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Abstract

A novel numerical method for the analysis of multilayered shells with cut-outs is presented. In the proposed

approach, the shell geometry is represented via either analytical functions or NURBS parametrizations,

while generally-shaped cut-outs are defined implicitly within the shell modelling domain via a level set

function. The multilayered shell problem is addressed via the Equivalent-Single-Layer approach whereby

high-order polynomial functions are employed to approximate the covariant components of the displacement

field throughout the shell thickness. The shell governing equations are then derived from the Principle

of Virtual Displacements of three-dimensional elasticity and solved via an Interior Penalty discontinuous

Galerkin method over a discretization of the shell modelling domain that is obtained by intersecting a

background structured grid with the level set function defining the cut-outs. To maintain high-order accuracy

even in proximity of the embedded cut-outs, high-order accurate quadrature rules for implicitly-defined

regions are employed to compute the integrals of the method while a cell-merging technique avoids the

presence of overly small cut cells. The combined use of these features represents the novelty of the proposed

method and provides a high-fidelity approach to the analysis of multilayered shells with cut-outs. Numerical

tests are performed to model the static response of a cylindrical shell and a NURBS-based shell with a cut-

out. The obtained results are compared with those obtained using the Finite Element method and show the

accuracy and the computational efficiency of method.

Keywords: Multilayered shells; Cut-outs; Interior Penalty discontinuous Galerkin; High-order modeling;

NURBS; Implicit mesh

1. Introduction

In advanced industrial applications where weight minimization is required, multilayered composite struc-

tures are typically the preferred structural choice as the designer can take advantage of different optimization

strategies involving, for example, the selection of the fibers and the matrix materials, the fibers’ volume

fraction and the stacking sequence [1, 2]. However, in several cases, the design of composite structures must
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comply with non-structural specifications, such as the curved geometry dictated by the aerodynamics re-

quirements in the aerospace industry, and/or must account for the presence of embedded cut-outs, which are

needed for installation and inspection of other components. In such configurations, the use of high-fidelity

computational tools is necessary to resolve the complex distribution of the mechanical fields induced by the

curvature, the material heterogeneity and the regions of stress concentration.

The shell problem is in general a fully three-dimensional (3D) problem requiring fully 3D numerical

models; however, 3D models easily become overly demanding in terms of computational resources. As an

alternative, researchers have introduced the so-called two-dimensional (2D) theories, which are based on

specific assumptions on the behavior of the variables of interests throughout the thickness of the considered

structure and allow reducing the computational costs of the associated numerical models. In the literature,

it is possible to distinguish between the Equivalent Single Layer (ESL) theories and the Layer-Wise (LW)

theories. In ESL theories, see e.g. [3–5], the functions used to expand the displacement field along the

thickness are defined uniquely and are valid for each layer of the multilayered shells; on the other hand, the

Layer-Wise (LW) theories are based on a layer-by-layer expansion so that the displacement field is described

by piecewise functions that at the layers interfaces have only a C0 continuity [6–8]. The variety of theories

that fall in these two categories lead to many formulations, which have been elegantly treated in a unified

fashion by Carrera [9, 10] via the so-called Carrera Unified Formulation (CUF).

Similarly to the case of three-dimensional elasticity, the solution of the governing equations of shell theories

requires numerical methods because analytical or semi-analytical techniques are limited to very few specific

combinations of geometry, materials and boundary conditions as shown, for instance, in Refs.[11–13]. Among

the computational approaches available in the literature, the Finite Element Method (FEM) has been used

extensively in industry and it is still an active research area [14, 15]. Several alternative approaches have also

been proposed, among which, the Generalized Differential Quadrature [16, 17], the Ritz method [18–20], the

Isogeometric Analysis approach [21] are worth mentioning.

The discontinuous Galerkin (dG) method has also gained recent interest for applications involving elliptic

equations [22–24], including those governing the behavior of plates and shells [25–27]. In the dG method the

variables of interest are approximated by polynomials that are discontinuous at the elements interfaces, while

the continuity among nearby elements and the boundary conditions are enforced in a weak sense through

suitable integrals along the elements boundaries. This allows the dG method to be naturally amenable to the

use of general high-order basis functions, generally-shaped mesh elements and domain discretizations with

local h and p refinements.

In the context of high-order plates and shell theories, the dG method has been successfully employed

for the solution of the governing equations of multilayered elastic plates modelled by ESL and LW theories

[28, 29], to multilayered piezoelectric plates modelled by LW theories [30] and to multilayered shells modelled

by ESL theories [31]. To account for the presence of cut-outs, in Refs.[28, 29], the authors combined an easy-

to-generate background grid with an implicit representation of the cut-out geometry via a level set function;

2



however, their application was focused on multilayered plates.

The aim of this work is then to present an original high-fidelity numerical framework for the analysis of

multilayered shells with cut-outs based on high-order shell theories and the discontinuous Galerkin method.

The framework is termed high-fidelity because it allows the treatment of generally-curved multilayered shells

with generally-shaped cut-outs and it provides a high-order resolution of the mechanical fields of interest

throughout both shell thickness and the shell modelling domain. From the viewpoint of the geometry de-

scription, this is achieved by mapping the shell mid-surface via either user-defined analytic functions or

NURBS parametrizations, which allows the coupling of the proposed scheme with modern computer-aided-

design (CAD) software libraries, and by the use of a level set function to resolve the presence of cut-outs.

From the viewpoint of the high-order solution of the multilayered shell problem, high-order polynomials func-

tions are employed throughout both the shell thickness, following an ESL approach, and the shell modelling

domain, where the governing equations are solved via an Interior Penalty dG method previously developed

for multilayered plates and shells [28, 29, 31] and extended here to the analysis of multilayered shells with

implicitly-defined cut-outs.

The article is organized as follows: Sec.(2) introduces the geometry description, the constitutive behav-

ior and the ESL approximation, which are subsequently used to derive the governing equations of the 2D

boundary-value problem for multilayered shells starting from the Principle of Virtual Displacements from

three-dimensional elasticity; Sec.(3) recalls the Interior Penalty dG scheme for the solution of the governing

equation derived in Sec.(2), while Sec.(4) discusses the details of the application of the dG method for domain

discretizations with embedded cut-outs. In Sec.(5), the proposed method is employed to model the static

response of a cylindrical shell and a NURBS-based shell with an implicitly-defined cut-out. Finally, Sec.(6)

draws the conclusions and suggests some directions for further developments.

2. Boundary values problem

The considered generic multilayered shell consists of a stacking of Nℓ homogeneous, orthotropic and

perfectly-bonded layers. The ℓ-th layer has a constant thickness τ ⟨ℓ⟩ and occupies the volume V ⟨ℓ⟩ with

boundary ∂V ⟨ℓ⟩. The volume V of the shell is then the union of the layers’ volumes V = ∪Nℓ

ℓ=1V
⟨ℓ⟩ and its

boundary is denoted by ∂V . It follows that the shell thickness τ is given by τ ≡
∑Nℓ

ℓ=1 τ
⟨ℓ⟩.

In the remainder of the paper, the following conventions are adopted: a quantity referring to the ℓ-th

layer is labelled with a superscript ⟨ℓ⟩, Greek letter indices take values in the set {1, 2}, Latin letter indices

take values in the set {1, 2, 3}, and repeated subscripts imply summation unless explicitly stated otherwise.

2.1. Geometry description

The geometry of the shell is defined starting from the equation of a generic point x0 ∈ R3 of its mid-surface

x0 = x0(ξ1, ξ2), for {ξ1, ξ2} ∈ Ωξ, (1)
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Figure 1: NURBS surface with its grid of control points and detail of the covariant basis at a generic surface location.
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Figure 2: (a) Intersection between the zero-contour of the level set function and the shell mid-surface in R3. (b) Shell reference

domain Ωξ implicitly defined by the level set function of figure (a).
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where ξ1 and ξ2 are the two curvilinear variables spanning the shell’s reference domain Ωξ ⊂ R2. Using

Eq.(1), the following vectors are introduced

a1 ≡ ∂x0

∂ξ1
, a2 ≡ ∂x0

∂ξ2
, a3 ≡ a1 × a2, and n0 =

a3

||a3||
, (2)

where a1 and a2 are tangent to the shell mid-surface and n0 is the orthogonal unit vector to the mid-surface.

Then, the location of a generic point x ∈ R3 of the shell’s volume is given by

x(ξ1, ξ2, ξ3) ≡ x0(ξ1, ξ2) + ξ3n0(ξ1, ξ2), for {ξ1, ξ2, ξ3} ∈ Ωξ × Iξ3 , (3)

where Iξ3 ≡ [−τ/2, τ/2] is the interval spanned by the curvilinear variable ξ3. With reference to Eq.(3), it

is worth noting that the volume V ⟨ℓ⟩ of the generic ℓ-th layer is identified by x = x(ξ1, ξ2, ξ
⟨ℓ⟩
3b ≤ ξ3 ≤ ξ

⟨ℓ⟩
3t )

where ξ
⟨ℓ⟩
3b and ξ

⟨ℓ⟩
3t are the thickness coordinates of the ℓ-th layer’s bottom and top surfaces, respectively.

Starting from the mapping given in Eq.(3), one defines the local covariant basis, whose i-th vector is

defined as gi ≡ ∂x/∂ξi, and the local contravariant basis, whose i-th vector is defined gi · gj = δij and δij is

the Kronecker delta function. Additionally, the covariant components and the contravariant components of

the metric tensor are defined as gij ≡ gi · gj and gij ≡ gi · gj , respectively, while g denotes the determinant

of gij [32]. Finally, the vectors of the contravariant basis can be collected in the columns of the matrix R

such that the covariant components vξi and the Cartesian components vi of a generic vector are related by

v = Rvξ, (4)

where vξ ≡ {vξ1 , vξ2 , vξ3}⊺ and v ≡ {v1, v2, v3}⊺.

2.1.1. NURBS-based surface description

In the proposed method, Eq.(1) can be specified either in terms of a user-defined analytical function or in

terms of a NURBS-based parametrizations. Both approaches are considered here since the former is suitable

to generate simple geometries whereas the latter facilitates the coupling of the proposed method with modern

CAD software libraries. However, while employing user-defined analytical functions does not require further

details, it is worth recalling a few definitions for generally-curved surfaces represented via NURBS functions,

which will be used in the numerical tests presented in Sec.(5). In this section, repeated subscripts do not

imply summation.

The equation x0 = x0(ξ1, ξ2) of a point x0 belonging to a NURBS surface in the 3D space is defined

starting from a grid of (n + 1) × (m + 1) control points P ij and a set of rational surface basis functions

Sij(ξ1, ξ2) as follows

x0(ξ1, ξ2) ≡
n+1∑
i=1

m+1∑
j=1

P ijSij(ξ1, ξ2). (5)

The rational basis functions Sij(ξ1, ξ2) are defined in terms of the one-dimensional B-spline basis functions

as

Sij(ξ1, ξ2) =
hijNi,k(ξ1)Mj,l(ξ2)∑n+1

i=1

∑m+1
j=1 hijNi,k(ξ1)Mj,l(ξ2)

, (6)
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where hij is the weight of the point P ij , Ni,k(ξ1) is the i-th B-spline basis function in the direction ξ1 with

an order k and Mj,l(ξ2) is the j-th B-spline basis function in the direction ξ2 with an order l. The B-spline

basis functions are defined piece-wise in a recursive way accordingly to the Cox de Boor formula as

Ni,1(ξ) =

 1 for ξi ≤ ξ ≤ ξi+1

0 otherwise
, (7a)

Ni,k(ξ) =
(ξ − ξi)Ni,k−1(ξ)

ξi+k−1 − ξi
+

(ξi+k − ξ)Ni+1,k−1(ξ)

ξi+k − ξi+1
, (7b)

where the ξi is a generic element of the so-called knot vector
{
ξ1, ξ2, . . . , ξi, . . . , ξn+k+1

}
, which is a sequence

of non-decreasing value of the curvilinear variable and determines the intervals for the definition of the the

basis functions. If the first and last values are repeated k times, the curve is interpolatory at the first and

the last control points resulting in a B-spline with a so-called open knot vector. Figure (1) shows an example

of a NURBS surface with the corresponding grid of control points (the black dots in the figure); the figure

also shows the detail of the covariant basis at a generic location within the surface. The reader interested in

a comprehensive description of the NURBS theory is referred to the books by Rogers [33] and by Piegl and

Tiller [34].

2.1.2. Implicitly-defined cut-outs

Several approaches could be employed to resolve the presence of cut-outs in multilayered shells. For

example, one could partition the shell reference domain Ωξ into multiple patches having different geometry

descriptions, and then suitably combine them together. Here, to retain the relatively simple description of

the shell mid-surface as given in Eq.(1), the cut-outs are implicitly-defined via a level set function of the

curvilinear variables ξ1 and ξ2.

Consider a reference rectangle Πξ ≡ [ξL1 , ξ
U
1 ] × [ξL2 , ξ

U
2 ] spanned by the curvilinear variables ξ1 and ξ2,

where ξLα and ξUα denotes the limits of the rectangle for the curvilinear variable ξα, and its boundary ∂Πξ.

To exemplify, for a shell surface described by NURBS functions, Πξ is typically given by [0, 1]× [0, 1]. Then,

the reference domain Ωξ of a shell with cut-outs is defined as

Ωξ ≡ {{ξ1, ξ2} ∈ Πξ | ϕ(ξ1, ξ2) < 0} , (8)

while its boundary ∂Ωξ is defined as

∂Ωξ ≡ {{ξ1, ξ2} ∈ ∂Πξ | ϕ(ξ1, ξ2) < 0} ∪ Γξ, (9)

where Γξ ≡ {{ξ1, ξ2} ∈ Πξ| ϕ(ξ1, ξ2) = 0} denotes the boundary of the cut-out. It is clear that, for a shell

without cut-outs, Ωξ and ∂Ωξ coincide with Πξ and ∂Πξ, respectively. Moreover, it is worth noting that

the level set function can also be defined in the 3D space as ϕ = ϕ(x0) and then expressed in terms of the

curvilinear coordinates using Eq.(1), i.e. ϕ = ϕ(x0(ξ1, ξ2)) = ϕ(ξ1, ξ2). Figure (2a) shows an example of a

case where a cut-out is defined by intersecting a generally-curved surface with a level set function ϕ = ϕ(x0).
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The corresponding implicitly-defined reference domain Ωξ is displayed in Fig.(2b). The discretization of a

generic shell reference domain that is implicitly-defined using the approach described above is examined in

Sec.(4).

2.2. Strain-displacement relations

Let u ≡ {u1, u2, u3}⊺ be the vector collecting the Cartesian components of the displacement field and

γ ≡ {γ11, γ22, γ33, γ23, γ13, γ12}⊺ be the vector collecting the Cartesian components of the strain field in Voigt

notation. Then, within the small displacement assumption, the relationship between the displacement and

the strain components is written in matrix form as follows

γ = Ii
∂u

∂xi
, (10)

where the 6× 3 matrices Ii are defined as

I1 ≡



1 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 1 0


, I2 ≡



0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

1 0 0


and I3 ≡



0 0 0

0 0 0

0 0 1

0 1 0

1 0 0

0 0 0


. (11)

Upon using Eq.(4) in Eq.(10), the strain field can be expressed in terms of the covariant components

uξ{uξ1 , uξ2 , uξ3}⊺ of the displacement fields as

γ = Ii
∂(Ruξ)

∂xi
= Ii

(
∂R

∂ξj
uξ +R

∂uξ

∂ξj

)
∂ξj
∂xi

, (12)

where the second equality is obtained via a mere application of the chain rule for differentiation. It is worth

noting that the matrix R and its derivatives ∂R/∂ξj are determined once an explicit expression for the shell

mid-surface equation given in Eq.(1) is chosen. In fact, as briefly discussed in Appendix Appendix A, they

are obtained in terms of the derivatives of the map given in Eq.(1) with respect to the curvilinear coordinates

ξ1 and ξ2 up to third order.

2.3. Constitutive behavior

The constitutive behavior of a generic ℓ-th layer of the multilayered shells is assumed to be orthotropic

in a reference system identified by the unit vectors m
⟨ℓ⟩
1 , m

⟨ℓ⟩
2 and m

⟨ℓ⟩
3 . At the generic point x ∈ V ⟨ℓ⟩, such

a reference system is determined as follows: m
⟨ℓ⟩
3 coincides with n0; m

⟨ℓ⟩
1 is defined as

m
⟨ℓ⟩
1 ≡ Ra3

(θ⟨ℓ⟩)
g1

||g1||
, (13)

where the matrix Ra3
(θ⟨ℓ⟩) performs a rotation around the axis n0 of the lamination angle θ⟨ℓ⟩ between

the covariant basis vector g1 and fiber orientation of the ℓ-th layer m
⟨ℓ⟩
1 ; and m

⟨ℓ⟩
2 ≡ m

⟨ℓ⟩
3 ×m

⟨ℓ⟩
1 . In this
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orthotropic reference system, the relationship between the components of the stress field σ̃⟨ℓ⟩, also expressed

in Voigt notation, and the strain field γ̃⟨ℓ⟩ is given by

σ̃⟨ℓ⟩ = c̃⟨ℓ⟩γ̃⟨ℓ⟩, (14)

where c̃⟨ℓ⟩ is a 6 × 6 matrix whose elements are expressed in terms of the engineering constants [1]. The

relationship between the components of the stress field σ⟨ℓ⟩ and the strain field γ⟨ℓ⟩ in the global Cartesian

reference system is finally given as

σ⟨ℓ⟩ = c⟨ℓ⟩γ⟨ℓ⟩, (15)

where the matrix c⟨ℓ⟩ is obtained from c̃⟨ℓ⟩ by standard transformation procedures [35].

2.4. The Equivalent-Single-Layer theory for shells

In the context of displacement-based Equivalent-Single-Layer theories for multilayered plates and shells,

see e.g. [36, 9] and the references cited therein, suitable assumptions are introduced for the behavior of the

displacement field along the thickness of the multilayered structure. Here, it is assumed that the covariant

components uξi of the displacement field may be written as

u
⟨ℓ⟩
ξi

(ξ1, ξ2, ξ3) =

Ni∑
k=0

Uik(ξ1, ξ2)fk(ξ3), ∀ℓ = 1, . . . , Nℓ. (16)

where fk are known arbitrary functions of the thickness coordinate ξ3, Uik represent the new variables called

generalized displacements and Ni is the order of the expansion for the i-th displacement component. It

is noted that, consistently with ESL theories, Eq.(16) provides a through-the-thickness expansion of the

displacement components that is valid for all layers of the shell. This is why fk and Uik are not labelled with

the subscript ⟨ℓ⟩.

Following the notation introduced in [28, 29, 31], Eq.(16) is written in a more compact form as

u
⟨ℓ⟩
ξ = F (ξ3)U(ξ1, ξ2), ∀ℓ = 1, . . . , Nℓ, (17)

where F is a 3×NU matrix that opportunely collects the functions fk, and U is a NU × 1 vector containing

the generalized displacements being NU ≡ (N1 +N2 +N3 + 3).

Combining Eq.(17) and Eq.(12), the strain in Cartesian coordinates is obtained in terms of the generalized

displacements as

γ⟨ℓ⟩ = J0U + Jα
∂U

∂ξα
, ∀ℓ = 1, . . . , Nℓ, (18)

where the following matrices have been introduced

J0 ≡ Ii

(
∂ξj
∂xi

∂R

∂ξj
F +

∂ξ3
∂xi

R
dF

dξ3

)
and Jα ≡ Ii

∂ξα
∂xi

RF . (19)

Eventually, taking into account Eq.(15), the following expression is obtained for the stress in Cartesian

coordinates

σ⟨ℓ⟩ = c⟨ℓ⟩
(
J0U + Jα

∂U

∂ξα

)
, ℓ = 1, . . . , Nℓ, (20)

where, unlike the expression of the displacement and the strain fields given in Eqs.(17) and (18), respectively,

it is clear that the stress field is discontinuous between adjacent layers.
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2.5. Governing equations

In the preceding section, the displacement field, the strain field and the stress field have been expressed

as functions of the generalized displacements, which are collected in the vector U and represent the primary

unknowns of the multilayered shell problem. Then, it is possible to show [31] that the static behavior of a

multilayered shell modelled by ESL theories is governed by the following set of differential equations

− ∂

∂ξα

(
Qαβ

∂U

∂ξβ
+Rα3U

)
+R⊺

α3

∂U

∂ξα
+ S33U = B, in Ωξ, (21)

and the following set of boundary conditions να

(
Qαβ

∂U
∂ξβ

+Rα3U
)
= T , on ∂ΩξN

U = U , on ∂ΩξD

, (22)

where να is the α-th component of the unit vector perpendicular to the boundary ∂Ωξ of the shell reference

domain Ωξ, and ∂ΩξD and ∂ΩξN are the portions of the boundary where kinematic and mechanical boundary

conditions are applied, respectively. Additionally, in Eqs.(21) and (22), the following generalized stiffness

matrix, volume loads and boundary loads have been defined

Qαβ ≡
Nℓ∑
ℓ=1

∫ ξ
⟨ℓ⟩
3t

ξ
⟨ℓ⟩
3b

J⊺
αc

⟨ℓ⟩Jβ
√
g dξ3, (23a)

Rα3 ≡
Nℓ∑
ℓ=1

∫ ξ
⟨ℓ⟩
3t

ξ
⟨ℓ⟩
3b

J⊺
αc

⟨ℓ⟩J0
√
g dξ3, (23b)

S33 ≡
Nℓ∑
ℓ=1

∫ ξ
⟨ℓ⟩
3t

ξ
⟨ℓ⟩
3b

J⊺
0c

⟨ℓ⟩J0
√
g dξ3. (23c)

B ≡
(
F ⊺R⊺t

√
g
√

nigijnj

)
ξ3=±τ/2

+

Nℓ∑
ℓ=1

∫ ξ
⟨ℓ⟩
3t

ξ
⟨ℓ⟩
3b

F ⊺R⊺b
√
g dξ3, (24a)

T ≡
Nℓ∑
ℓ=1

∫ ξ
⟨ℓ⟩
3t

ξ
⟨ℓ⟩
3b

F ⊺R⊺t
⟨ℓ⟩√

g
√
nigijnj dξ3, (24b)

where ni is the i-th Cartesian component of the outer unit normal at a boundary of the shell volume V .

The interested reader is referred to Ref.[31] for a detailed derivation of Eqs.(21) and (22) and the related

generalized quantities.

3. Interior Penalty discontinuous Galerkin formulation

The solution of the governing equations given in Sec.(2.5) is based on the Interior Penalty discontinuous

Galerkin formulation recently proposed for multilayered plates and shells [28, 29, 31] and recalled in this

section for the sake of completeness.

The domain Ωξ is divided into Ne non-overlapping elements, which constitute the mesh and where the

generic e-th element has domain Ω
(e)
ξ and boundary ∂Ω

(e)
ξ . In the following, quantities associated to the e-th

9



element are denoted by the subscript (e). Over the mesh, the space Vhp of discontinuous polynomial basis

functions of maximum degree p is introduced as

Vhp ≡
{
v : Ωξ → R | v|

Ω
(e)
ξ

∈ P(e)
p ∀e = 1, ..., Ne

}
, (25)

where P(e)
p is the space of polynomials with maximum degree p. Similarly, the space VNU

hp of discontinuous

polynomial vector field is defined as VNU

hp ≡ (Vhp)
NU . Then, following Refs.[28, 29, 31], the Interior Penalty

dG formulation for Eqs.(21) and (22) reads

B(V ,Uh) = F (V ,B,T ,U), ∀V ∈ VNU

hp , (26)

where Uh denotes the approximate dG solution of Eqs.(21) and (22), and the bilinear form B(V ,Uh) and

the linear form F (V ,B,T ,U) have the following expressions

B(V ,Uh) ≡
∫
Ωh

∂V ⊺

∂ξα

(
Qαβ

∂Uh

∂ξβ
+Rα3Uh

)
+ V ⊺

(
R⊺

α3

∂Uh

∂ξα
+ S33Uh

)
+

−
∫
∂ΩhI

[[V ]]⊺α

{
Qαβ

∂Uh

∂ξβ
+Rα3Uh

}
+

{
∂V ⊺

∂ξα
Qαβ + V ⊺R⊺

β3

}
[[Uh]]β+

−
∫
∂ΩhD

ναV
⊺
(
Qαβ

∂Uh

∂ξβ
+Rα3Uh

)
+

(
∂V ⊺

∂ξα
Qαβ + V ⊺R⊺

β3

)
Uhνβ+

+

∫
∂ΩhI

µ[[V ]]⊺α[[Uh]]α +

∫
∂ΩhD

µV ⊺Uh (27)

and

F (V ,B,T ,U) ≡
∫
Ωh

V ⊺B +

∫
∂ΩhN

V ⊺T −
∫
∂ΩhD

(
∂V ⊺

∂ξα
Qαβ + V ⊺R⊺

β3

)
Uνβ +

∫
∂ΩhD

µV ⊺U . (28)

The integrals appearing in Eqs.(27) and (28) are usually referred to as broken integrals and are defined as∫
Ωh

• ≡
Ne∑
e=1

∫
Ω

(e)
ξ

•(e) dΩξ (29a)

and∫
∂ΩhI

• ≡
Ni∑
i=1

∫
∂Ω

(i)
ξI

•(i) d∂Ωξ,

∫
∂ΩhD

• ≡
Ne∑
e=1

∫
∂Ω

(e)
ξD

•(e) d∂Ωξ,

∫
∂ΩhN

• ≡
Ne∑
e=1

∫
∂Ω

(e)
ξN

•(e) d∂Ωξ, (29b)

where ∂Ω
(i)
ξI denotes the generic i-th interface between two adjacent elements, ∂Ω

(e)
ξD is the portion of ∂Ω

(e)
ξ

where kinematic boundary conditions are enforced and ∂Ω
(e)
ξN is the portion of ∂Ω

(e)
ξ where mechanical

boundary conditions are enforced. Additionally, in Eqs.(27) and (28), µ is the penalty parameter, while {•}

and [[•]]α are the average and jump operators, respectively, defined as

{•}(i) ≡ 1

2

(
•(e) + •(e

′)
)

and [[•]](i)α ≡ ν(e)α •(e) +ν(e
′)

α •(e
′), (30)

being e and e′ the indices of two adjacent elements sharing the interface boundary i.

The interested reader is referred to Refs.[28, 29, 31] for a detailed derivation of the Interior Penalty dG

formulation employed in this work.
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4. Implicitly-defined mesh

The discontinuous Galerkin formulation described in Sec.(3) is not limited to a specific choice of the type

of mesh elements and could be used in combination with different discretization strategies (including, e.g.,

triangular or polygonal elements) provided that the corresponding quadrature rules to evaluate the integrals

appearing in Eqs.(27) and (28) may be available.

In this work, with reference to the implicit representation of the shell reference domain Ωξ as discussed

in Sec.(2.1.2), the discretization of Ωξ is obtained by intersecting a structured background grid and the

level set function ϕ = ϕ(ξ1, ξ2). Let C
(e)
ξ denote a generic cell of the background grid generated for the

reference rectangle Πξ and ∂C
(e)
ξ denote its boundary. Then, the domain Ω

(e)
ξ and the boundary ∂Ω

(e)
ξ of the

corresponding implicitly-defined mesh element are defined as

Ω
(e)
ξ = C

(e)
ξ ∩ Ωξ and ∂Ω

(e)
ξ = (∂C

(e)
ξ ∩ Ωξ) ∪ (C

(e)
ξ ∩ Γξ). (31)

It follows that the implicitly-defined elements are classified into the following groups: the group of entire

elements, which fall completely inside the shell reference domain Ωξ; the group of empty elements, which fall

completely outside Ωξ and the group of partial elements, which are cut by Γξ. Because of the arbitrariness

of the level set function, partial elements may include elements with a very small volume fraction, which are

then referred to as small elements. Small elements can cause an ill-conditioning of the final linear system and,

therefore, they are merged with nearby entire elements or partial elements with a sufficiently large volume

fraction. Entire and partial elements used in the merging strategy are then referred to as extended elements.

Figure (3a) shows the element classification when a 9×9 background grid is employed to initially subdivide

the reference rectangle Πξ, whereas Fig.(3b) shows the corresponding implicitly-defined mesh after the small

elements have been merged with their neighbors. As a final remark, it is worth stressing that the domain

and the boundary integrals appearing in Eqs.(27) and (28) require suitable quadrature rules. For entire

elements, which comprise the majority of the mesh elements, these integrals are evaluated using high-order

tensor-product Gauss-Legendre quadrature rules. On the other hand, the domain and the boundary integrals

over partial elements and element boundaries are evaluated using the high-order quadrature rules obtained

using the algorithm developed by Saye [37].

5. Numerical results

In this section, the capabilities of the presented formulation are assessed by testing the static response

of a cylindrical multilayered shell and a generally-curved NURBS-based multilayered shell with a cut-out.

High-order Legendre polynomials are used for both as thickness function of the considered ESL theories and

as basis functions of the Interior Penalty dG scheme. To identify the adopted shell theory, the following

notation is adopted: EDN1N2N3
denotes the ESL theory with an order of expansion N1, N2 and N3 for the

covariant components uξ1 , uξ2 and uξ3 , respectively, of the displacement field. On the other hand, the dG

scheme is identified by order p of the polynomial basis functions. The FSDT is also considered by choosing

11



ξ1

ξ2

(a)

ξ1

ξ2

(b)

Figure 3: (a) Element classification according to their volume fraction. (b) Resulting mesh after the cell-merging strategy.

the ED110 and introducing the plane stress hypothesis. The properties of the considered shell sections and

materials are reported in Tab.(2) and Tab.(3), respectively. The obtained results are eventually compared

with those obtained with the FEM library Abaqus [38].

5.1. Fuselage panel with window

The first geometry investigated is a cylindrical shell with a cut-out as shown in Fig.(4). The dimensions

and the level set are chosen in order to resemble a fuselage panel with a window. The reference surface is

Table 1: Quantities entering the parametric equation of the considered shell reference surfaces.

Fuselage panel NURBS-based shell

Rf 3 m Hn 50 cm

θf π/12 Dn 5 cm

Lf 60 cm Ln 60 cm

af 15 cm an 8.5 cm

bf 22.5 cm dn 3

df 3 x1n 15 cm

x2n 12 cm

12



Table 2: Properties of the considered shell sections.

Shell ID Material Layup Layer(s) thickness

F1 (Single-layer) M1 [0] 10 cm

F2 (Single-layer) M2 [0] 10 cm

F3 (Multilayered) M2 [0/90]s 1 mm

F4 (Multilayered) M2 [+45/− 45]2 1 mm

N1 (Single-layer) M1 [0] 1 mm

N2 (Multilayered) M2 [0/90]s 1 mm

Table 3: Properties of the considered materials.

Material ID Property Component Value

M1 (Isotropic) Young’s modulus E/Er 1

Poisson’s ratio ν 0.25

M2 (Orthotropic) Young’s moduli E1/Er 25

E2/Er, E3/Er 1

Poisson’s ratios ν23, ν13, ν12 0.25

Shear moduli G23/Er 0.2

G13/Er, G12/Er 0.5

13



x1

x2

2bf
2af

Lf

(a)

x2

x3θf

Rf

(b)

x1

x2

x3

rx∗

(c)

Figure 4: Geometry of the fuselage panel with a window in three different views.

mapped by the equation

x0 =


ξ1

Rf sin(ξ2)

Rf cos(ξ2)

 , (32)

where ξ1 ∈ [−Lf/2,+Lf/2] and ξ2 ∈ [−θf ,+θf ] and Rf , Lf and θf are reported in Tab.(1). The level set

function used to define the cut-out is chosen as

ϕ(x0) = a
df

f − |x01|df −
∣∣∣∣ x02

bf/af

∣∣∣∣df

, (33)

where af , bf and df are also reported in Tab.(1). The shell has clamped external boundaries, traction-free

boundary conditions along the cut-out, and is subjected to a uniform pressure on the bottom surface identified

by x = x(ξ1, ξ2,−τf/2) as

t = −qfg
3. (34)

The four shell sections labelled as F1 to F4 in Tab.(2) are investigated, and the following non-dimensional

magnitude of the displacement is introduced

|u| ≡ |u| ·

(
τ3fEr

(Lf/2)4qf

)
. (35)

Consider the point x∗ in Fig.(4c) corresponding to ξ1 = ξ3 = 0 and ξ2 = α = arcsin (bf/Rf ). The value

of |u| at x∗ is computed using the FSDT and the ED444 theory and a dG scheme with polynomial order

14



p = 4, and is then compared with the value evaluated at the same location computed using Abaqus S4R

shell elements and C3D20R brick elements. Figures (5a), (5b), (5c) and (5d) report the obtained results as

functions of the overall number of degrees of freedom of the discrete system for the shell sections F1, F2, F3

and F4, respectively, and show how the proposed scheme is able to recover the FEM results. Moreover, by

looking at Fig.(5a), which corresponds to the case of the isotropic shell, one observes no noticeable difference

in the values of the displacement magnitude computed with the FSDT, the ED444 theory and the 3D FEM

model; differently, considering Fig.(5b), which corresponds to the case of the orthotropic shell, it is clear how

the high-order ED444 reproduces more adequately the 3D FEM solution with respect to the low-order FSDT.

The effect of the polynomial order p on the value of the non-dimensional displacement magnitude |u|

evaluated at the same point x∗ = x(0, α, 0) is shown in Fig.(6); Fig.(6a) is referred to the shell section F2

modelled with the ED444 theory, while Fig.(6b) is referred to the shell section F3 modelled with the FSDT.

In both cases, as expected, using p = 6 allows obtaining the converged solution with the smallest number of

degrees of freedom, whereas using p = 2 shows the slowest convergence rate.

Figure (7) shows the value of the non-dimensional displacement magnitude |u| as given in Eq.(35) along

the curve identified by varying ξ1 and by keeping constant ξ2 = α and ξ3 = 0; the curve is indicated as r in

Fig.(4c). Figures (7a), (7b), (7c) and (7d) are referred to the shell sections F1, F2, F3 and F4, respectively.

In all figures, the results referring to the present approach are obtained using the FSDT theory and a dG

scheme with polynomial order p = 4, whereas the reference solution (the dashed line in the figure) is obtained

using Abaqus S4R shell elements. Also in this case, the obtained results confirm the accuracy of the proposed

method.

The effect of the mesh size on the value of |u| evaluated along the same curve using the FSDT theory

and a dG scheme with polynomial order p = 2 is presented in Figs.(8a) and (8b) for the shell sections F2

and F3, respectively. Here, it is interesting to note that the multilayered shell displays a slower convergence

rate as a function of the number of cells in the background grid with respect to the case of the homogeneous

orthotropic shell.

As a concluding remark for the cylindrical shell test, the contour plots of the non-dimensional displace-

ment magnitude as given in Eq.(35) and two selected stress measures are shown in Fig.(9), where they are

superimposed on the deformed shape of the top surface of the shell. In particular, Fig.(9a) shows the contour

plot of the non-dimensional displacement magnitude for the shell sections F1, Fig.(9b) shows the contour plot

of the non-dimensional displacement magnitude for the shell sections F3, Fig.(9c) shows the contour plot of

the non-dimensional Von Mises stress σm for the shell sections F1, and Fig.(9d) shows the contour plot of the

non-dimensional stress component σ11 for the shell sections F3. To compute the stress measures introduced

above, the stress components are non-dimensional accordingly to the equation

σij ≡ σij ·

(
τ2f

(Lf/2)2qf

)
, (36)

where σij is a generic component of σ.
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(a) (b)

(c) (d)

Figure 5: Comparison between the convergence of the FEM solution and the convergence of the solution obtained by the present

formulation for the fuselage panel.
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(a) (b)

Figure 6: Comparison between the convergence of the solution obtained by the present formulation for different polynomials

orders p for the fuselage panel.

(a) (b)

(c) (d)

Figure 7: Comparison between the FEM solution and the solution obtained by the present formulation for the fuselage panel.
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(a) (b)

Figure 8: Comparison between the solution obtained by the present formulation for different numbers of mesh elements for the

fuselage panel.

5.2. Generally-curved NURBS-based shell

The second investigated geometry is defined in terms of NURBS functions as described by Eq.(5) where

ξ1 ∈ [0, 1] and ξ2 ∈ [0, 1], the control points P ij and their weights are given in Appendix Appendix B, and Sij

are the rational surface basis functions defined by the open knot vector {0, 0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1, 1, 1}

for both ξ1 and ξ2. It is noted that in this case the shell is represented by non-orthogonal curvilinear

coordinates. The cut-out is obtained through the level set

ϕ(x0) = adn
n − |x01 − x1n|dn − |x02 − x2n|dn , (37)

where an, dn, x1n and x2n are reported in Tab.(1). The resulting shell geometry is displayed in Fig.(10).

The shell is subjected to clamped boundary conditions on its lateral surfaces and traction free boundary

conditions along the cut-out boundary, while a uniform pressure t = qng
3 is applied on the bottom surface.

The two shell sections labelled as N1 and N2 in Tab.(2) are investigated. The accuracy of the proposed

method is assessed by comparing the solution computed with the present approach using the FSDT theory

and a dG scheme with polynomial order p = 6 and the solution computed using Abaqus S3R shell elements.

The comparison is shown in Fig.(11) in terms of the non-dimensional displacement magnitude defined as

|u| ≡ |u| ·
(

τ3nEr

(Ln/2)4qn

)
. (38)

The value of |u| is computed along the curve identified by the points x = x(β, ξ2, 0) and along the curve

identified by the points x = x(ξ1, α, 0), where β = 0.43 and α = 0.55. The former curve is indicated as s in

Fig.(10c), while the latter is indicated as t in Fig.(10c). Figures (11a) and (11c) refer to the shell section N1,

while Figs.(11b) and (11d) refer to the shell section N2. The obtained results confirm the accuracy of the

proposed method also for a shell described by NURBS functions.
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(a) (b)

(c) (d)

Figure 9: Deformed shape of the fuselage panel with superimposed contours of (a) the magnitude of the displacement and (c)

the Von Mises stress for the section F1, and (b) the magnitude of the displacement and (d) the stress component σ11 for the

section F3.

x1

x2

2an

2an

Hn

Ln

(a)

x2

x3

Hn

Dn

(b)

x1

x2

x3

t

s

(c)

Figure 10: Geometry of the NURBS-based shell in three different views.
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(a) (b)

(c) (d)

Figure 11: Comparison between the FEM solution and the solution obtained by the present formulation for the NURBS-based

shell.

The effect of the mesh size on the value of |u| evaluated along the same curves using the FSDT theory and

a dG scheme with polynomial order p = 2 is presented in Figs.(12a) and (12c) for the shell section N1 and in

Figs.(12b) and (12d) for the shell section N2. The same convergence behavior is observed for the considered

shell sections.

To conclude, Fig.(13) shows the deformed shape of the top surface of the considered shells with superim-

posed contour plots of the non-dimensional magnitude as given in Eq.(38) and two selected stress measures,

which are evaluated using the following non-dimensional stress components

σij ≡ σij ·
(

τ2n
(Ln/2)2qn

)
. (39)

The reported figures show the complex stress distribution induced by the interaction between the curvature

of the shell and the presence of the cut-out.
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(a) (b)

(c) (d)

Figure 12: Comparison between the solution obtained by the present formulation for different numbers of mesh elements for the

NURBS-based shell.
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(a) (b)

(c) (d)

Figure 13: Deformed shape of the NURBS-based shell with superimposed contours of (a) the magnitude of the displacement

and (c) the Von Mises stress for the section N1, and (b) the magnitude of the displacement and (d) the stress component σ22

for the section N2.
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6. Conclusions

A novel high-fidelity numerical scheme for the static analysis of multilayered shells with cut-outs has been

presented. The novel feature of the proposed scheme is the combined use of: i) an accurate representation

of the shell geometry via either user-defined analytic functions or NURBS parametrizations, which can be

imported from modern CAD libraries; ii) a flexible implicit representation of the embedded cut-outs via a level

set function; iii) an ESL approach based on the expansion of the covariant components of the displacement

field throughout the shell thickness, which allows considering in a unified fashion multiple higher-order shell

theories, including the classic FSDT; iv) the implicitly-defined mesh technique, whereby the shell reference

domain is discretized by intersecting an easy-to-generate background grid and the implicit representation of

the cut-outs; v) an Interior Penalty discontinuous Galerkin method, which allows resolving with high-order

accuracy the governing equations of the selected shell theory even in proximity of the embedded cut-outs

thanks to the use of high-order quadrature rules for implicitly-defined domains and boundaries. The above

features are tunable to obtain a high-order accurate treatment of the shell problem in terms of both the

representation of the shell geometry and the resolution of the mechanical fields. This motivates the term

high-fidelity.

To show the capabilities of the proposed scheme, a set of numerical tests involving the static response

of two multilayered shell geometries with a cut-out was performed and discussed. The first group of tests

geometry were focused on a cylindrical shell with a cut-out inspired by the geometry of fuselage panel with

a windows. The second group of tests geometry were focused on a generally-curved NURBS-based shell

where the level set function was chosen to represent an inspection door in the shell. Different shell sections,

including a homogeneous isotropic shell, a homogeneous orthotropic shell and various multilayered shells,

were tested. Several numerical tests were investigated and reported to show the effect of the mesh size and

the polynomial order on the computed solution. The obtained results were also compared with the results

obtained using the FEM library Abaqus. In all the considered tests cases, the proposed approach was able

to reproduce accurately the FEM results. Moreover, by solving the same shell problem using the FSDT, a

high-order shell theory and a 3D FEM model, it was shown that the high-order shell theory provides a more

accurate solution than the low-order FSDT when both theories are compared to a fully 3D scheme.
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Appendix A. Derivatives of the contravariant basis

The present formulation requires the knowledge of the matrix R, whose columns are the vectors gi of the

contravariant basis, and its derivatives with respect to the curvilinear variables ξ1 and ξ2. For example, R

and ∂R/∂ξi enter the definitions of the matrices Jα and J0 given in Eq.(19). However, despite the apparently

complex expressions, to obtain R and ∂R/∂ξi, one needs only the derivatives of the shell mid-surface map as

given in Eq.(1) with respect to ξ1 and ξ2 up to the third order. The aim of this appendix is then to provide

a set of easy-to-use formulas to compute the quantities of interest for the present formulation.

Let us introduce the derivatives of the map given in Eq.(1) with respect to ξ1 and ξ2. Besides a1 and a2

defined in Eq.(2), ones has

a11 ≡ ∂2x0

∂ξ21
, a12 ≡ ∂2x0

∂ξ1ξ2
, and a22 ≡ ∂2x0

∂ξ22
, (A.1)

and

a111 ≡ ∂3x0

∂ξ31
, a112 ≡ ∂3x0

∂ξ21ξ2
, a122 ≡ ∂3x0

∂ξ1ξ22
, and a222 ≡ ∂3x0

∂ξ32
. (A.2)

The derivatives of the vector a3 defined in Eq.(2) are easily computed as follows

∂a3

∂ξ1
= a11 × a2 + a1 × a12, (A.3a)

∂a3

∂ξ2
= a12 × a2 + a1 × a22, (A.3b)

∂2a3

∂ξ21
= a111 × a2 + 2 a11 × a12 + a1 × a112, (A.3c)

∂2a3

∂ξ1ξ2
= a112 × a2 + a11 × a22 + a12 × a12 + a1 × a122, (A.3d)

∂2a3

∂ξ22
= a122 × a2 + 2 a12 × a22 + a1 × a222. (A.3e)

Let us now introduce the scalar λ and the matrix M as

λ ≡ ||a3|| and M ≡ 1

λ
(I − n0n

⊺
0) (A.4)

where n0 is defined in Eq.(2) and I is the 3×3 identity matrix. The derivatives of the unit normal n0 are

then computed in terms of the derivatives of a3 as

∂n0

∂ξα
= M

∂a3

∂ξα
, (A.5a)

∂2n0

∂ξαξβ
= M

∂2a3

∂ξαξβ
− 1

λ

(
M

(
n⊺

0

∂a3

∂ξβ

)
+M

∂a3

∂ξβ
n⊺

0 + n0
∂a⊺

3

∂ξβ
M

)
∂a3

∂ξα
, (A.5b)

Finally, upon introducing the matrix P , whose columns are the vectors gi of the covariant basis, i.e.

P ≡
[
g1 g2 g3

]
=
[
a1 + ξ3

∂n0

∂ξ1
a2 + ξ3

∂n0

∂ξ2
n0

]
, (A.6)
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one has
∂P

∂ξ1
≡
[
a11 + ξ3

∂2n0

∂ξ21
a12 + ξ3

∂2n0

∂ξ1ξ2
∂n0

∂ξ1

]
∂P

∂ξ2
≡
[
a12 + ξ3

∂2n0

∂ξ1ξ2
a22 + ξ3

∂2n0

∂ξ22

∂n0

∂ξ2

]
∂P

∂ξ3
≡
[

∂n0

∂ξ1
∂n0

∂ξ2
0
] (A.7)

and
∂R

∂ξi
= −R

∂P ⊺

∂ξi
R, (A.8)

where Eq.(A.8) is obtained by using R = P−⊺ [32].

As a last comment, it is worth reporting that the derivatives of the shell mid-surface map described

by user-defined analytical functions were computed using the Python [39] library sympy [40] for symbolic

calculus, whereas the derivatives of the NURBS-based parametrizations were evaluated using the algorithms

described by Piegl and Tiller [34] and available in the library geomdl [41].

Appendix B. Control Points

For the sake of completeness, the control points used in the definition of the mid-surface of the NURBS-

based shell shown in Fig.(10) are listed in Tab.(B.4). For each control point it is reported the correspondent

indices i and j, the coordinates x1, x2 and x3 in mm and the weight hij .
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Table B.4: List of control points for the NURBS surface in Fig.(10).

i, j x1 x2 x3 hij i, j x1 x2 x3 hij i, j x1 x2 x3 hij

1,1 0.00 -300.00 500.00 1 4,1 153.89 -300.00 328.89 1 7,1 489.97 -300.00 108.82 1

1,2 0.00 -270.00 497.49 1 4,2 152.46 -270.00 327.10 1 7,2 484.12 -270.00 108.82 1

1,3 0.00 -210.00 492.48 1 4,3 150.54 -210.00 323.51 1 7,3 474.05 -210.00 108.83 1

1,4 0.00 -120.00 484.99 1 4,4 149.50 -120.00 318.55 1 7,4 463.69 -120.00 108.84 1

1,5 0.00 0.00 475.01 1 4,5 148.91 0.00 314.01 1 7,5 459.16 0.00 108.85 1

1,6 0.00 120.00 465.04 1 4,6 145.18 120.00 313.29 1 7,6 463.69 120.00 108.83 1

1,7 0.00 210.00 457.53 1 4,7 142.95 210.00 314.32 1 7,7 474.05 210.00 108.82 1

1,8 0.00 270.00 452.51 1 4,8 142.70 270.00 315.27 1 7,8 484.15 270.00 108.81 1

1,9 0.00 300.00 450.00 1 4,9 143.04 300.00 315.74 1 7,9 490.01 300.00 108.80 1

2,1 36.11 -300.00 483.13 1 5,1 304.62 -300.00 309.21 1 8,1 500.01 -300.00 36.28 1

2,2 36.06 -270.00 480.98 1 5,2 301.48 -270.00 308.51 1 8,2 493.99 -270.00 36.28 1

2,3 36.00 -210.00 476.67 1 5,3 296.52 -210.00 307.12 1 8,3 483.58 -210.00 36.28 1

2,4 36.01 -120.00 470.21 1 5,4 292.27 -120.00 305.19 1 8,4 472.81 -120.00 36.27 1

2,5 36.10 0.00 461.57 1 5,5 290.80 0.00 303.39 1 8,5 468.02 0.00 36.27 1

2,6 36.10 120.00 452.86 1 5,6 290.63 120.00 303.04 1 8,6 472.78 120.00 36.28 1

2,7 36.16 210.00 446.27 1 5,7 293.65 210.00 303.37 1 8,7 483.54 210.00 36.28 1

2,8 36.26 270.00 441.86 1 5,8 297.79 270.00 303.69 1 8,8 493.97 270.00 36.28 1

2,9 36.33 300.00 439.65 1 5,9 300.52 300.00 303.85 1 8,9 500.00 300.00 36.28 1

3,1 41.45 -300.00 387.42 1 6,1 441.80 -300.00 213.61 1 9,1 500.00 -300.00 0.00 1

3,2 41.14 -270.00 385.76 1 6,2 436.77 -270.00 213.52 1 9,2 493.98 -270.00 0.00 1

3,3 40.80 -210.00 382.44 1 6,3 428.27 -210.00 213.33 1 9,3 483.57 -210.00 0.00 1

3,4 40.79 -120.00 377.66 1 6,4 419.88 -120.00 213.07 1 9,4 472.80 -120.00 0.00 1

3,5 40.62 0.00 372.26 1 6,5 416.46 0.00 212.86 1 9,5 468.01 0.00 0.00 1

3,6 38.78 120.00 368.63 1 6,6 419.60 120.00 212.87 1 9,6 472.77 120.00 0.00 1

3,7 37.28 210.00 366.62 1 6,7 427.79 210.00 212.98 1 9,7 483.54 210.00 0.00 1

3,8 36.60 270.00 365.41 1 6,8 436.17 270.00 213.06 1 9,8 493.97 270.00 0.00 1

3,9 36.40 300.00 364.80 1 6,9 441.15 300.00 213.10 1 9,9 500.00 300.00 0.00 1

26



References

[1] R. Jones, Mechanics Of Composite Materials, Materials Science and Engineering Series, Taylor & Francis,

1998.

[2] J. Reddy, Theory and Analysis of Elastic Plates and Shells, Series in Systems and Control, CRC Press,

2006.

[3] J. Reddy, C. Liu, A higher-order shear deformation theory of laminated elastic shells, International

journal of engineering science 23 (3) (1985) 319–330.

[4] M. Cho, K.-O. Kim, M.-H. Kim, Efficient higher-order shell theory for laminated composites, Composite

Structures 34 (2) (1996) 197–212.

[5] E. Viola, F. Tornabene, N. Fantuzzi, General higher-order shear deformation theories for the free vibra-

tion analysis of completely doubly-curved laminated shells and panels, Composite Structures 95 (2013)

639–666.

[6] E. Carrera, Mixed layer-wise models for multilayered plates analysis, Composite Structures 43 (1) (1998)

57–70.

[7] J. N. Reddy, M. Savoia, Layer-wise shell theory for postbuckling of laminated circular cylindrical shells,

AIAA Journal 30 (8) (1992) 2148–2154.

[8] M. Epstein, H.-P. Huttelmaier, A finite element formulation for multilayered and thick plates, Computers

& Structures 16 (5) (1983) 645–650.

[9] E. Carrera, Theories and finite elements for multilayered plates and shells: a unified compact formulation

with numerical assessment and benchmarking, Archives of Computational Methods in Engineering 10 (3)

(2003) 215–296.

[10] E. Carrera, Introduction to the Unified Formulation, Wiley, 2014, Ch. 5, pp. 51–69.

[11] A. S. Sayyad, Y. M. Ghugal, Static and free vibration analysis of laminated composite and sandwich

spherical shells using a generalized higher-order shell theory, Composite Structures 219 (2019) 129–146.

[12] D. An, D. Xu, Z. Ni, Y. Su, B. Wang, R. Li, Finite integral transform method for analytical solutions of

static problems of cylindrical shell panels, European Journal of Mechanics - A/Solids 83 (2020) 104033.

[13] P. Kumari, S. Kar, Static behavior of arbitrarily supported composite laminated cylindrical shell panels:

An analytical 3d elasticity approach, Composite Structures 207 (2019) 949–965.

[14] G. M. Kulikov, S. V. Plotnikova, Exact geometry four-node solid-shell element for stress analysis of

functionally graded shell structures via advanced sas formulation, Mechanics of Advanced Materials and

Structures 27 (12) (2020) 948–964.

27



[15] A. Madeo, F. S. Liguori, G. Zucco, S. Fiore, An efficient isostatic mixed shell element for coarse mesh

solution, International Journal for Numerical Methods in Engineering 122 (1) (2021) 82–121.

[16] F. Tornabene, N. Fantuzzi, E. Viola, E. Carrera, Static analysis of doubly-curved anisotropic shells

and panels using cuf approach, differential geometry and differential quadrature method, Composite

Structures 107 (2014) 675–697.

[17] F. Tornabene, M. Viscoti, R. Dimitri, M. A. Aiello, Higher order formulations for doubly-curved shell

structures with a honeycomb core, Thin-Walled Structures 164 (2021) 107789.

[18] A. Milazzo, V. Oliveri, Post-buckling analysis of cracked multilayered composite plates by pb-2 rayleigh–

ritz method, Composite Structures 132 (2015) 75–86.

[19] V. Gulizzi, V. Oliveri, A. Milazzo, Buckling and post-buckling analysis of cracked stiffened panels via

an x-ritz method, Aerospace Science and Technology 86 (2019) 268–282.

[20] G. Sciascia, V. Oliveri, A. Milazzo, P. M. Weaver, Ritz solution for transient analysis of variable-stiffness

shell structures, AIAA Journal 58 (4) (2020) 1796–1810.

[21] T. Hughes, J. Cottrell, Y. Bazilevs, Isogeometric analysis: Cad, finite elements, nurbs, exact geometry

and mesh refinement, Computer Methods in Applied Mechanics and Engineering 194 (39) (2005) 4135–

4195.

[22] D. N. Arnold, F. Brezzi, Cockburn, B., L. D. Marini, Unified analysis of discontinuous galerkin methods

for elliptic problems, SIAM journal on numerical analysis 39 (5) (2002) 1749–1779.

[23] B. Rivière, S. Shaw, M. F. Wheeler, J. Whiteman, Discontinuous galerkin finite element methods for

linear elasticity and quasistatic linear viscoelasticity, Numerische Mathematik 95 (2003) 347–376.

[24] A. Ten Eyck, A. Lew, Discontinuous galerkin methods for non-linear elasticity, International Journal for

Numerical Methods in Engineering 67 (9) (2006) 1204–1243.

[25] L. Noels, R. Radovitzky, A new discontinuous galerkin method for kirchhoff–love shells, Computer

Methods in Applied Mechanics and Engineering 197 (33-40) (2008) 2901–2929.

[26] B. L. Talamini, R. Radovitzky, A discontinuous galerkin method for nonlinear shear-flexible shells,

Computer methods in applied mechanics and engineering 303 (2016) 128–162.
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[39] G. Van Rossum, F. L. Drake Jr, Python tutorial, Centrum voor Wiskunde en Informatica Amsterdam,

The Netherlands, 1995.
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