Nutrition, obesity and hormones

Marco Giammanco,1,2 Laura Lantieri,1,2 Gaetano Leto,3 Fulvio Plescia,1 Danila Di Majo1

1Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo; 2Research Unit in Endocrinology, Italian Society of Experimental Biology; 3Department of Sciences for Health Promotion and Mother-Child Care, University of Palermo, Italy

Abstract

Obesity is a chronic pathological condition with a multifactorial aetiology, characterised by an excessive body fat accumulation with multiple organ-specific consequences. Emerging evidence highlights that obesity appears to be associated with multiple alterations in the endocrine system. However, the mechanisms underlying the interactions between obesity and this system remain still controversial. This review discusses the impact of obesity on various endocrine systems and, in particular, would provide a general overview on the biochemical changes that may occur in each of these axes in association with obesity.

Introduction

Obesity is a chronic pathological condition with a multifactorial aetiology which comprises genetics, environment, metabolism, lifestyle, and behavioral components.1-3 Complex interactions between genetic and environmental factors which give rise to alterations of the endocrine and metabolic functions have been suggested to contribute to the pathogenesis of this disease.3 As these alterations are secondary, they may be often reversible following body weight loss. Therefore, these effects should be distinguished from those primary endocrine-metabolic disorders that, although uncommon, may foster the development of obesity. On the other hand, informations about those complications affecting the endocrine organs which occur in obese patients as a result of the accumulation of dysfunctional adipocytes also in ectopic sites, such as omental fat, pericardial and peri-renal fat are actually scanty.4 However they can act as amplifiers of metabolic effects thus worsening the cardiometabolic risk factors in these subjects.4

Growth hormone metabolism and obesity

Recent evidence indicates that a functional decreased secretion of somatotropin or growth hormone (GH) in obese subjects appears to be due to specific central mechanisms,5,6 such as an increase of the somatostatinergic tone, and/or to peripheral mechanisms such as increased circulating levels of insulin and free fatty acids (FFA).7 Furthermore, the reduction of the lipolytic and anabolic effects on muscles exerted by GH and its peripheral mediator, namely the insulin-like growth factor-1 (IGF-1), may further influence the accumulation of visceral fat and may also account for the related metabolic consequences. GH is a protein of 191 amino acids whose secretion from the pituitary is regulated by the hypothalamus. The neuroendocrine control of GH secretion is under the regulation of two neuropeptides, namely GH releasing hormone (GHRH) which stimulates GH secretion, and somatostatin (SS) which inhibits GH secretion. These molecules are produced in the neurons of the arcuate nucleus and ventromedial nucleus of the hypothalamus and in those of anterior periventricular nucleus respectively. GHRH and SS secretion are, in turn, regulated by central neurotransmitters, such as dopamine adrenaline, noradrenaline, serotonin, histamine and gamma aminobutyric acid.8 Furthermore, following the recent findings reshowing a stimulatory effect of the cholinergic system on GH secretion through the inhibition of the somatostatinergic tone, numerous studies have been directed to better clarify the role of this system on GH secretion.9 Furthermore, it is know that neuropeptides such as thyrotropin-releasing hormone (TRH), substance P and galanin contribute to modulate GH secretion via paracrine mechanisms.10 Moreover other hormones, such as leptin and ghrelin, have been recently proven to exert stimulatory effects on the release of GH.9 On the other hand the pituitary secretion of this hormone is pulsatile and follows a circadian rhythm with a peak concentration reached 1 hour after the onset of the sleep GH expression levels.
are up regulated by metabolic factors such as low blood sugar, amino acids, exercise and stress, while they are down-regulated by hyperglycemia, and increased circulating FFA. Other hormones, such glucocorticoids, thyroid hormones and gonadal hormones may act as GH regulators. Ultimately, the main effect of GH consists in stimulating mainly the hepatic synthesis and secretion of IGF-1, which mediates, in part, the metabolic effects of the pituitary hormone. The serum concentration of IGF-1, in turn exert a negative feedback on the secretion of GH.

GH exerts a lipolytic effects mainly on the visceral adipose tissue and, to a lesser extent, on the subcutaneous adipose tissue. These effects result in an increase of the circulating levels of FFA. The effect of GH on adipose tissue consists in a reduction of glucose uptake and an increased lipolysis. Unlike in adipose tissue, in the liver GH promotes the absorption of triglycerides by increasing the expression of lipoprotein lipase (LPL) and that of hepatic lipase. GH directly stimulates the uptake of amino acids into muscle cells, thus increasing protein synthesis and, consequently, muscle growth.

GH plays a pivotal role in the regulation of the intermediary metabolism, body composition and energy expenditure (on the other hand, the hyperglycaemic, lipolytic and anabolic effects of this hormone are well known). Overall, GH acts by directing energy metabolism preferentially toward lipids oxidation, then towards glucose oxidation and finally to protein oxidation. This sequence of events ultimately provides the energy derived from the food needed for protein synthesis. GH also affects the body composition via its anabolic, lipolytic, sodium retaining effects and promotes bone mineralization. Among the different metabolic effects induced by GH, those exerted on lipid metabolism were the first to be recognized. The stimulation of lipolysis in adipose tissue leads to an increase of the circulating FFA. The presence of GH receptors on preadipocytes and adipocytes is of crucial importance for the lipolytic effect of GH mediated by LPL and by hormone-sensitive lipase (HSL), respectively. LPL is the enzyme responsible for the hydrolysis of the triglycerides contained in VLDL and chylomicrons and which is involved in the production of circulating in FFA which, in turn, are internalized and stored in the adipocytes. GH negatively regulates LPL by inhibiting the enzyme activity rather than the transcription of the gene encoding for GH. In this way GH decreases the adipose accumulation mainly at the abdominal compartment level. It is worth noting that the facilitating effects of GH on the proliferation and differentiation of preadipocytes may be also exerted through the paracrine/autocrine activity of Insulin Growth Factor-1 (IGF-1) produced by the adipose tissue. Other enzyme involved in the regulation of adipogenesis such as HSL, promotes the normal lipolysis through the intracellular hydrolysis of triglycerides into glycerol and FFA. FFA are the energetic substrate needed for those tissues with a high metabolic rate, first of all skeletal muscle. The effects of GH on carbohydrate (CHO) metabolism are more complex. These effects may be indirectly regulated by antagonizing those induced by insulin. The final effect is the reduction in the metabolism of CHO to the detriment of lipids. The effects of GH on protein metabolism are also well known. Its anabolic activity on protein synthesis is the consequence of the stimulation of amino acid uptake by tissues and their incorporation in the proteins. The lipolytic and anabolic properties of GH may account for the role of this hormone in the regulation of body composition, its facilitating effects on the development of muscular component or its inhibiting effects on fat accumulation. Finally, the close relationship between nutrition and somatotropic secretion is evident during the fasting and the post-prandial period. In fact during fasting, and/or physical stress, GH secretion is amplified, while the excess of nutrients, such as glucose and FFA, inhibits the release of GH. Specific amino acids, in particular lysine and arginine (Arg), may also stimulate GH secretion. This phenomenon is a clear proof about the correlation between GH and amino acid metabolism whose aim is to act as anabolic hormone (thus boosting protein synthesis), in presence of an excess of amino acids. However, GH plays a marginal role during the postprandial phase, while high levels of insulin inhibit protein catabolism and lipolysis. The significant relationship between GH and protein metabolism is confirmed by the fact that GH deficiency results in a net loss of lean body mass. These findings strongly support the hypothesis of close relationship between nutritional status and somatotropic secretion.

Some nutritional factors function as regulators of the serum levels of Insulin-like growth factor-1 (IGF-1). For instance, malnutrition and protein deficiency, are associated with a low level of this hormone. In man a fasting condition induces a marked decrease of IGF-1 circulating levels which after 10 days results in a 15-20% reduction as compared with baseline values. However, IGF-1 levels return to normal values following re-feeding. These findings suggest that some nutritional factors may be involved in particular, in the modulation of IGF-1 secretion during malnutrition due to protein deficit nutrition. Several studies have shown that many protein foods are positively correlated with the IGF-1 levels, in particular: meat, fish, cheese, tofu, beans, lentils, yogurt, eggs, nuts, and seeds. In addition to protein foods, carbohydrates and lipids appear to have also a role in the modulation of IGF-1 secretion.

Until a few years ago, GH was thought to act mainly on children growth rather than to exert metabolic effects. However, growing evidence in these recent years has highlighted that GH plays a key role not only in puberty, but also in adulthood. For instance GH has been proven to be involved in a pathological condition which is well known as GH deficiency syndrome (GHD). This condition is characterized by metabolic, functional and structural changes such as increase of visceral fat, decrease of lean mass, osteopenia and/or osteoporosis, alterations in lipid and carbohydrate metabolism, decrease of muscle strength and exercise tolerance, increased mortality due cardiac and cerebrovascular accidents, reduced psycho-physical wellness and therefore reduced quality of life rating. Short term studies have shown that the biological alterations associated with GHD may be reversible upon treatment with recombinant GH (rhGH). Current guidelines for the diagnosis of GHD in adults are primarily based on the indications of the GH Research Society (GHRS), which indicate that the diagnosis of GHD, must be demonstrated by the stimulation tests of GH secretion. The new recommendations, published in 2011, suggest to submit to the test for GHD to the following patients: i) Subjects with signs and symptoms of hypothalamic-pituitary disease of endocrine, structural and/ or genetic origin; ii) Subjects who underwent cranial irradiation or clinical treatment for brain tumors; iii) Subjects with traumatic brain injury or subarachnoid hemorrhage.

In order to diagnose GHD in adult patients, only one stimulation test is needed. The measurement of basal levels of IGF-1, as well as that of other markers, has not been considered appropriate to distinguish between subjects with normal GH levels and GHD subjects. Although normal levels of IGF-1 does not rule out a severe GHD, very low levels are highly suspicious for GHD. Therefore, it is currently suggested that in the absence of other catabolic conditions, and/or liver disease, very low levels of IGF-1 may be considered diagnostic for the presence of severe GHD. Moreover, the deficiency of three additional pituitary hormones is
Body composition in adults with growth hormone deficiency syndrome

Adult patients with GH deficiency syndrome (GHD) show modifications of body composition.35,36 These patients have an increased fat mass (FM), with a characteristic distribution of fat in the abdomen, and a reduction of lean body mass (FFM).37,38 In addition, these patients show a reduction in total body water as compared to normal subjects.37-40 These alterations are present to a greater extent in patients whose hormone deficiency occurred during childhood than in patients whose deficiency occurred in adulthood.52 Furthermore, it has been reported that alterations in body composition are related to the severity of the GHD.53 Numerous studies have shown mainly a significant reduction of visceral FM and, to a lesser extent an increase of FFM in response to GH treatment.52,53

GH has been shown to stimulate not only the longitudinal bone growth during childhood and adolescence but also regulates bone turnover throughout the lifetime.59 Clinical evidence shows that adult patients with GHD have a significant reduction in bone mineral density, which mainly involves the trabecular bone and are at high risk of osteoporotic fractures of vertebral column.60 According to recent studies, the replacement therapy with rhGH induces important effects on bone metabolism.60 However these effects appears to be less marked in patients with adulthood GH than in patients with pediatric GH deficiency.55 This difference may be likely due to the attainment of a normal peak bone mass in patients who acquire the deficit in the elderly.51

Numerous epidemiological studies have demonstrated that adult hypopituitary patients with GHD undergoing replacement therapy for deficits of all pituitary hormones but not for GHD, had a shortened life expectancy and a twofold increased risk of cardiovascular and cerebrovascular diseases as compared to controls.62 Although many other factors may contribute to increase this risk, it was suggested that GHD might play a predominant role. In addition to the structural and functional alterations of cardiac muscle, the increased mortality from cardiovascular events in patients with GHD appears to be the result of changes in body composition, lipid metabolism, blood pressure, insulin resistance and presence of chronic inflammatory conditions.62,63

Adult patients with untreated GHD show a significant reduction in quality of life (QoL) in terms of reduction of vitality, tendency to social solitude and emotional alterations. These conditions may improve following a replacement therapy with GH. The positive effects of this therapy are due to an improvement in cognitive functions such as memory and concentration, mood, psychological well-being and physical strength. In particular, patients with juvenile-onset GHD QoL appear to be less influenced.51

Thyroid hormones nutrition and obesity

The pulsatile secretion and the circadian rhythms of thyroid hormones are stimulated by thyrotropin (TSH) produced by thyrotropic cells of the anterior pituitary. TSH secretion, in turn, is stimulated by TRH.64 The secretion of TSH is also inhibited by very small increases of thyroid hormones concentrations and in response to small decreases of triiodothyronine (T3) and thyroxine (T4). The physiological role of TRH is that to regulate thyroid hormone induced TSH secretion. Other mechanisms that mediate this effect are a decrease in the TRH secretion from the hypothalamus and a decrease of the number of TRH receptors on pituitary cells respectively. Furthermore, TRH activity can be inhibited by somatostatin, dopamine and elevated concentrations of glucocorticoids.64 In conclusion, the thyroid axis represents a classic example of feedback loop of endocrine system: hypothalamic TRH stimulates the pituitary TSH production which, in turn, stimulates the synthesis and secretion of thyroid hormone. Thyroid hormones, inhibit the production of TRH and TSH by a negative feedback mechanism.65 The homeostatic set point of hypophysial pituitary thyroid (HPT) Axis is determined by TSH.

Deiodinase (5’-iodothyronine deiodinase), is an enzymes that convert T3 to T4. Deiodination is the main metabolic pathway of thyroid hormone.66 The daily production of T3, account for the 20% of its total production, while the remaining 80% results from deiodination in peripheral tissues. The process of deiodination is mediated by a series of three types of enzymes i.e., the iodothyronine deiodinase (ID).67

Deiodinase I (ID-I), is important for the production of T3 from T4 in peripheral tissues. The enzyme is present in the kidney, in the endoplasmic reticulum of the liver cells and in the plasma membrane of renal and thyroid cells.68 Deiodinase II (ID-II),
This enzyme is present in the brain, pituitary, brown adipose tissue and placenta. In humans, ID-II is also expressed in the thyroid gland, heart, and skeletal muscle. ID-II is endowed with deiodinase activity located in the outer ring. Therefore it is important for the intracellular production of T3 in these tissues. It also keeps constant T4 levels in the central nervous system.68 Deiodinase III (ID-III) is present in the brain, skin, placenta and in some foetal tissues. It it endowed with deiodinase activity located only the inner ring and therefore allows the production of reverse T4 (rT4), an inactive form of T4, from T3.69

An increasing number of studies in these recent years has been carried out in order to investigate the possible relationship between body weight and thyroid function. It is well known that hyperthyroidism leads to weight loss while hypothyroidism is associated with weight gain and a generalized distribution of adipose tissue. However, the changes of the thyroid function in obesity are still controversial. In fact, obesity, and in particular the android phenotype, is associated with multiple endocrine abnormalities such as insulin resistance, gonadal dysfunction, alterations of both pituitary adrenal and somatotropic axis.70 On the other hand, the relationship between obesity and thyroid dysfunction are still not well understood.71 Obese subjects present alterations of the thyroid functions, in particular, an increase of TSH (in the absence of thyreoapeties), and that of T3, i.e., the metabolically active form of the hormone.72,73 Conversely, no changes are observed in total and free T4 whose levels are similar in obese and normal weight. In addition, fasting and overeating do not influence the concentrations of serum T4. This phenomenon demonstrates the lack of relationship between circulating Thyroid and body weight.74 Alterations in the negative feedback of HPT axis, occur in obese subject. These effects result in an increase of T3 that is not followed by a reduction of TSH. It is well known that in obese subjects TSH and body mass index (BMI) are positively correlated.75 In fact, many studies undertaken in children, adolescents, and adults have shown that TSH levels increased slightly in the obese subjects, compared to normal weight subjects. In a cross-sectional study, Knudsen et al.,76 showed that, in addition to the positive correlation between BMI and serum TSH, an increase in BMI is associated with an increase in serum TSH levels within 5 years. These data were confirmed by another longitudinal study of Svare et al.77 High levels of TSH in obesity may be due to a neuroendocrine dysfunction that causes an abnormal secretion. In particular, leptin, a hormone produced by adipocytes, has been shown to alter the HPA axis.78 In humans, leptin and TSH undergo a very similar circadian rhythm. Leptin deficiency is closely associated with the deregulation of pulsatile patterns and circadian rhythm of TSH secretion.79 These findings suggest a possible role of leptin in the regulation of TSH with resetting the thyroid axis.80,81 On the other hand the production of TSH is also regulated by neurotransmitters and hormones repletion as neuropeptide Y, α-melanocyte-stimulating hormone, and agouti-related peptide (AgRP) that regulate body weight and activate the hypothalamic thyrotropin-releasing hormone (TRH) neurons. These transmitters are influenced by leptin, which at peripheral level, modulates, also mono-deiodinase in different tissues, depending on the energy status. These results suggest that TSH levels may be considered as marker of alteration of the energy balance in obesity. In addition, the increased TSH levels may indicate the presence of a hormone-resistance status. Despite the increased levels of TSH, T4 remains elevated too. This effect seems to be due to a decreased expression of TSH receptors in peripheral tissues which, in turn, leads to a down-regulation of thyroid hormone receptors and consequently to an increase of TSH and free T4 (fT4) levels.82,83. Total and free T4 (fT4) levels do not undergo evident changes in obese subject, while a moderate increase in fT3 is associated with a slight increase in fT4, total T3 and thyroid volume respectively.84 The slight increase of fT4 levels in obese subjects could be interpreted as compensation mechanism following to an excessive accumulation of fat mass and an increased type II deiodinase activity that converts T4 to T3, in order to increase the energetic expenditure.85 In this context, a positive association between fT3/fT4 ratio (i.e., the deiodination index), waist circumference and BMI,86 has been highlighted in obese patients. These data suggest that, due to the increased deiodinase activity, a high rate of conversion from T4 to T3 may occur, as a compensatory mechanism to the increase of adipose tissue. These effects lead to an increase in the rate of basal metabolism and, consequently, to an improvement in energy expenditure. Ultimately, TSH and fT4 levels are elevated in obese patients. Assuming that the inappropriate increase of TSH is caused by a reduced inhibitory effect of leptin, then the increase of fT3 should be considered an adaptive mechanism to the changes in mono-deionization, that decrease to the rate of energetic source available for conversion into fat.87 In line with this hypothesis, the high levels of TSH in obese subjects tend to normal value following a substantial weight loss. In addition, thyrotoxic based therapy in obese patients with moderately elevated levels of TSH does not affect body weight or lipid profile. Clinical observations have highlighted that in the obese patients on diet, the treatment with T4 and T3, even at physiological doses, induces a subclinical hyperthyroidism. Therefore, this therapy should be discouraged in obese, euthyroid patients. These findings question the diagnosis of subclinical hypothyroidism in obesity and indicate that a slight increase in TSH levels is a consequence rather than a cause of obesity. Furthermore, as mentioned previously, thyroid hormones, in particular triiodothyronine or T3, should be used in the long term treatments of obesity due their ability to increase energy expenditure. However, due to the onset of thyroid toxic side effects, i.e., increased heart rate, cardiac hypertrophy, decreased lean body mass, alteration of hypothalamus-pituitary-thyroid axis, the clinical use of T3 as an anti-obesity drug has been abolished. Recently, it has been shown that the 3,5-diiodo-l-thyronine (T2), a naturally occurring iodothyronine produced by the thyroid, is endowed with biological activities similar to those of T3 but is devoid of tireotoxic effects.88 Recent experimental in vivo studies have shown that the administration of T2 in rats fed diets rich in lipids induces a decrease of circulating cholesterol and triglycerides and a reduction of body weight without inducing hepatic steatosis.89 These data demonstrate that multiple treatments with high doses of T2 inhibits the secretion of TSH and prevents the onset of hepatic steatosis in rats fed diets rich in lipids.89

Increasing evidence indicates the presence of possible interactions between nutrition and endocrine system. Food exerts marked short term and the long term effects on the production of hormones and their blood levels. At the same time, many physiological effects of foods are regulated by hormones.90 Thyroid function also is susceptible to acute and chronic alterations induced by quality and quantity of ingested nutrients. Thyroid hormones exert important functions aimed at maintaining energy homeostasis. In fact thyroid gland plays a central role in the regulation of energy metabolism, thermogenesis, glucose and lipid metabolism. Additionally, thyroid gland is also involved in the regulation of food intake.91 The effects of thyroid hormones on glucose metabolism influence several biological functions. In fact fT3 increases the rate of gastrointestinal absorption of carbohydrate, and modulate glycogenesis, gluconeogenesis and insulin secretion.91 On the other hand, carbohydrate play an important role in the metabolism of thyroid hormones.92
In this context although T₄₉ represent the main hormone secreted by thyroid gland, it is only a pro-hormone that need to be converted to T₃ in the peripheral tissues, through a deiodination reaction involving the outer rings of T₄. Numerous studies have shown that carbohydrate are able to significantly modulate the reactions of deiodination of T₄ to T₃. For instance, in humans, serum T₃ levels are directly correlated to the rate of CHO intake. This results in an increase of the thyroxine 5'-monodesiodase activity in the brown adipose tissue and in the liver. However no significant changes in serum levels of thyroid hormones occur.

Several studies have also revealed that, in humans the rate of synthesis of T₄ from T₃ that decreases during fasting and returns to normal levels during re-feeding. In particular, the re-feeding with CHO, is able to revert the changes occurred in serum levels of T₄, T₃, rT₃. Finally thyroid hormones have many effects on the regulation of lipids synthesis, absorption and metabolism. These molecules act on 3-hydroxy-3-methylglutaryl coenzyme A reductase, which is the key enzyme in the biosynthetic pathway of cholesterol. In addition, several studies have shown that serum lipids are associated with TSH levels. On the other hand, the increased consumption of dietary fats in Western-type diets, which is one of the main factors responsible for the increase in body weight, has been correlated with specific alterations of thyroid axis functions. Furthermore, it has been observed that the dietary intake of oxidized lipids may induce an increase in the plasma levels of total T₄, in part by interfering with the circulating levels of selenium, a component of the deiodinase type I enzyme whose role in the metabolism of thyroid hormones is well known. Finally, it is well established that TSH levels are correlated with circulating lipids. Early evidence have indicated that oxidized fats may increase T₄ levels.

Diet, obesity and hormones

Several studies have shown that the adoption of a Mediterranean diet (MD), provides protective effects against most of the widespread chronic diseases. In these studies, the concept of MD has been translated into a diet characterized by: i) a high consumption of vegetables, legumes, fruits and nuts, olive oil and cereals (which in the past were mainly wholemeal); ii) a moderate consumption of fish and dairy products (especially cheese and yogurt) and red wine during meals; iii) by a low consumption of red meat, while meat and saturated fatty acids. In line with these observation studies of Esposito et al. have reported that in adults the strict adherence to MD resulted in the prevention of hypertension, hypercholesterolemia, diabetes and obesity. On the other hand meta-analysis studies conducted by Sofi et al. have shown how MD act as a protective factor against all causes of mortality, in particular those related to cardiovascular disease or cancer, and also to Parkinson’s disease and Alzheimer’s disease. In a recent study carried out on Spanish and Italian subjects, Baldini showed how the younger generations seem to gradually and steadily leave the MD, in favor of new food trends which are characterized mainly by foods high in fat. The benefits of MD on healthy status are well documented. There is convincing evidence that the adherence to the traditional MD was associated with an increase in lifespan, a reduction in global mortality, lower incidence of coronary heart disease and atherosclerosis, metabolic syndrome (MetS) and the biochemical markers of Insuline resistance (IR), inflammation or risk of cardiovascualre diseases. However, few prospective studies have investigated the association between adherence to the MD and risk of obesity. There are several physiological effects that may explain why the key components of MD may protect subjects from increase of body weight thus preventing the onset of obesity. MD is rich in plant-based foods that provide a large amount of dietary fibres which increases satiety and increases the secretion of Cholecystokinin. The MD foods have a low energy density, a low glycemic index and a high water content. These characteristics provide a full satiety and a lower calories intake, thus fostering the prevention of weight gain. MD contains high levels of mono-unsaturated fat, which provide about 67% of energy from fat, and low levels of saturated and trans-unsaturated fats. This pattern of fatty acids expression may provide important benefits on the health status. In fact, diets rich in monounsaturated fat, appear to improve glucose metabolism, and increase post-prandial fat oxidation as compared to diets rich in saturated fats. These phenomena may provide, in part, an explanation on why the consumption of olive oil is less likely to cause an increase of body weight.

The history of milk is as old as the history of the mankind itself. Since several millennia milk has been one of the staple of foodstuffs. Different types of milk such as sheep, goat, donkey in addition to breast milk can be used for human consumption in the first period of life. However, in general when talking about milk, this term refers to cow’s milk. Milk is composed for 87% of water in which are dispersed protein of high biological value (3.3%), fats, (mainly saturated short-chain fats) (3.6%), easily digestible sugars (4.9%) mainly lactose, a disaccharide sugar composed of galactose and glucose. Vitamins which are present in large amounts in milk are, among the liposolubilis vitamins, vitamin A and carotenoids, and vitamin B1, B2, vit. B12 and pantothenic acid among the water-soluble vitamins. Among milk minerals, of particular importance for human nutrition is calcium, whose milk is the main source (120 mg/100g), and which is present in a form that is easily absorbed by the body. Recent growing clinical evidence, suggests that the increased amount of calcium in the diet is associated with a preventive effect of some risk factor related to cardiovascular diseases such as hypertension, overweight, obesity, and metabolic syndrome. The NHANES study McCarron et al. carried out in the early 1980s on 10,000 subjects aged 18-74 years, highlighted an inverse association between high intake of calcium in the diet and body weight. These observations were confirmed by subsequent NHANES III studies of Zemel et al. These two studies have laid the groundwork to investigate the correlation between calcium intake (and milk) and body composition in humans. To date, numerous observational studies, mainly cross-sectional studies and retrospective studies have examined the relationship between rate of milk intake and body weight variation. Most of these studies have highlighted a statistically significant inverse association between these two parameters thus suggesting that low levels of milk intake is associated, either in children or in adults, with an increase of fat mass and an increased risk of developing overweight and obesity over the time. However, a few randomized controlled clinical investigations have examined the effect of a higher intake of milk on body weight. Other studies have shown an inverse association between dietary calcium levels in particular from dairy sources, and body weight in children and in adults. In particular, a study carried out by Barba et al. showed that milk consumption was significantly inversely associated with BMI (Z-score). This was the first study reporting a significant inverse association between rate of milk consumption and BMI in children. In 2006 a cross-sectional study by Marques-Vidal et al. evaluated the relationship between milk consumption and body mass index in a Portuguese adult population.
These investigations showed a significant negative correlation between higher consumption of milk and BMI. Finally, a randomized controlled clinical trial of Gilbert et al. carried out to assess the influence of milk supplementation on appetite markers in obese women undergoing weight loss concluded that milk supplementation attenuates the orexigenic effect, thus leading to more consistent weight loss.

There are currently several physiological mechanisms proposed to explain the anti-obesity effect of milk. There is evidence that in adipocytes, the intracellular calcium ([Ca$^{2+}$]) decrease the rate of lipogenesis. The intake of dietary calcium is inversely associated with ([Ca$^{2+}$]) levels. This phenomenon has been observed to occur in vitro (on adipocyte cultures) and in vivo (in mice) well known as the calcium paradox. The studies show that the amount of Ca$^{2+}$ intake from the diet is inversely associated with the levels of ([Ca$^{2+}$]). Therefore, an increased calcium intake leads to a reduction of ([Ca$^{2+}$]), to an increased lipolysis and to a body weight loss. This paradox effect is explained by the equilibrium established between dietary calcium intake and calcium-regulating hormones dependent on [Ca$^{2+}$].

Human studies have confirmed that calcium supplementation in the diet results in significant suppression of intact parathyroid hormone (iPTH) and calcitriol. These effects lead to a reduction of [Ca$^{2+}$] resulting in increased lipolysis and body weight loss.

Besides the calcium paradox, the anti-obesity effect of milk had been explained by the increase in fecal excretion of fats caused by calcium. The mechanisms by which calcium may increases fat excretion is probably the result of an interaction between calcium itself and saturated fatty acids, which cause the formation of insoluble fatty acid soaps thus leading to a lower fat absorption. The excretion of fecal fat induced by calcium has also been demonstrated to occur in humans. In fact several intervention studies, have shown that an increased dietary calcium intake induced steatorrhea. Other mechanisms have been proposed to explain the thwarting effects of milk on obesity and in particular: i) Calcium may cause a reduction in the cortisol production in adipocytes by inhibiting the expression of 11β-hydroxysteroid dehydrogenase, the enzyme that converts cortisone to cortisol, thus leading to a lower visceral fat accumulation; ii) Increased expression of Mitochondrial uncoupling proteins 2 in white adipose tissue and consequently thermogenesis; iii) Nicotinamide riboside, a precursor of vitamin B3, present in milk, appears to play an important role in preventing obesity. It acts by improving anti-inflammatory and anti-oxidant activities; iv) It has been reported that milk proteins can suppress the recruitment of short-term food, by regulating the hunger and satiety mechanisms.

Several investigations have been directed to assess the influence of nutrition on the endocrine axis in obese subjects. The study evaluated the influence of nutrition on the endocrine axes by following two lines of investigational approaches: the first was based on the assessment of body composition in relation to the functional dysregulation of somatotropin axis while, the second one was focused on the influence of nutrition on the endocrine axes and the adherence to the MD. With regard to the first research line, endocrine changes associated with obesity and its phenotypic variability were evaluated in a cohort of subjects with moderate to severe obesity who were eligible for bariatric surgery. In line with previous observations from other studies GH deficiency has been found in almost half of the subjects. As expected, GHD subjects showed a higher prevalence of hypercholesterolemia and type 2 diabetes. Additionally these subjects also showed statistically significant differences in anthropometric and metabolic parameters. In addition, GHD subjects showed to have greater FM and FFM less than normal GH levels subjects. Instead, more than half of the subjects showed deficient levels of IGF-1, which were associated with a higher prevalence of hypercholesterolemia and MetS when peripheral mediators of GH effects were considered. In particular, individuals with deficits of IGF-1 showed no statistically significant differences in anthropometric, metabolic and hormonal parameters when compared to the group with sufficient levels of IGF-1 while, they showed an higher FM and a lower FFM. The association between low levels of IGF-1 and MetS was also confirmed by recent studies. Among the main anthropometric parameters considered, as a surrogate of central adiposity, circumference vitiae resulted the best predictor of GH secretion, which was not related to BMI. In agreement with other previous studies, this effect emphasizes the role of visceral fat in influencing the decrease of GH secretion. In particular, it has been shown that 1cm increase in circumference vitiae is associated with a decrease of GH peak of about 1μg/L. Thus, in line with previous studies, the results of the first line of research showed that the increased visceral adiposity contributes to the reduction of GH secretion. The deficiency of the secretory GH/IGF-1 axis due to the increase of visceral fat, can contribute in turn to determine a further accumulation of visceral fat, thus creating a sort of maladaptive circuit, which may result in an increased risk of cardiovascular diseases. These findings also shows that the assessment of body composition in obese, in terms of anthropometry and bioimpedentiometry, could be a useful initial screening to identify those subjects at higher risk of deficiency of GH secretion and for which the GHRH + Arg test could, likely, have a positive result.

The second line of research, was directed at evaluated the adherence to the MD and the influence of nutrition on the endocrine axes in subjects with moderate and severe obesity eligible for bariatric surgery in this case too.

By dividing the population into males and females, the percentiles for BMI, circumference vitiae and age were calculated, from which it was observed that the subjects with the greatest adherence to the MD are those in the lowest percentile of BMI and circumference vitiae, both for males and females, with circumference vitiae as a major predictor of adherence to linear regression. MD. In particular, it has been highlight that the free leptin index (FLI) positively correlated with foods typical of the MD (i.e., extra virgin olive oil, vegetables, legumes, fish, poultry and nuts) and the total caloric content, whereas no correlation was observed with the nutrients distribution. The MD is an example of diet endowed with anti-inflammatory and anti-oxidant effects. These effects could, in part, explain the correlation with the FLI. There are few epidemiological studies that have investigated the potential impact of a complete dietary pattern (namely, the diet, not individual foods), on the characteristics of non-alcoholic fatty liver disease (NAFLD) and its severity. Recently, a clinical intervention study of Ryan et al. showed that the MD improves insulin sensitivity and NAFLD as compared with a low fat content and high carbohydrate content. Although a greater adherence to the MD was not associated with a lower risk to develop NAFLD, the subjects with a strict adherence to this model appear to have a beneficial effect on the severity of the disease as assessed by the FLI. These results suggest that diet, especially the Mediterranean model, it is an important factor in the pathogenesis and development of NAFLD. The results indicate that the composition of the diet may influences the severity and progression of the disease by increasing the inflammation and oxidative stress. On the other hand, in our study, nut consumption appears to be the best predictor for FLI. Several studies have investigated the correlation between nuts consumption and cardiovascular diseases. However few
investigations have investigated the correlations between consumption of nuts and NAFLD. In terms of energy and nutrients, 30 g of dried nuts provide 206.6 Kcal, distributed as 4.3 g of protein, 20.4 g of fat, 1.5 g of carbohydrate, and 1.9 g of fibers. Due to their content of α-tocopherol and selenium, as well as vitamins of the B group, such as B1 and B6 and minerals such as copper, zinc, phosphorus and magnesium, nuts are considered an important source of antioxidants. The anti-oxidant effects of nuts, appears to be the consequence of a particular composition in polyunsaturated fatty acids, such as linoleic acid (30.02%), α-linolenic acid (6.64%) and monounsaturated, such as oleic acid (9.38%), as well as from the content in plant sterols, polyphenols, minerals (particularly magnesium and potassium). Furthermore, Tapsell et al. have shown that the intake of 30 grams of nuts /day (about 5-6 nuts) leads to an improvement of the lipid profile.

In a subgroup of 50 patients with moderate to severe obesity underwent hospitalization due to thyroid dysfunction it was observed that, in obese subjects TSH levels were positively correlated with BMI and waist circumference. Furthermore, these results were also confirmed by bioelectrical impedance analysis, which showed a positive correlation between TSH and BMI. Finally positive correlations were also reported between TSH, blood glucose, insulin and HOMA-IR index. From a strictly dietary and nutritional point of view, the results of this study also showed that the deiodination index, expressed by the FT3/FT4 ratio, was positively correlated with the percentage of CHO and negatively correlated with the percentage of fat present in the diet but not with the total caloric value. CHO content was proven to be the best predictor of FT3/FT4 ratio by linear regression analysis. The positive association between TSH, BMI and waist circumference is commonly reported among obese subjects. The correlation between TSH and BMI may be mediated by leptin, an important regulator of neuroendocrine HPT axis. This effect may be considered as the consequence of the positive influence of TSH on adipogenesis which results in an increased release of insulin to compensate for IR. Other studies analyzed the onset of resistance to insulin receptors that may be associated with a resistance of thyroid receptors. However it is unclear whether the positive correlation between IR and TSH levels should be interpreted as a consequence of metabolic resistance of receptors for thyroid hormones or as the positive effect of the influence of TSH on adipogenesis as a consequence of the increased release of insulin to counteract IR. Although it is known that the deiodination is strongly influenced by nutritional metabolic factors, few experimental observations, (none of which obtained from human studies), have documented a possible influence of qualitative and quantitative differences of nutrients intake on the relationship between thyroid function and obesity. Numerous studies have demonstrated that CHO are able to modulate the peripheral metabolism of thyroid hormones by deiodination of T4 to T3 in the liver via the enzyme 5'-deiodinase type 1. In humans, T4 serum levels are directly associated with rate of CHO intake. In particular, during caloric restriction diet, especially diets low in CHO, the reduction of the production peripheral T4 induces a decrease reduction of rT3 blood levels. Several studies have also revealed that in humans, the production of T3 from T4 decreases during fasting and is restored following re-feeding. In particular, the re-feeding, with CHO, is able to reverse the changes in serum T4, T3, rT3 and TSH caused by fasting. Instead, meals rich in CHO induce a significant increase in the 5'-deiodinase activity both in brown adipose tissue and the liver which are not associated with significant changes in serum levels of thyroid hormones. However, in the case of high-calorie diet, especially diet rich in carbohydrates, T4 levels increase, those of rT3 decrease, while the levels of the T3 do not undergo substantial changes. Regarding lipids, previous studies have shown their effects on thyroid function. In particular, in vivo experiments showed that the increase in the content of oxidized lipids resulted in an increase in circulating levels of T3. This effects may be probably due to a reduction of the circulating levels of selenium and a consequent reduction in the activity of the type I 5'-desiodase.

68. Chidakel A, Mentuccia D, Celi FS. Peripheral metabolism of thyroid hormone and glucose homeostasis. Thyroid 2005;8:899-903.

92. Oppenheimer JH. Thyroid today. Flint Laboratories; 1980.

tional and physiological factors affecting goat milk lipid synthesis and lipolysis. JDS 2003;36:1751-70.

143. Ryan MC, Desmond P, Wilson A. Reply to: “might some of the beneficial effects of the Mediterranean diet on non-alcoholic fatty liver disease be mediated by reduced iron stores?”. J Hepatol 2013;59:640.

146. European Food Safety Authority (EFSA). Regulations (UE) n. 432/2012.

