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Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2
(GLP-2) are hormones secreted from the enteroendocrine cells after a meal. They
exert their actions through activation of G protein-coupled receptors (R), the GIPR and
GLP-2R, respectively. Both have been reported to in�uence metabolism. The purpose
of the study was to investigate the role of the hormones in theregulation of lipid and
bone homeostasis by subchronic treatment with novel GIPR and GLP-2R antagonists.
Rats were injected once daily with vehicle, GIPR, or GLP-2R antagonists for 3 weeks.
Body weight, food intake, body composition, plasma lipoprotein lipase (LPL), adipokines,
triglycerides and the marker of bone resorption carboxy-terminal collagen crosslinks
(CTX), were examined. In rats, subchronic treatment with GIPR antagonist, rat GIP
(3-30)NH2, did not modify food intake and bone resorption, but signi�cantly increased
body weight, body fat mass, triglycerides, LPL, and leptin levels compared with
vehicle treated rats. Subchronic (Pro3)GIP (a partial GIPRagonist), GLP-2(11-33), and
GLP-2(3-33) (GLP-2R antagonists) treatment did not affectany parameter. The present
results would be consistent with a role for GIP, but not GLP-2, in the maintenance of lipid
homeostasis in rats, while neither GIPR nor GLP-2R antagonism appeared to in�uence
bone resorption in rats.

Keywords: glucose-dependent insulinotropic polypeptide (GIP), GIP receptor, GIP receptor antagonist,
glucagon-like peptide-2 (GLP-2), lipid homeostasis

INTRODUCTION

Glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-2 (GLP-2) are peptide
hormones released from K and L cells of the gastrointestinaltract, respectively (1, 2). Both exert
their functions through activation of speci�c G protein-coupled receptors (3, 4). The GIP receptor
(GIPR) is expressed on di�erent cell type including pancreatic cells, adipocytes (5), osteoblasts
(6), and osteoclasts (7). The GLP-2 receptor (GLP-2R) is widely expressed in gastrointestinal tract
and central nervous system (8–10) but fewer are found in the liver, vagal a�erents, and adipose
tissue (11). Like the related hormone GLP-1, both GIP and GLP-2 are substrates for the ubiquitous
enzyme, dipeptidyl peptidase-4 (DPP-4) which cleaves o� the twoN-terminal amino acids, leaving
antagonistic metabolites, GIP(3-42) and GLP-2(3-33). Because of DPP-4 mediated degradation, the
half-lives of GIP and GLP-2 in humans are about 7 min (12, 13).
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In humans, GIP is known for post-prandial stimulation of
insulin secretion, increase in adipose tissue blood �ow, and
stimulation of lipid deposition (14). In vitro, GIP stimulates
adipocyte lipolysis (15) and modulates re-esteri�cation of fat
(16). However, administration of a DPP-4 resistant GIP agonist,
D-Ala2-GIP, to mice fed a high fat diet (HFD), was reported
to decrease lipoprotein lipase (LPL) activity and body weight
(17). Furthermore, GIP administration reduced adipose tissue
in�ammation in DPP-4 de�cient rats fed a HFD (18) and
GIP-overexpression in transgenic mice reduced adipose tissue
in�ammation (19). On the other hand, proline-3 (Pro3)GIP,
considered a GIPR antagonist, reduced visceral fat in rats (20)
and the longer-acting form (Pro3)GIP[mPEG] was even more
e�cient than (Pro3)GIP to decrease body weight and triglyceride
levels in HFD fed mice (21). We have demonstrated that
(Pro3)GIP acts as a partial GIPR agonist (22) and (Pro3)GIP
which was initially characterized as a GIPR antagonist (23) has
also shown to act as a partial GIPR agonist (24, 25). Thus,
the controversial results could be due to agonistic properties of
(Pro3)GIP in rats.

GLP-2 is known for its intestinotropic e�ects (26). It facilitates
intestinal absorption of lipids (27, 28) and enhances chylomicron
secretion from the intestine (27, 29, 30), and blocking GLP-
2R signaling results in increased dyslipidemia and hepatic lipid
accumulation in HFD fed mice (31). It also in�uences glucose
metabolism (32–37).

Both GIP and GLP-2 are involved in bone remodeling.
Judged on lower bone resorption markers, GIP markedly inhibits
bone resorption in humans (38), whereas studies in GIPR
knockout (KO) mice are contradictory, showing both greater
(39) and lower (40, 41) plasma levels of collagen degradation
fragments that are released during osteoclastic bone resorption.
GLP-2 caused a pronounced and dose-related decrease (42,
43) in the bone resorption marker carboxy-terminal collagen
crosslinks (CTX), but there are no studies regarding the e�ects
of endogenous GLP-2 on bone homeostasis.

Lipid and bone metabolism appear to be related. The adipose
tissue may in�uence bone remodeling (44) and adipose tissue
in�ammation favors bone degradation (45). Thus, maintenance
of normal lipid homeostasis is essential not only to prevent
lipid imbalance but also to preserve bone homeostasis. The
mechanisms linking fat accumulation to bone health are unclear.
Therefore, we investigated some physiological actions of GIP
and GLP-2 in rats by subchronic treatment with a novel GIPR
antagonist, GIP(3-30)NH2 (14, 22), a partial agonist, (Pro3)GIP
and two di�erent GLP-2R antagonists [GLP-2(11-33), and GLP-
2(3-33)] (31, 46, 47) in an attempt to (1) evaluate their action
in the regulation of lipid and bone homeostasis and (2) identify
potential mechanisms linking the two together.

MATERIALS AND METHODS

Animals
All experiments were in accordance with internationally accepted
principles for the care and use of laboratory animals and in
compliance with an animal experiment license (2013/15–2934-
00833) issued (to JH) by the Danish Committee for Animal

Research. Male Wistar rats (Taconic, Denmark) weighing� 200 g
at the time of arrival were housed two in each cage at the
Panum Institute, Copenhagen, Denmark. They were kept in
temperature- (21� C) and humidity-controlled (55%) rooms with
light/dark cycles of 12 h with free access to standard rat chow
and water.

Experimental Protocol
After 1 week of acclimatization, animals were allocated into
�ve groups (n D 6/each group). Rats received either vehicle,
rat GIP(3-30)NH2, (25 nmol/kg b.w.), human (Pro3)GIP (25
nmol/kg b.w.), human GLP-2(3-33) (25 nmol/kg b.w.), or human
GLP-2(11-33) (25 nmol/kg b.w.) sc daily at 6 PM for 3 weeks.
Doses were chosen on the basis of the published literature (20–
22, 31, 48, 49) assuming that the volume of distribution (in %)
is comparable in mice and rats. To study bone resorption, blood
was collected from the sublingual vein of rats at� 2, � 1, 0, 6,
10, 14, 17, 21 days of treatment. The day after the last injection,
the rats were euthanized and blood was collected from the vena
cava for further biochemical analysis. The liver was excisedand
samples were snap-frozen in liquid nitrogen and stored at� 80� C
until assayed.

Food Intake, Body Weight, and Body
Composition
Food intake was measured twice a week during the study
period at 10 AM by subtracting the leftover weights from
the initial weights and calculated as cage means (g/rat). Body
weight was monitored weekly at 10 AM. Measures of body
lean and fat mass were determined in live, conscious animals
using quantitative magnetic resonance spectroscopy (EchoMRI-
700TM; Echo MRI).

Peptides
Synthetic rat GIP(3-30)NH2, human GLP-2(3-33) and human
GLP-2(11-33) were from Caslo laboratory (Kongens Lyngby,
Denmark). Human (Pro3)GIP was a generous gift from Novo
Nordisk A/S, Bagsværd, Denmark. The purity (� 95%) and
correctness of structures were con�rmed by mass, sequence,and
HPLC analysis. For injections, the peptides were dissolved in
PBS bu�er containing 3.5 mg/ml Hemaccel (Behringwerke AG,
Marburg, Germany), which was also used for control injections.
Each injection volume was 400ml.

Blood Samples
To obtain serum, blood samples were allowed to clot for 30 min
and were then centrifuged (10 min at 3,000� g) and stored
at � 20� C until analysis. To obtain plasma, blood was collected
into chilled tubes containing in �nal concentrations EDTA 3.9
mmol/l and valine-pyrolidide 0.01 mmol/l (a DPP-4 inhibitor,a
gift from Novo Nordisk A/S, Bagsvaerd, Denmark). The samples
were centrifuged (10 min at 3,000� g, 4� C) and plasma was kept
at � 80� C until analysis.

Biochemical Analysis
Bone resorption was assessed by measurements of degradation
product from C-terminal cross linked telopeptides of type 1
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collagen (CTX, RatLaps; IDS Immunodiagnostic Systems GmbH,
Frankfurt am Main, Germany). CTX values were expressed as
percent of the mean of the baseline values (days� 2,� 1, 0) of
the individual animal. The intra- and interassay coe�cientof
variation (CV's) of the assay is in the range 6–10 and 10–15%,
respectively. Resistin was measured using rat resistin enzyme
immunoassay kit (Bertinpharma, Montigny le Bretonneux,
France). The intra-assay CV is< 5%, the inter-assay< 10%.
Leptin was measured using rat leptin enzyme immunoassay kit
(Mediagnost, Reutlingen, Germany). The intra- and inter-assay
CV are< 5%. Adiponectin was measured using rat adiponectin
ELISA kit (Millipore, St. Charles, Missouri, USA). The intra-
and inter-assay CV are< 2 and < 9%, respectively. LPL was
measured using lipoprotein lipase ELISA kit (Cell Biolabs, San
Diego, CA, USA). The intra- and inter-assay CV are< 4 and< 8%,
respectively. All samples were analyzed in duplicates in the same
assay to prevent inter assay variation.

Pharmacokinetic Study
Samples were taken at 0, 5, 10, 20, 30, and 45 min post-
injection of GIP(3-30)NH2. Blood was immediately aliquoted
into tubes containing �nal concentrations of EDTA 3.9 mmol/l.
Samples were centrifuged (3,000� g for 10 min at 4� C) and
the plasma stored at� 80� C until analysis. GIP(3-30)NH2
concentrations were measured in plasma with an in-house-
developed radioimmunoassay (50) using a polyclonal antibody
(code no. 95236) raised in rabbits against porcine GIP(1-30)NH2.
As standard we used rat GIP(3-30)NH2 and the tracer was
125I-labeled human GIP(3-30NH2).

Analysis of Liver and Plasma Triglycerides
Total liver lipids were extracted as previously described
(31). The extracts were evaporated under vacuum in a
rotary evaporator and re-suspended in 1 ml of isopropanol
for quanti�cation of triglycerides. Plasma and intrahepatic
triglycerides were assessed using triglyceride determination
kit (Sigma-Aldrich, Saint Louis, USA). All samples were
analyzed in duplicates in the same assay to prevent inter
assay variation.

Statistics
Results are shown as means� SEM. The letter n indicates
the number of animals. The comparison between the groups
was performed by one way ANOVA followed by Tukey's post-
test using Prism Version 5.0 Software (Graph Pad Software,
Inc., San Diego, CA, USA). AP < 0.05 was considered to be
statistically signi�cant.

RESULTS

Effects of GIP(3-30)NH 2 or (Pro3)GIP
Treatment in Rats
It was �rst investigated if treatment with the GIPR antagonist,
GIP(3-30)NH2 a�ected food intake, body weight, or body
composition. In rats, 3 weeks treatment with GIP(3-30)NH2
(25 nmol/kg b.w.) had no measurable e�ect on body weight
and food intake (Figures 1A,B). Moreover, the rats did not
show di�erences in body weight gain during the �rst 2 weeks

of treatment with GIP(3-30)NH2 but exhibited signi�cantly
increased body weight gain in the third week of treatment
compared with vehicle treated rats (Figure 1C). Moreover,
treatment with GIP(3-30)NH2 resulted in increased body fat
mass measured by NMR spectroscopy at the end of the
treatment period compared with vehicle treated rats (Figure 1D)
while no di�erence in lean mass was observed (Figure 1E).
Administration of the GIPR partial agonist (Pro3)GIP (25
nmol/kg b.w.) was not associated with changes on food
intake, body weight or body composition during the treatment
period (Figure 1).

Subchronic administration of GIP(3-30)NH2 increased
plasma triglyceride levels compared with vehicle treated
rats (Figure 2A) but failed to change intrahepatic lipid
concentration (Figure 2B). It also signi�cantly enhanced
plasma lipase lipoprotein (LPL) levels (Figure 2C). Moreover,
3 weeks treatment with GIP(3-30)NH2 increased plasma
leptin (Figure 2D), while no signi�cant e�ect on circulating
levels of resistin or adiponectin was observed (Figures 2E,F).
Pharmacokinetic measurements of GIP(3-30)NH2 revealed that
a maximum concentration of� 17 nM was achieved 10 min after
administration and that the antagonist is cleared from plasma
after about 120 min (data not shown).

Administration of (Pro3), that acts as a partial agonist with
a Ki of 19 nM for the rat GIPR, did not modify triglycerides,
intrahepatic triglyceride content, plasma LPL, or plasma levelsof
adipokines (Figure 2).

It was also examined whether the GIPR antagonist in�uences
bone resorption in rats. There was a decline in CTX levels by
about 30% throughout the course of the study in all the groups
of rats (Figures 2G, 4F). The treatment with GIP(3-30)NH2 or
(Pro3)GIP did not a�ect serum CTX levels compared with vehicle
treated rats during the treatment period (Figure 2G).

Effects of GLP-2(11-33) or GLP-2(3-33)
Treatment in Rats
Treatment with the GLP-2R antagonists, GLP-2(11-33) (25
nmol/kg b.w.), and GLP-2(3-33) (25 nmol/kg b.w.) for 3 weeks
did not modify food intake or body weight compared to
vehicle treated rats (Figures 3A–C). Body mass composition
(Figures 4A,B), plasma triglycerides (Figure 4C), intrahepatic
triglycerides content (Figure 4D), or plasma adipokines such as
leptin, resistin, and adiponectin were similar to vehicle treated
rats (Figure 4E). The treatment with GLP-2(11-33) (25 nmol/kg
b.w.) and GLP-2(3-33) (25 nmol/kg b.w.) did not change the
serum levels of CTX during the course of the study (Figure 4F).

DISCUSSION

The ability of GIP to in�uence body weight and body
composition remains unclear. Judging from the results of this
study, GIP might appear to in�uence lipid metabolism in rats.
Indeed, the treatment with a novel GIPR antagonist, GIP(3-
30)NH2, led to increased plasma triglyceride levels and body fat
mass during the third week of administration while no e�ects
were found following GLP-2R antagonists treatment. Neither
GIP nor GLP-2 appeared to be essential for the regulation of bone
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FIGURE 1 | Effects of the subchronic treatment with GIP (3–30)NH2 (25 nmol/kg b.w.), (Pro3)GIP (25 nmol/kg b.w.) or vehicle treated on food intake, body weight,
total body composition: Body weight(A), Food intake(B), Body weight gain(C), Changes in total fat(D), and lean(E) mass, measured by NMR. Data are mean
values� S.E.M. (n D 6 rats/group). *p < 0.05 vs. vehicle treatment.
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FIGURE 2 | Effects of the subchronic treatment with GIP (3-30)NH2 (25 nmol/kg b.w.), (Pro3)GIP (25 nmol/kg b.w.) or vehicle treated on triglycerides, adipokines, and
CTX: plasma triglycerides(A), intrahepatic triglycerides(B), plasma LPL(C), plasma leptin(D), plasma resistin(E), plasma adiponectin(F), Serum CTX levels(G).
Animals were bled terminally and adipokine levels were determined by ELISA as described under “materials and methods.” CTX values were expressed as percent of
the mean of the baseline values (days� 2,� 1, 0) of the individual animal. Data are shown as mean� SEM, n D 6 per group. *p < 0.05 vs. vehicle treatment.

homeostasis in rats, although exogenous administration ofboth
hormones has been demonstrated to reduce bone resorption in
various experimental settings (6, 40–43, 48, 51).

To investigate the role of GLP-2 in lipid homeostasis we
used two di�erent potential GLP-2 R antagonists GLP-2(11-33)
(37) and GLP-2(3-33) (8, 47). The rats were chronically treated
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FIGURE 3 | Effects of the subchronic treatment with GLP-2(11-33) (25 nmol/kg b.w.), GLP-2(3-33) (25 nmol/kg b.w.) or vehicle treated on body weight (A), food
intake (B), and body weight gain(C). Data are mean values� S.E.M (n D 6 rats/group).

once a day by s.c. injection for 3 weeks. The treatment with
GLP-2(11-33) or GLP-2(3-33) did not modify body weight or
composition, food intake, biochemical parameters related with
lipid metabolism such as plasma triglycerides, plasma adipokines,
and intrahepatic lipid.

The extent of GLP-2R antagonism elicited by our treatment is
not clear. The antagonists are relatively weak (52) and their half-
life after s.c. administration in rats is unknown but must bevery
short amounting to at the most an hour. Therefore, antagonism
has only been present for a very short period, and this could
in�uence the results of the experiment. In future studies, itwill
be necessary to investigate the doses of the antagonists required
to block the actions of physiological levels of GLP-2in vivo.
However, these negative GLP-2 data could help researchers,with
further study, to give a fuller account of GLP-2 action.

To study the action of endogenous GIP in lipid metabolism,
we used a novel GIPR antagonist, GIP(3-30)NH2 (22, 53) and

a well-described GIPR partial agonist, (Pro3)GIP (25). GIP(3-
30)NH2 acts as speci�c and e�cacious GIPR antagonist in
humans (14, 54). It inhibits the insulinotropic e�ects of GIP
and antagonizes the liporegulatory and vasodilatory e�ects of
GIP (55). In our rats, the chronic treatment with GIP(3-30)NH2
induced body weight gain and signi�cantly increased total body
fat mass. In order to investigate whether the variation in body
weight and consequently in the body composition was due to
changes in food intake, this was measured on di�erent days
through the course of the study. However, the food intake
was unchanged during the 3 weeks of treatment. Therefore, we
investigated the relationship of the increase in body fat mass
to changes in lipid homeostasis. First, plasma triglycerides were
measured. The treatment with GIP(3-30)NH2 in rats signi�cantly
increased plasma triglyceride concentration, as is often seen
in obesity. Thereafter, we looked into possible mechanisms
whereby endogenous GIP might in�uence the fat deposition
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FIGURE 4 | Effects of the subchronic treatment with GLP-2(11-33) (25 nmol/kg b.w.), GLP-2(3-33) (25 nmol/kg b.w.) or vehicle treated on total body composition,
triglycerides, adipokines, and CTX: Changes in total fat(A) and lean(B) mass, measured by NMR, plasma triglycerides(C), intrahepatic triglycerides(D), plasma
adipokine levels(E), serum CTX levels(F) expressed as percent of the mean of the baseline values (days� 2,� 1, 0) of the individual animal. Data are mean values�
S.E.M. (n D 6 rats/group).
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in the adipose tissue. Triglyceride levels are regulated by LPL,
an enzyme that hydrolyzes triglycerides and releases free fatty
acids and monoglycerides that are stored in adipose tissue
(56). GIP(3-30)NH2 treatment signi�cantly increased LPL levels
compared with vehicle treated rats, suggesting that blocking
the GIPR signaling promotes the triglyceride accumulation in
the adipose tissue by increasing circulating LPL concentration.
In fact, manipulation of LPL expression causes imbalances
in the partitioning of fatty acids among peripheral tissues,
which have major e�ects on lipid and glucose metabolism
(57–59). Our results are consistent with the �nding that
chronic administration of the long acting GIP agonist, D-
Ala 2-GIP, in HFD fed mice decreased LPL activity and body
weight (17). Moreover, GIP-overexpression in transgenic mice
improved systemic metabolic phenotype and reduced adipose
tissue in�ammation (19). Previously, studies have shown that
GIP stimulates adipocytes lipolysis on adipocytes cell line (15)
and modulates reesteri�cation of lipids (16). In contrast, GIP
stimulates LPL activity leading to triglyceride accumulation in
cells (60, 61). In particular, GIP was shown to increase LPL
enzyme activity, in an insulin-dependent manner, in cultured
3T3-L1 adipocytes, rodent adipocytes, and subcutaneous human
(61–64). These contrasting results suggest that thein vitro studies
on cell lines cannot be translated to adipose tissue e�ectsin vivo.

The liver is central for maintenance of lipid homeostasis (65).
Thus, we also looked at the e�ects of the 3 weeks of treatment
with GIP(3-30)NH2 on liver lipid accumulation in rats. We did
not observe di�erences in the intrahepatic triglyceride content in
the GIP(3-30)NH2 treated group compared with vehicle treated
group suggesting that antagonism of GIPR signaling did not
promote the triglyceride accumulation in the liver.

Adipose tissue secretes bioactive peptides named “adipokines”
which act locally and distantly through autocrine, paracrine,
and endocrine e�ects (66). Previous studies in transgenic mouse
models indicated that GIP may modulate the adipokine pro�le
secreted from the adipose tissue (67, 68). In our study, GIP(3-
30)NH2 treatment did not a�ect resistin and adiponectin levels
but signi�cantly increased leptin levels consistent with the
expansion of the white adipose tissue.

Our data may suggest that the GIP system is basically di�erent
in humans and rodents with regards to adipose tissue. In humans,
GIP appears to act as a lipid storage hormone. It increases
adipose tissue blood �ow and stimulates fat deposition (69,
70) and the GIPR antagonist, human GIP(3-30)NH2, decreases
adipose tissue triacylglyceride uptake and increases the free fatty
acid/glycerol ratio (14, 55). In rodents, GIP stimulates lipolysis
(15), decreased lipase lipoprotein (LPL) activity and body weight
(17), adipose tissue in�ammation (18, 19), visceral fat (20), and
triglyceride levels (21). The GIP antagonist, rat GIP(3-30)NH2,
increases body weight, total body fat mass, leptin, and LPL in
rats. Thus, it is becoming clear that important di�erences in
metabolic and signal transduction may exist between rodentand
human adipose tissue. Thus, caution should be exercised when
extrapolating information from one species to another.

In our experiments, the treatment with the partial GIP agonist,
(Pro3)GIP did not modify any of the investigated parameters in
rats. This is in agreement with a previous study by Irwin et al.

showing no e�ect of (Pro3)GIP on food intake, body weight,
insulin concentrations, and islet morphology (71). Previously,
using the same dose, (Pro3)GIP was shown to be able to reduced
body weight, plasma insulin, and triglyceride levels in HFD fed
mice (21). Likely, the discrepancies could be due to the type
of diet. In fact, McClean et al. tested the (Pro3)GIP e�ects
in HFD fed mice, a diet that induces metabolic syndrome
(72). Also during catch-up growth in female rats, associated
with metabolic syndrome, the administration of (Pro3)GIP
reduced visceral fat mass and adipocyte hypertrophy without
variations in body weight. However, we previously showed lower
activities of human, mouse, and rat (Pro3)GIP in the rodent GIP
systems compared with the human system (25) highlighting the
signi�cant interspecies di�erence within the GIP system.

Adipose tissue and bone are closely related. Previous studies
have widely linked lipid intake and in�ammation status, key
protagonists involved in bone resorption (73, 74). In�ammation
favors bone degradation by stimulating osteoclast activitywhile
inhibiting osteoblast-related bone formation, which leads to
unbalanced bone remodeling and subsequent bone loss. Thus,we
decided to investigate the in�uence of the endogenous GIP and
GLP-2 in bone resorption by measuring serum CTX levels. We
observed a decline in CTX levels throughout the course of the
study in all the groups of rats, including control treated group. A
factor hampering the measurement of bone markers in rats is a
continuous decline of some markers (75). CTX levels decreases
with the age in rats (76) and our data suggests that CTX decline
is already evident within 3 weeks.

The results of the pharmacokinetic study of GIP(3-30)NH2
showed an average peak level of� 17.000 pmol/l and revealed
that the half-life after injection was� 20 min. This means that
exposure for the antagonist was provided for maximally 2 h. In
addition, previousin vitro experiments (22) would suggest that
e�cient antagonism requires a considerable excess of antagonist
compared to the levels of the endogenous hormones, which
further reduces the time of e�cient antagonism. As for GLP-
2, it can be concluded that the animals have been without
GIPR antagonism for most of the time during the 3 weeks.
This raises the question of the mechanism behind the observed
changes in lipid metabolism. It seems unlikely that antagonism
for just a small fraction of the time could result in major
changes in body weight and lipid metabolism as observed. Rather
it could be suggested that a brief but extensive disturbance
of the e�ects of GIP could lead to a compensatory response
of a longer duration, which in turn could have consequences
for lipid metabolism. Further experiments, involving repeated
administration of the antagonists and measurements of possible
compensatory mechanisms (e.g., increases in GIP levels after
antagonist administration) as well as changes in glucose and
insulin levels are required to elucidate this.

We were unable to detect increases in food intake in the
animals treated with the GIP antagonist, although an increase
in body weight was observed. Probably, small increases in
food intake, not registered by our measurements, explain the
changes not only in body weight, but also in triglyceride
levels. Alternatively, it has been reported that GIP might
increase lipid oxidation in rodents (77). Conversely, GIPR
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antagonism might decrease lipid oxidation, which might leadto
increased circulating and tissue triglyceride levels. To maintain
su�cient energy metabolism this would imply an increase
in non-lipid oxidation, which would be expected to translate
into increased food intake, which was not observed. It is
also possible that a reduction in physical activity and energy
expenditure could explain the changes in lipid metabolism,
however, we did not monitor locomotor activity so this is only
speculative. Thus, it is di�cult to fully explain the mechanism
of action of the GIPR antagonists with respect to fat mass and
body weight.

The subchronic treatment with GIP(3-30)NH2, (Pro3)GIP
and the GLP-2R antagonists, GLP-2(11-33), and GLP-2(3-33),
did not a�ect CTX levels compared with control treated-rats
which suggests that endogenous GIP and GLP-2 do not in�uence
bone resorption in normal rats. However, because of the short
duration of the antagonism the negative �ndings cannot be
assigned much weight. Thus, GLP-2 has been shown to suppress
bone resorption in humans (41, 78, 79) and GIP administration
increase bone density in ovariectomized rats (48) while GIP
receptor knockout mice have decreased bone size and mass,
altered bone microstructure, and turnover (80). Mice with
overexpression of GIP had increased markers of bone formation,
decreased markers of bone resorption, and increased bone mass
(81). Moreover, acute administration of GIP in humans inhibited
bone resorption (38). In addition, we cannot exclude that the
decline in CTX levels that we observed during the course of study

in all groups contributed to mask any changes in marker levels
caused by the di�erent treatments.

In conclusion, treatment with GIP(3-30)NH2 antagonist
a�ected lipid metabolism in rats whereas a partial GIPR agonist
or a GLP-2R antagonists appeared not to in�uence neither lipid
metabolism nor bone resorption in rats.
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