)
7_
o~
= Bl
=
g 5f
-
|3 4r —e-DG  (FSDT)
3t —A—S4R (Abaqus)
‘ . |
10* 108

System order

(c)

u|(0,,0)

lu|(0,a,0)- 10

3271

31| 0.7(;.__—_0—0-0———0
ol Oy " S———_r w— ol

29
281 e DG (FSDT)
27} —a DG (ED444)
26| —0—S4R  (Abaqus)

—p—C3D20R (Abaqus)
25 ¢

10 105
System order
(b)

sas
4t
3 i
2 L
1 —e-DG  (FSDT)
ot

—4A—S4R (Abaqus)
= e -I

10° 105

System order

(d)

Figure 5: Comparison between the convergence of the FEM solution and the convergence of the solution obtained by the present

formulation for the fuselage panel.
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Figure 8: Comparison between the solution obtained by the present formulation for different numbers of mesh elements for the

fuselage panel.

5.2. Generally-curved NURBS-based shell

The second investigated geometry is defined in terms of NURBS functions as described by Eq. where
& €[0,1] and & € [0, 1], the control points P;; and their weights are given in Appendix and S
are the rational surface basis functions defined by the open knot vector {0,0,0,0,0,0.2,0.4,0.6,0.8,1,1,1,1,1}
for both & and &. It is noted that in this case the shell is represented by non-orthogonal curvilinear

coordinates. The cut-out is obtained through the level set

dn |£E02 - $2n|dn ) (37)

(x0) = GZ" — |zo1 — z1n

where a,,, d,, r1, and x5, are reported in Tab.. The resulting shell geometry is displayed in Fig..
The shell is subjected to clamped boundary conditions on its lateral surfaces and traction free boundary
conditions along the cut-out boundary, while a uniform pressure t = g, g> is applied on the bottom surface.
The two shell sections labelled as Ny and Ny in Tab. are investigated. The accuracy of the proposed
method is assessed by comparing the solution computed with the present approach using the FSDT theory
and a dG scheme with polynomial order p = 6 and the solution computed using Abaqus S3R shell elements.
The comparison is shown in Fig. in terms of the non-dimensional displacement magnitude defined as
3E,
=l () (39)
The value of |@| is computed along the curve identified by the points @ = x(3,£2,0) and along the curve
identified by the points = (1, o, 0), where 5 = 0.43 and o = 0.55. The former curve is indicated as s in
Fig.([10k), while the latter is indicated as ¢ in Fig.(10). Figures (L1h) and (11f) refer to the shell section Ny,
while Figs.) and ) refer to the shell section No. The obtained results confirm the accuracy of the
proposed method also for a shell described by NURBS functions.
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Figure 10: Geometry of the NURBS-based shell in three different views.

19



—e—DG (FSDT) : ‘ ' ' " |—e—DG (FSDT)

- - - 53R (Abaqus) 1.2} - - - 53R (Abaqus)
o 4 | o™
o =
™ i
— 3| s
= o 0.8
e 706
p— h —
1T = 04
= =
1t
02
i | . . ‘ . i | . . ‘ .
300 200 -100 0 100 200 300 300 200 -100 0 100 200 300
z2(&9) mm z2(&9) mm
(a) (b)
6 1.5 ‘ :
—e—DG (FSDT) —e—DG (FSDT)
51 = = =83R (Abaqus) = = =83R (Abaqus)
o o™
= =
. 45 . 1r
e N
=) )
g 3 S
_ i
L U
= — A
=i =3
1t
b ‘ ‘ . ° o | ‘ . !
0 100 200 300 400 500 0 100 200 300 400 500
x1(&1) mm x1(&1) mm

(c) (d)

Figure 11: Comparison between the FEM solution and the solution obtained by the present formulation for the NURBS-based
shell.

The effect of the mesh size on the value of [a] evaluated along the same curves using the FSDT theory and
a dG scheme with polynomial order p = 2 is presented in Figs.) and ) for the shell section Ny and in
Figs.) and ) for the shell section Ny. The same convergence behavior is observed for the considered
shell sections.

To conclude, Fig. shows the deformed shape of the top surface of the considered shells with superim-
posed contour plots of the non-dimensional magnitude as given in Eq. and two selected stress measures,
which are evaluated using the following non-dimensional stress components

-2
Tij =04 <([/n/;)2Qn> . (39)
The reported figures show the complex stress distribution induced by the interaction between the curvature

of the shell and the presence of the cut-out.
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6. Conclusions

A novel high-fidelity numerical scheme for the static analysis of multilayered shells with cut-outs has been
presented. The novel feature of the proposed scheme is the combined use of: i) an accurate representation
of the shell geometry via either user-defined analytic functions or NURBS parametrizations, which can be
imported from modern CAD libraries; ) a flexible implicit representation of the embedded cut-outs via a level
set function; i77) an ESL approach based on the expansion of the covariant components of the displacement
field throughout the shell thickness, which allows considering in a unified fashion multiple higher-order shell
theories, including the classic FSDT; iv) the implicitly-defined mesh technique, whereby the shell reference
domain is discretized by intersecting an easy-to-generate background grid and the implicit representation of
the cut-outs; v) an Interior Penalty discontinuous Galerkin method, which allows resolving with high-order
accuracy the governing equations of the selected shell theory even in proximity of the embedded cut-outs
thanks to the use of high-order quadrature rules for implicitly-defined domains and boundaries. The above
features are tunable to obtain a high-order accurate treatment of the shell problem in terms of both the
representation of the shell geometry and the resolution of the mechanical fields. This motivates the term
high-fidelity.

To show the capabilities of the proposed scheme, a set of numerical tests involving the static response
of two multilayered shell geometries with a cut-out was performed and discussed. The first group of tests
geometry were focused on a cylindrical shell with a cut-out inspired by the geometry of fuselage panel with
a windows. The second group of tests geometry were focused on a generally-curved NURBS-based shell
where the level set function was chosen to represent an inspection door in the shell. Different shell sections,
including a homogeneous isotropic shell, a homogeneous orthotropic shell and various multilayered shells,
were tested. Several numerical tests were investigated and reported to show the effect of the mesh size and
the polynomial order on the computed solution. The obtained results were also compared with the results
obtained using the FEM library Abaqus. In all the considered tests cases, the proposed approach was able
to reproduce accurately the FEM results. Moreover, by solving the same shell problem using the FSDT, a
high-order shell theory and a 3D FEM model, it was shown that the high-order shell theory provides a more

accurate solution than the low-order FSDT when both theories are compared to a fully 3D scheme.
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Appendix A. Derivatives of the contravariant basis

The present formulation requires the knowledge of the matrix R, whose columns are the vectors g° of the

contravariant basis, and its derivatives with respect to the curvilinear variables & and &;. For example, R

and OR/0¢; enter the definitions of the matrices J, and Jg given in Eq.. However, despite the apparently

complex expressions, to obtain R and OR/9¢;, one needs only the derivatives of the shell mid-surface map as

given in Eq. with respect to & and & up to the third order. The aim of this appendix is then to provide

a set of easy-to-use formulas to compute the quantities of interest for the present formulation.

Let us introduce the derivatives of the map given in Eq. with respect to & and &. Besides a; and as

defined in Eq., ones has

a 82$0 a 822130 and @ 82.’1}0
= —F = — T = —
11 8{% ) 12 a£1§27 22 aé.% )
and
_ 83$0 _ 63.’130 _ 83.’130 o 83.’130
ai = 875{” alig = %, a1z = @, and  ag = 8755’

The derivatives of the vector az defined in Eq. are easily computed as follows

8a3
S =011 X a2+ a1 X a9,
061
30,3
Sz = Q12 X az +a; X agy,
3
32a3
BE2 — %1 X a2 +2an X az + a1 X az,
1§
32013
J =ajj2 X a2+ ai; X axg+ a2 Xap+a; X as,
§162
32013
€2 = a122 X @2 + 2 @12 X @22 + a1 X agos.
2

Let us now introduce the scalar A and the matrix M as

1
A=llas]] and M = X(I—nong)

(A1)

(A.3a)
(A.3b)
(A.3c)
(A.3d)

(A.3e)

(A.4)

where ng is defined in Eq. and I is the 3x3 identity matrix. The derivatives of the unit normal ng are

then computed in terms of the derivatives of a3 as

Bno - 8(13

T

2 2 T
Ono _ gy 005 1<M< Taa?’>+M‘%3ng+noaa3M> Oas

0€.Es | 0fals A "0 9, 05 95

O8a’

(A.5a)

(A.5D)

Finally, upon introducing the matrix P, whose columns are the vectors g, of the covariant basis, i.e.

PE[91 9o 93}:{‘11"_53% a2+£3% no},
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one has

and

oP
96, = { a;r + &3 a;g%o az + 537321722
oP
06 { a12+€3% a22+§36;7§)
oP
- = on on
085 [ o6 o0& 9 ]
OR oPT
- R R
9§ o

where Eq.(A.8) is obtained by using R = P~ T [32].

As a last comment, it is worth reporting that the derivatives of the shell mid-surface map described

Bno
91

Bno
&2

by user-defined analytical functions were computed using the Python [39] library sympy [40] for symbolic

calculus, whereas the derivatives of the NURBS-based parametrizations were evaluated using the algorithms

described by Piegl and Tiller [34] and available in the library geomd! [41].

Appendix B. Control Points

For the sake of completeness, the control points used in the definition of the mid-surface of the NURBS-
based shell shown in Fig. are listed in Tab.(B.4)). For each control point it is reported the correspondent

indices ¢ and j, the coordinates 1, x3 and x3 in mm and the weight h;;.
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Table B.4: List of control points for the NURBS surface in Fig..

i, z1 T2 z3  hij | 4,7 z1 T2 z3  hij | 4,] 1 T2 z3  hyj
1,1 0.00 -300.00 500.00 1 4,1 153.89 -300.00 328.89 1 7,1 489.97 -300.00 108.82 1
1,2 0.00 -270.00 497.49 1 4,2 152.46 -270.00 327.10 1 7,2 484.12 -270.00 108.82 1
1,3 0.00 -210.00 492.48 1 4,3 150.54 -210.00 323.51 1 7,3 474.05 -210.00 108.83 1
1,4 0.00 -120.00 484.99 1 4.4 149.50 -120.00 318.55 1 7,4 463.69 -120.00 108.84 1
1,5 0.00 0.00 475.01 1 4.5 148.91 0.00 314.01 1 7,5 459.16 0.00 108.85 1
1,6 0.00 120.00 465.04 1 4,6 145.18 120.00 313.29 1 7,6 463.69 120.00 108.83 1
1,7 0.00 210.00 457.53 1 4,7 142.95 210.00 314.32 1 7,7 474.05 210.00 108.82 1
1,8 0.00 270.00 452.51 1 4,8 142.70 270.00 315.27 1 7,8 484.15 270.00 108.81 1
1,9 0.00 300.00 450.00 1 4.9 143.04 300.00 315.74 1 7,9 490.01 300.00 108.80 1
2,1 36.11 -300.00 483.13 1 5,1 304.62 -300.00 309.21 1 8,1 500.01 -300.00 36.28 1
2,2 36.06 -270.00 480.98 1 5,2 301.48 -270.00 308.51 1 8,2 493.99 -270.00 36.28 1
2,3 36.00 -210.00 476.67 1 5,3 296.52 -210.00 307.12 1 8,3 483.58 -210.00 36.28 1
2,4 36.01 -120.00 470.21 1 5,4 292.27 -120.00 305.19 1 8,4 472.81 -120.00 36.27 1
2,5 36.10 0.00 461.57 1 5,5 290.80 0.00 303.39 1 8,5 468.02 0.00 36.27 1
2,6 36.10 120.00 452.86 1 5,6 290.63 120.00 303.04 1 8,6 472.78 120.00 36.28 1
2,7 36.16 210.00 446.27 1 5,7 293.65 210.00 303.37 1 8,7 483.54 210.00 36.28 1
2,8 36.26 270.00 441.86 1 5,8 297.79 270.00 303.69 1 8,8 493.97 270.00 36.28 1
2,9 36.33 300.00 439.65 1 5,9 300.52 300.00 303.85 1 8,9 500.00 300.00 36.28 1
3,1 41.45 -300.00 387.42 1 6,1 441.80 -300.00 213.61 1 9,1 500.00 -300.00 0.00 1
3,2 41.14 -270.00 385.76 1 6,2 436.77 -270.00 213.52 1 9,2 493.98 -270.00 0.00 1
3,3 40.80 -210.00 382.44 1 6,3 428.27 -210.00 213.33 1 9,3 483.57 -210.00 0.00 1
3,4 40.79 -120.00 377.66 1 6,4 419.88 -120.00 213.07 1 9,4 472.80 -120.00 0.00 1
3,5 40.62 0.00 372.26 1 6,5 416.46 0.00 212.86 1 9,5 468.01 0.00 0.00 1
3,6 38.78 120.00 368.63 1 6,6 419.60 120.00 212.87 1 9,6 472.77 120.00 0.00 1
3,7 37.28 210.00 366.62 1 6,7 427.79 210.00 212.98 1 9,7 483.54 210.00 0.00 1
3,8 36.60 270.00 365.41 1 6,8 436.17 270.00 213.06 1 9,8 493.97 270.00 0.00 1
3,9 36.40 300.00 364.80 1 6,9 441.15 300.00 213.10 1 9,9 500.00 300.00 0.00 1
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