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Abstract 

In this study, the anodizing process based on the use of tartaric sulfuric acid solution (TSA) was 

carried out on metal substrate to evaluate for the first time its effect on the adhesion strength and 

corrosion resistance of aluminium alloy (i.e., AA5083) to fibre (i.e., basalt or glass) reinforced 

composite adhesive joints for nautical applications. Furthermore, some TSA anodized samples were 

soaked in a NaOH solution to investigate the influence of this post-immersion step on the joint 

performances. With the aim to improve the fibre-matrix adhesion in the composite substrate thus 

further increasing the overall mechanical response of the joint, glass and basalt fibres were treated 

with a silane coupling agent solution. The corrosion behaviour of the aluminium alloy was studied 

by electrochemical techniques. Samples morphology was analysed by scanning electron microscopy, 

while the interaction between aluminium alloy substrate and epoxy resin was studied through contact 

angle analysis and resin uptake tests. The effectiveness of the silane treatment was examined by 

means of Fourier transform infrared spectroscopy and quasi-static tensile tests carried out on dry glass 

and basalt fabrics. The mechanical response of the resulting joints was evaluated by means of quasi-

static tensile tests in accordance to ASTM D3528 standard.  
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1 Introduction

Joints play an important role in several industrial sectors because it is difficult or impossible to create 

a monolithic structure. Moreover, the increasing demand for light and strong structures leads to the 

use of different materials at the same time. Hence, metal alloys are widely used together with fibre 

reinforced polymers (FRPs) in order to obtain hybrid structures suitable for several engineering 

applications such as nautical, aerospace and automotive [1–3]. In the ship design for instance, the 

topside and the hull structures are critical from stiffness and strength point of views, respectively [4]. 

Hence, also depending on the boat length, high stability and good mechanical performances of the 

ships can be achieved by choosing high-stiffness materials such as aluminium alloy (i.e. 5000 series) 

and steel for the topside structures and a high-strength material such as fibre reinforced composite for 

the hull structures.  Consequently, structural joints are required in order to link these dissimilar 

materials. 

Composite and metal substrates can be joined mechanically [5,6], adhesively or through a 

combination of both techniques [7–9]. The first one uses a third component to join different substrates 

that could be a bolt or a rivet. It often requires the drilling of the substrates, thus creating stress 

concentration and damaged area. Conversely, adhesive joints present several advantages such as 

reduction of local delamination due to the absence of holes, significant weight and cost reduction. 

However, they cannot be used in structures which require subsequent disassembly for maintenance 

and inspection. There are two types of adhesive joints: i.e., secondary bonding, which involves an 

adhesive, and co-cured bonding, where, for example, a thermoset resin plays the role both of 

composite matrix and composite to metal adhesive at the same time [10].  

The constant increase of the use of composite materials in each industrial field generates a 

considerable environmental concern due to the widespread use of thermoset based composites 

reinforced with synthetic fibres (i.e., glass, carbon and Kevlar), because there are few recycling 

options and also because of the use of petroleum based raw materials. To overcome this problem, 



 

 

natural fibres as reinforcements and bio-thermoset resins as matrix has attracted a growing interest in 

the last years from industry and academia. In this context, Cicala et al. [11] developed a recyclable 

and bio-based epoxy formulation suitable for resin infusion by using a bio-based epoxy monomer and 

a cleavable ammine. Fibre reinforced laminates were manufactured through vacuum infusion process 

and chemically recycled in mild acetic acid aqueous solutions, thus obtaining clean fibres and a 

reusable thermoplastic. 

As concerns the reinforcement phase, natural fibres (i.e., jute, flax, ramie, hemp and so on) are very 

promising due to their specific properties, low price, large availability, health advantages and 

sustainability. Moreover, they are renewable and have a CO2-neutral life cycle, in contrast to their 

synthetic counterparts. Nevertheless, their hydrophilic nature, highly variable mechanical properties, 

poor adhesion with polymeric matrices as well as their lower mechanical properties in comparison to 

synthetic ones are the main drawbacks. Due to their mineral origin, basalt fibres represent a valid 

alternative to glass ones thanks to easy availability, high thermal stability, good chemical inertia and 

comparable mechanical properties. Furthermore, basalt is one of the most common rocks on earth, so 

it can be considered inexpensive and eco-friendly [12,13]. 

A wide literature shows that the mechanical performances of adhesive joints can be noticeably 

improved through surface treatments of the substrates [14–20]. The latter could be of different nature: 

i.e., mechanical, chemical, electrochemical, with coupling agents or laser [21]. For instance, 

Aghamohammadi et al. [22] evaluated the effect of four different surface treatments (i.e., mechanical 

abrasion with sandpaper, electrochemical treatments such as anodizing and two chemical etching) on 

the quasi-static flexural response of Fiber Metal Laminates (FMLs) made up of aluminium alloy 2024, 

basalt fibres and epoxy resin. The authors found that the anodizing process allowed to achieve the 

best mechanical properties of the resulting FMLs. These results were ascribed to the formation of 

nanoscopic pore on the metal surface, thus leading to better interlocking with the polymeric phase 

even if the highest roughness values were achieved through mechanical abrasion.  



 

 

The anodizing is an electrochemical process that allows creating an oxide layer on the aluminium 

surface whose thickness and microstructure can be tuned by parameters such as time, temperature, 

bath composition, hydrodynamics conditions and applied voltage [23–26]. If anodizing is carried out 

in acidic electrolyte such as sulphuric acid, chromic acid, etc. the anodic oxide self organizes 

assuming a regular porous structure with an inner barrier layer (tens nm thick) and an outer porous 

layer (tens m thick). The latter can be sealed to further enhance the corrosion resistance provided by 

the barrier layer by a simple hydration process. Zhang et al. demonstrated that using anodized 

aluminium for the production adhesive aluminium to composite joints enhanced their strength and 

corrosion resistance, since empty pores of anodic oxide absorb resin thus leading to a good 

mechanical interlocking [27]. However, they obtained the best results using a chromic acid bath with 

severe concerns about the environmental impact of Cr(VI), which is highly carcinogenic. 

Thus, alternative environmental friendly chromium-free electrolytes have been proposed in the 

literature for anodizing aluminum alloys. Among them, one of the most promising is Tartaric Sulfuric 

acid solution (TSA) successfully used for anodizing of AA2024 aluminum alloy [28]. In particular, 

tartaric acid was added to sulfuric acid anodizing baths to generate porous anodic film that provides 

high corrosion resistance to these alloys due to residues of tartaric acid in the pore solution. 

In this context, it is worth noting that to the best of our knowledge there are no previous papers on 

the improvement of the adhesion of metal to composite hybrid joints through anodic layers grown in 

TSA on aluminum alloys. Furthermore, the anodizing process based on TSA solution has never been 

used on 5000 series aluminum alloy for any of the previously described purposes. Hence, for the first 

time, an alternative anodizing process based on environmental friendly chromium-free electrolytes 

were employed to enhance the bonding strength of adhesive co-cured joints in double-strap 

configuration for nautical applications. Aluminium alloy 5083 is widely used in shipbuilding, due to 

its good corrosion resistance as well as super plastic properties that lead to an easier formability [29]. 

Glass and basalt fibres were chosen as reinforcement of the composite substrate to compare the 



 

 

traditional and most extensively used fibre in nautical field (i.e. glass) with its most promising eco-

friendly alternative (i.e. basalt) [12].  

Different treatments were carried out on the aluminum alloy to analyze their influences on the 

bonding strength and corrosion resistance of the adhesive joints: i.e. mechanical abrasion (as 

reference) and anodizing in two different and innovative anodizing baths. Moreover, silane coupling 

agent treatment was performed on glass and basalt fibres to improve their adhesion with the epoxy 

matrix and, as a consequence, to achieve an overall improvement of the joint performances. 

2  Experimental 

2.1 Materials 

Aluminium alloy 5083 with a nominal thickness of 3.5 mm was selected as the metal substrate in this 

study. Two woven plain weave fabrics were used as reinforcement of composite substrate: i.e., basalt 

with areal weight 220 g/m2 and glass 200 g/m2. As concerns the matrix phase, SuperSap® 300 and 

the cure inhibitor INH by Entropy Resins were mixed with the Recyclamine® 301 by Connora 

Technologies with the following mix ratios: 100:32:11 (resin: curing agent: INH) by weight. 

2.2 Metal surface treatments 

Two different types of treatment were carried out: i.e., mechanical abrasion (MA) and anodizing. The 

first one involved a mechanical abrasion phase with the aid of an orbital sander with sandpaper grit 

80 and then an acetone cleaning. The joints manufactured by using mechanical abraded metal 

substrate was considered as reference. 

For the anodizing process, the metal samples were first smoothed with sandpapers of increasing grit 

up to 2000 and then cleaned in an ultrasonic acetone bath. Afterwards, they were immersed in an 

etching 10%wt of NaOH aqueous solution, subsequently cleaned with deionized water and, after that, 

de-smutted in 30%v/v HNO3 aqueous solution. Two anodizing baths were investigated: 0.48 M 



 

 

sulfuric acid with the addition of 80 g/l of tartaric acid (TSA) [28] and 0.4 M phosphoric acid (PA). 

The process parameters are summarized in Tab. 1. 

Anodizing 

baths 

Temperature 

[°C] 

Voltage 

[V] 

Time 

[min] 

TSA 37 14 20 

PA 1 160 30 

Tab. 1: Process parameters of anodizing treatments 

After the anodizing process, the surface was dried at room temperature. Some TSA anodized samples 

were also etched in 0.1 M NaOH for 2 minutes in order to widen the pores of the anodic layers (TSA-

NaOH). 

2.3 Fibres surface treatments 

An amino-silane coupling agent, the (3-Aminopropyl)trimethoxysilane (SIL), was used to increase 

the fibre-matrix adhesion in composite substrates [30,31]. First, basalt and glass fabrics underwent a 

de-sizing process in order to remove possible dirt and commercial sizing. As suggested by the 

literature two approaches were used: i.e., thermal treatment (TT) [32] and immersion in acetone 

(ACE) [33]. As concerns thermal treatment, the fabrics were heated in an oven at 350°C for 3 hours. 

For ACE treatment, fabrics were soaked in acetone for 24 h, then cleaned with deionized water and 

dried in an oven at 80 °C for 24 hours.  

After the de-sizing phase, glass and basalt fabrics were subjected to a silane treatment as follows. 

Firstly, the solution, composed by 90%v/v of ethanol, 5%v/v of deionized water and 5%v/v of silane, 

was magnetically stirred at room temperature for 24 h in order to hydrolyse the silane molecules to 

form silanol groups, while the pH was adjusted to 4.3 by adding acetic acid [34]. Then, fabrics were 

immersed for 2 hours in the solution and, finally, dried in an oven at 80 °C for 24 hours.  



 

 

2.4 Joints manufacturing 

Double strap joints were manufactured through vacuum infusion process, cured for 24 hours at room 

temperature and then post-cured for 3 hours at 100 °C. In particular, two metal substrates (110 mm x 

160 mm) were placed side by side (i.e., in contact with each other) in a plain mold and twelve dry 

glass or basalt fabrics (50 mm x 160 mm) were located in correspondence of the overlap area (i.e., 

six above and six below the metal substrates as shown in Fig. 1). Afterwards, the mold was compacted 

by a vacuum bag and then the fabrics were impregnated by resin, which flows through, mainly driven 

by the applied vacuum. After the curing process, each resulting panel (160 mm width, 220 mm length) 

was cut with a rotating blade to obtain five specimens having width equal to 25 mm for each 

condition. 

 

Fig. 1: Tensile testing sample section 

2.5 Quasi-static tensile tests 

Five samples for each condition were tested in tensile configuration according to ASTM D3528 

standard by using an electromechanical testing machine WANCE model ETM-C, equipped with a 

load cell of 50 kN. The crosshead speed was set equal to 1.27 mm/min. The strain of the specimens 

was evaluated trough a YYU-10/50 extensometer with a gauge length of 50 mm and a full-scale value 

equal to 20% coupled to the testing machine.  

The shear strength of the joint was calculated by the equation: 

 
𝐽𝑜𝑖𝑛𝑡 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ =

𝑃𝑚𝑎𝑥

2𝐴
 

(1) 

 



 

 

Where Pmax is the maximum load and A is the overlap area. For sake of simplicity, peel stresses were 

neglected here. 

Furthermore, three glass and basalt dry fabrics (180 mm x 30 mm) for each condition were tested in 

tensile configuration in order to evaluate the influence of the de-sizing process on their mechanical 

performances.  In particular, tensile tests were carried out on “as supplied” (AS), “pre-treated” (i.e. 

TT and ACE) and “silane treated” fabrics.  

2.6 Analysis of the treated surfaces  

The surface of electrochemically treated aluminium was observed by a Philips XL30 ESEM scanning 

electron microscope coupled with EDX equipment to evaluate the presence and the dimension of pore 

generated by the anodizing process. 

In order to evaluate the chemical affinity between the anodic layer and the resin, the contact angle of 

a drop of resin on the top of aluminium alloy substrate was measured using ImageJ software. Four 

samples were analysed for each treatment. 

Furthermore, the resin entrapped inside the pores of the anodized aluminium alloy was estimated by 

weighing the samples both after the deposition of a resin drop and after its removal, by using an 

analytical balance model AX 224 (Sartorius Italy) with high resolution (i.e., 0.1 mg). In details, the 

same amount of resin drop (~ 20 mg) were deposited on the sample by using a pipette and after 10 

minutes, the resin drop were removed by using a lab spatula prior to weight the sample for evaluating 

the resin entrapped in the oxide pores. Four samples were weighted for each treatment. The resin 

uptake was evaluated using the following equation: 

 
𝑅𝑢𝑝 =

𝑊𝑤𝑖𝑡ℎ 𝑑𝑟𝑜𝑝 − 𝑊𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑑𝑟𝑜𝑝

𝑆
 

(2) 

 

where 𝑊𝑤𝑖𝑡ℎ 𝑑𝑟𝑜𝑝 and 𝑊𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑑𝑟𝑜𝑝 are the weight of the sample before and after the removal of resin 

drop, respectively, and S is the area where the resin was trapped. 



 

 

Fourier transform infrared spectroscopy (FT-IR) analysis was carried out by using Perkin Elmer 

spectrometer model Spectrum II to evaluate the presence of functional groups typical of amino-silane 

on the fabrics surface as well as to verify the correct removal of commercial sizing. The transmittance 

spectrum was recorded in the frequency range of 450–4000 cm-1 with a resolution of 4 cm-1. 

2.7 Corrosion test 

The corrosion behaviour of the specimens was studied by open circuit potential (OCP) measurements 

and electrochemical impedance spectroscopy (EIS) using a Parstat 2263 (PAR) controlled by 

Electrochemistry Power Suite software. The samples were dipped in 3.5%wt NaCl aqueous solution 

and in a three electrode cell, where the aluminium coupon was the working electrode, a Pt net was 

used as counter electrode and a silver/silver chloride electrode (0.197 V vs. SHE) was used as 

reference. Electrochemical Impedance spectra were recorded by imposing a sinusoidal stimulus of 10 

mV amplitude with a frequency ranging from 0.1 Hz to 100 kHz and the resulting spectra were fitted 

using Zsimp software. All measurements were carried out at room temperature and under atmospheric 

pressure. 

3 Results and discussion 

3.1 Metal surface treatments  

Fig. 2a shows the current density vs time curve recorded during the potentiostatic anodizing of 

AA5083 in TSA (see Tab. 1). The high imposed potential allows the growth of coarse pores during 

the anodizing process more suitable to host the epoxy resin used as adhesive of the joint as well as 

composite matrix [35]. The current response presented in Fig. 2 (a) indicates that during the 

potentiostatic hold, the current density reaches a value of ~ 11 mA·cm-2, and the circulated charge is 

around 13 C·cm-2. A lower value (~ 30 A·cm-2) is reached during the anodizing in phosphoric acid 

and the circulated charge is roughly around 0.1 C·cm-2 (Fig. 2 (b)), thus much lower than that 

necessary in TSA even if the process conditions are more severe (i.e., 160 V at 1°C). 



 

 

 

Fig. 2: Current density vs time during anodizing in different bath: (a) TSA and (b) PA. 

According to SEM micrographs showing the surface of the anodized alloy, the pores have very small 

diameters (in the order of a few nm), that can be slightly widened by an alkaline etching in NaOH 

solution (compare Fig. 3 (a) and Fig. 3 (b)). If the anodizing is carried out in phosphoric acid solution, 

the pores are significantly larger than those grown in TSA (see Fig. 3 (c)). In Fig. S1 are shown SEM 

micrographs at lower magnification. 

 

Fig. 3: SEM micrographs of Al 5083 surface after anodizing in (a) TSA, (b) TSA-NaOH and 

(c) PA 



 

 

Fig. 4 reports the average contact angle between the resin drop and the surface of mechanically sanded 

and anodized Al alloys. The anodizing reduces the contact angle suggesting an improved wettability 

of the substrate, i.e. the presence of the porous layer enhances the chemical affinity between the 

substrate and the resin. Notably, the lowest contact angle was measured for the alloy anodized in TSA 

probably due to tartrate ions (namely C4H4O6
2−) contained inside the oxide incorporated during the 

anodizing process [26]. This result is in agreement with the dependence of the resin uptake as a 

function of the surface treatment (see Fig. 5). The anodizing in phosphoric acid does not provide a 

significant increase of the resin uptake with respect to the mechanically sanded alloy. Conversely, 

anodizing in TSA allows to double the resin uptake of the alloy, and pore widening due to the alkaline 

etching enhances of 300% the resin uptake. Thus, matching the improved chemical affinity between 

the substrate and the oxide with the pore widening is a promising strategy to improve the joint 

performance. 

 

Fig. 4: Contact angle values at varying metal treatment 



 

 

 

Fig. 5: Resin uptake values at varying metal treatment 

The effect of surface treatment on the corrosion resistance of AA 5083 was studied in highly 

aggressive 3.5% NaCl solution by measuring the open circuit potential and by recording 

electrochemical impedance spectra. Fig. 6 shows the OCP vs time curves for mechanically polished 

as well as anodized alloys. The behaviour of OCP vs. time curves can be explained by considering 

the oxide porosity for each substrate surface treatment as well as the thickness of the barrier layer 

beneath. The most negative value was measured for MA due to the presence of a poorly passivated 

surface. More positive values were measured for anodized alloys due to the presence of the anodic 

oxide. Wider pores and thinner barrier layer (TSA-NaOH and PAA), helps chlorides diffusion and 

loss of passivity efficacy. The corresponding EIS spectra (recorded at OCP) are reported in the 

Nyquist representation in Fig. 7. They look like depressed semicircles with a diameter changing of 

several orders of magnitude. This statement can be better appreciated by fitting the spectra according 

to the equivalent circuit of Fig. 7, where Rel is the electrolyte resistance, Rp, the polarization resistance 

and Qox is a Constant Phase Element (CPE) introduced to model the non-ideal capacitance of the 

anodic oxide. The polarization resistance of Al 5083 anodized in TSA is 2-3 orders of magnitude 



 

 

higher than that estimated for MA alloy, because the latter led to a poor quality and rough surface 

[22]. Moreover, after alkaline etching in NaOH, RP remains significantly higher (see Tab. 2). 

 

Fig. 6: OCP vs time 

 

Fig. 7: Nyquist diagram and the equivalent circuit 



 

 

 

 

 

Rel 

[Ω cm2] 

Qox 

[S sn cm-2] 

n 

Rp 

[Ω cm2] 

2 

MA 17 5.0 × 10-5 0.93 1950 2.3 × 10-3 

PA 18 2.0 × 10-7 0.92 4.0 × 104 8.3 × 10-4 

TSA 18.5 1.0 × 10-6 0.94 6.7 × 105 3.5 × 10-3 

TSA-NaOH 13.2 2.5 × 10-6 0.88 1.6 × 105 2.0 × 10-2                                                                                                                                                                           

Tab. 2: Fitting parameter of EIS spectra of Fig. 7 according to equivalent circuit 

3.2 Mechanical properties of the joints with treated metal 

According to the results relating to the metal surface treatments (see section 3.1), anodizing in PA 

was excluded due to the poor corrosion resistance and the low resin uptake. Hence, only anodizing in 

TSA (without and with a post-immersion step in NaOH solution) was selected to improve the 

mechanical performance of the joints whereas mechanical abrasion (MA) was carried out as reference 

treatment. Fig. 8 compares the average values (and related standard deviation) of the joint shear 

strength of the specimens at the different metal treatments. 

 

Fig. 8: Joint shear strength at varying metal treatment 



 

 

The results of the tensile test confirm that the anodizing in TSA allows to noticeably improve the 

shear strength of the joint compared to the reference MA joints (i.e. +63.4% and +54% for basalt and 

glass samples, respectively).  Furthermore, the post-immersion in NaOH represent a useful step, 

leading to further improvements of tensile strength equal to + 83.7% and + 66.3%, for basalt and 

glass samples, respectively.  

These increments can be explained by taking into account the observed failure modes that are quite 

similar in joints with basalt and glass fibres. It can be evidenced that the failure mode experienced by 

the MA joints is adhesive (Fig. 9 (a)). In particular, only small traces of resin are visible on the metal 

surface, thus explaining the quite low adhesion resistance of these joints. On the contrary, TSA joints 

failed by partially cohesive mechanism, due to the adhesion improvement caused by the anodizing 

treatment. Indeed, as clearly shown in Fig. 9 (b), a greater amount of resin remains homogeneously 

distributed on the aluminum surface, for both kinds of joints. 

 

Fig. 9: Typical fracture surfaces of basalt joints: (a) MA, (b) TSA (c) TSA-NaOH and (d) 

TSA-NaOH with delamination 



 

 

As previously stated, the best tensile performance was evidenced by TSA-NaOH samples, regardless 

of the kind of fibre used as reinforcement of composite substrate. Indeed, the post-immersion in 

NaOH 0.1 M solution of the aluminium substrate allows to further improve the strength of the joint: 

i.e., the failure mode became fully cohesive, as shown by the homogeneous resin layer clearly visible 

on the metal surface (Fig. 9 (c)). This achievement can be addressed to the pores widening effect due 

to the post-immersion in NaOH solution, as shown by the contact angle and resin uptake results. 

Furthermore, it can be noted that some TSA-NaOH joints experienced delamination failure of the 

composite substrate (Fig. 9 (d)). This experimental evidence is quite noteworthy because it means 

that, through the anodizing treatment in TSA followed by the post-immersion step in NaOH, the 

composite substrate became the weakest point of the joint, due to the noticeable increase of the metal 

to composite adhesion. 

3.3 Fibres surface treatments 

Typical load vs displacement curves for each kind of fabric are shown in Fig. 10. In particular, as 

previously written, codes “AS”, “TT” or “ACE” will be used to identify as supplied, thermally treated 

or soaked in acetone fabrics, respectively. Furthermore, these codes were coupled with the suffix 

“SIL” if the silane treatment was performed. 

 

 

Fig. 10: Typical load vs displacement curves for (a) basalt and (b) glass fabrics 

 



 

 

It is worth of noting that, regardless of the kind of fibre (i.e., basalt or glass), the thermal treatment 

significantly reduces the fabric tensile strength. Conversely, the acetone treatment does not affect it. 

As suggested by literature [36–38], thermal treatment correctly removes the sizing but it also could 

lead to the thermal degradation of the fibres. Furthermore, tensile strength reduction can occur 

because the removal of the organic layer exposes the defects of the fibres. This contribution can be 

recovered by carrying out the silane treatment that allows the covering of preexisting defects. On the 

contrary, the acetone treatment does not affect fibres strength, but it does not properly remove the 

whole commercial sizing, as reported in previous papers [39,40]. 

In Fig. 11 are shown the SEM micrographs relating to the fabrics with and without de-sizing process.  

 

Fig. 11: SEM micrographs of fabrics with and without de-sizing process: (a) basalt-AS; (b) 

glass-AS; (c) basalt-TT; (d) glass -TT; (e) basalt -ACE; (f) glass -ACE  



 

 

It can be observed that the fibres surface of as supplied basalt and glass appears with high roughness 

due to the presence of an inhomogeneous sizing layer along the fibres. After both treatments (Fig. 

11c-f) the surface of fibres appears smoother, indicating that de-sizing processes are effective.  

Fig. 12 shows the SEM micrographs of the fabrics after silane treatments. It is possible to see the 

effectiveness of the silane treatment, since it can be observed a homogenous layer surrounding the 

fibres. 

 

Fig. 12: SEM micrographs of fabrics after silane treatments: (a) basalt-TT-SIL; (b) glass-TT-

SIL; (c) basalt-ACE-SIL; (d) glass-ACE-SIL  

 

FTIR measurements were carried out in order to evaluate the proper removal of the organic size due 

to the de-sizing treatments and the chemical modifications induced by silanization (see Fig. 13). 

Both basalt and glass silane treated fabrics (see Fig. 13 a and c) show major peaks centred at about 

2850 and 2920 cm-1 that are associated with the vibration of CH2 and CH3 functional groups of the 

silane coupling agent [33]. Furthermore, the spectra of both silane treated fabrics show a wide peak 

centred in the range between 3200 cm-1 and 3500 cm-1, relating to the N-H vibration stretching 



 

 

[33,41]. In Fig. 13b and Fig. 13d the peaks of silane treated fabrics at 1560 cm-1 and 1650 cm-1 

correspond respectively to the bending vibration of the primary amine (-NH2) [42] and symmetric 

and asymmetric deformation vibrations from protonated amines (-NH+) [33]. The peak at 1744 cm-1 

is characteristic of the C=O stretching [43]. On the other hand, the spectra of fabrics soaked in acetone 

present similar (i.e. centred at same wave number) but smaller peaks in comparison to silane treated 

fabrics (see Fig. 13a and c), thus confirming that this treatment is not able to properly remove the 

commercial sizing. Conversely, the spectra of the thermal treated fabrics do not show any peak related 

to the amino silane groups, evidencing the total removal of the commercial sizing.  

 

Fig. 13: FTIR spectra in two different wave number ranges of (a)-(b) basalt fabric, (c)-(d) 

glass fabric 

3.4 Effect of silane treatment on the mechanical properties of the joints 

In order to further improve the mechanical response of the joints, a silane treatment was chosen with 

the aim of increasing the fibre-matrix adhesion in the composite substrate. As evidenced by the results 

shown in section 3.2, thermal pre-treatments (TT) lead to a more significant reduction of the 



 

 

mechanical strength of dry fabrics than acetone-based one (ACE). Nevertheless, the silane treatment 

allows to achieve an overall increase of the joints strength, as evidenced in Tab. 3. Even in this case, 

these improvements can be explained by observing the fracture surface of the joints.  

 

 TSA-TT-SIL TSA-ACE-SIL TSA-NaOH-TT-SIL TSA-NaOH-ACE-SIL 

Basalt 

Joint shear strength 

[MPa] 

9.11 ± 1.17 10.87 ± 1.51 10.47 ± 0.69 11.01 ± 0.65 

Increments relative 

to TSA [%] 

+17.6 +40.3 - - 

Increments relative 

to TSA-NaOH [%] 

- - +20.2 +26.3 

Glass 

Tensile strength 

[MPa] 

8.79 ± 0.93 9.63 ± 1.08 10.61 ± 0.49 8.62 ± 0.45 

Increments relative 

to TSA [%] 

+25.4 +37.4 - - 

Increments relative 

to TSA-NaOH [%] 

- - +39.6 +13.4 

Tab. 3 

 TSA-TT-SIL TSA-ACE-SIL TSA-NaOH-TT-SIL TSA-NaOH-ACE-SIL 

Basalt 

Joint shear strength 

[MPa] 

9.11 ± 1.17 10.87 ± 1.51 10.47 ± 0.69 11.01 ± 0.65 



 

 

Increments relative 

to TSA [%] 

+17.6 +40.3 - - 

Increments relative 

to TSA-NaOH [%] 

- - +20.2 +26.3 

Glass 

Tensile strength 

[MPa] 

8.79 ± 0.93 9.63 ± 1.08 10.61 ± 0.49 8.62 ± 0.45 

Increments relative 

to TSA [%] 

+25.4 +37.4 - - 

Increments relative 

to TSA-NaOH [%] 

- - +39.6 +13.4 

Tab. 3: Effect of silane treatment on joints tensile strength 

By observing Fig. 14, it is worth noting that all the joints manufactured using silane treated fibres as 

reinforcing phase of the composite substrate showed cohesive failure mode. In more detail, Fig. 14 

(a) and (b) evidence that, regardless of the kind of fabric pre-treatment (i.e., TT or ACE), some basalt 

fibres (with surrounding epoxy matrix) remained on TSA treated aluminium surface after joint failure, 

thus showing the effectiveness of the silane treatment on the fibre-matrix adhesion. Furthermore, as 

already evidenced for the joint without silane treatment, the post-immersion in NaOH allows to 

further enhance the performance of the joint. Fig. 14 (c) and (d) evidence that both joints (i.e., TSA-

NaOH-TT-SIL and TSA-NaOH-ACE-SIL joints) experienced cohesive failure mode showing some 

traces of fibres on the metal surface. Glass joints evidenced quite similar failure modes. Hence, the 

related figures are not reported here for the sake of brevity.  



 

 

 

Fig. 14: Typical fracture surfaces of basalt joints: (a) TSA-TT-SIL, (b) TSA-ACE-SIL, (c) 

TSA-NaOH-TT-SIL, (d) TSA-NaOH-ACE-SIL 



 

 

4  Conclusions 

The present paper deals with the optimization of mechanical response and corrosion resistance of 

adhesive joints between aluminium alloy 5083 and fibre (i.e., basalt or glass) reinforced epoxy 

composite substrates.  To this scope, the metal alloy was treated with the process of tartaric sulfuric 

acid (TSA) anodizing in order to evaluate for the first time its effect on the joint performances. 

Furthermore, a post-immersion in NaOH solution of some TSA anodized samples was carried out. 

As regards the composite substrate, a silane treatment was carried out on glass and basalt fibres to 

improve the fibre-matrix adhesion thus further increasing the overall mechanical response of the joint. 

It was clearly shown that anodizing of AA5083 in TSA solution allows the growth of anodic layers 

with nanoscopic pores, able to improve the corrosion resistance of the alloys in highly aggressive 

chloride environment as well as to improve the adhesion with the composite substrate. Indeed, the 

polarization resistance grew by two orders of magnitude and the joint shear strength by about 50-60% 

(depend on glass or basalt fibre) compared to reference (i.e. MA). Furthermore, the alkaline etching 

in NaOH solution widens the pores leading to further enhance the resin uptake and, as a consequence, 

the resin interlocking (i.e. increment of about 83% of joint shear strength compared to MA, when 

basalt fibres were used) without compromising the corrosion resistance.  

In addition, the silane treatment process had a beneficial effect on the fibre-matrix adhesion in the 

composite substrate thus resulting in a further improvement of the mechanical response of the joint, 

regardless of the fibre used as reinforcement phase (i.e., glass or basalt). 

Overall, it was shown that the alternative anodizing process based on environmental friendly 

chromium-free electrolytes (i.e., TSA) can be considered a useful method to obtain metal to 

composite adhesive joints with higher mechanical strength (i.e., up to + 130% in comparison to the 

reference joint) as well as improved corrosion resistance.  
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