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Glucose-dependent insulinotropic polypeptide (GIP) and Igcagon-like peptide-2

(GLP-2) are hormones secreted from the enteroendocrine dal after a meal. They
exert their actions through activation of G protein-couplé receptors (R), the GIPR and
GLP-2R, respectively. Both have been reported to in uence ratabolism. The purpose
of the study was to investigate the role of the hormones in theegulation of lipid and
bone homeostasis by subchronic treatment with novel GIPR ahGLP-2R antagonists.

Rats were injected once daily with vehicle, GIPR, or GLP-2Rn#agonists for 3 weeks.

Body weight, food intake, body compasition, plasma lipopreein lipase (LPL), adipokines,
triglycerides and the marker of bone resorption carboxy-taminal collagen crosslinks
(CTX), were examined. In rats, subchronic treatment with 8R antagonist, rat GIP
(3-30)NH,, did not modify food intake and bone resorption, but signi @ntly increased
body weight, body fat mass, triglycerides, LPL, and leptinevels compared with

vehicle treated rats. Subchronic (Pro3)GIP (a partial GIP&yonist), GLP-2(11-33), and
GLP-2(3-33) (GLP-2R antagonists) treatment did not affecny parameter. The present
results would be consistent with a role for GIP, but not GLP-2in the maintenance of lipid
homeostasis in rats, while neither GIPR nor GLP-2R antagasm appeared to in uence

bone resorption in rats.

Keywords: glucose-dependent insulinotropic polypeptide
glucagon-like peptide-2 (GLP-2), lipid homeostasis

(GIP), GIP receptor, GIP receptor antagonist,

INTRODUCTION

Glucose-dependent insulinotropic peptide (GIP) and glucagibapeptide-2 (GLP-2) are peptide
hormones released from K and L cells of the gastrointestiaak, respectivelyl( 2). Both exert
their functions through activation of speci ¢ G protein-cowga receptorsg, 4). The GIP receptor
(GIPR) is expressed on di erent cell type including pancreatitsc@dipocytess), osteoblasts
(6), and osteoclasts). The GLP-2 receptor (GLP-2R) is widely expressed in gasgsiimal tract
and central nervous syster«10) but fewer are found in the liver, vagal a erents, and adipose
tissue (1). Like the related hormone GLP-1, both GIP and GLP-2 are sates for the ubiquitous
enzyme, dipeptidyl peptidase-4 (DPP-4) which cleaves o theNaterminal amino acids, leaving
antagonistic metabolites, GIP(3-42) and GLP-2(3-33)aBse of DPP-4 mediated degradation, the
half-lives of GIP and GLP-2 in humans are about 7 mig,(L3).
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In humans, GIP is known for post-prandial stimulation of Research. Male Wistar rats (Taconic, Denmark) weighi2§0 g
insulin secretion, increase in adipose tissue blood ow, andit the time of arrival were housed two in each cage at the
stimulation of lipid deposition {4). In vitro, GIP stimulates Panum Institute, Copenhagen, Denmark. They were kept in
adipocyte lipolysis 15 and modulates re-esteri cation of fat temperature- (21C) and humidity-controlled (55%) rooms with
(16). However, administration of a DPP-4 resistant GIP aggnistlight/dark cycles of 12 h with free access to standard ratxcho
D-Ala2-GIP, to mice fed a high fat diet (HFD), was reportedand water.
to decrease lipoprotein lipase (LPL) activity and body weight
(17). Furthermore, GIP administration reduced adipose tissudExperimental Protocol
in ammation in DPP-4 de cient rats fed a HFD {8 and After 1 week of acclimatization, animals were allocated into
GIP-overexpression in transgenic mice reduced adiposeetisswe groups (W D 6/each group). Rats received either vehicle,
in ammation (19). On the other hand, proline-3 (Pro3)GIP, rat GIP(3-30)NH, (25 nmol/kg b.w.), human (Pro3)GIP (25
considered a GIPR antagonist, reduced visceral fat in &ds ( nmol/kg b.w.), human GLP-2(3-33) (25 nmol/kg b.w.), or huma
and the longer-acting form (Pro3)GIP[mMPEG] was even moreésLP-2(11-33) (25 nmol/kg b.w.) sc daily at 6 PM for 3 weeks.
e cient than (Pro3)GIP to decrease body weight and triglyider ~Doses were chosen on the basis of the published literafifre (
levels in HFD fed mice 41). We have demonstrated that 22, 31, 48, 49 assuming that the volume of distribution (in %)
(Pro3)GIP acts as a partial GIPR agonig®)(and (Pro3)GIP is comparable in mice and rats. To study bone resorption, blood
which was initially characterized as a GIPR antagorii§} has was collected from the sublingual vein of rats a2, 1, 0O, 6,
also shown to act as a partial GIPR agonigt, (25. Thus, 10, 14, 17, 21 days of treatment. The day after the last iojgct
the controversial results could be due to agonistic propsrtie the rats were euthanized and blood was collected from thaven
(Pro3)GIP in rats. cava for further biochemical analysis. The liver was exciset

GLP-2 is known for its intestinotropic e ect¢). It facilitates samples were snap-frozen in liquid nitrogen and stored 80 C
intestinal absorption of lipids{7, 28) and enhances chylomicron until assayed.
secretion from the intestine2(/, 29, 30), and blocking GLP-
2R signaling results in increased dyslipidemia and hepatid i Food Intake, Body Weight, and Body
accumulation in HFD fed micedl). It also in uences glucose Composition
metabolism §2-37). Food intake was measured twice a week during the study

Both GIP and GLP-2 are involved in bone remodeling.period at 10 AM by subtracting the leftover weights from
Judged on lower bone resorption markers, GIP markedly inBibitthe initial weights and calculated as cage means (g/ratilyBo
bone resorption in humans 3§), whereas studies in GIPR weight was monitored weekly at 10 AM. Measures of body
knockout (KO) mice are contradictory, showing both greateriean and fat mass were determined in live, conscious animals
(39 and lower @0, 41) plasma levels of collagen degradationysing quantitative magnetic resonance spectroscopy (EchoMRI-
fragments that are released during osteoclastic bonepésar  700TM; Echo MRI).

GLP-2 caused a pronounced and dose-related decreése (

43) in the bone resorption marker carboxy-terminal coIIagenPeptides

crosslinks (CTX), but there are no studies regarding the tsec Synthetic rat GIP(3-30)Nbl human GLP-2(3-33) and human
of endogenous GLP-2 on bone homeostasis. GLP-2(11-33) were from Caslo laboratory (Kongens Lyngby,

Lipid and bone metabolism appear to be related. The adiposeenmark). Human (Pro3)GIP was a generous gift from Novo
tissue may in uence bone remodeling4) and adipose tissue Nordisk A/S, Bagsveerd, Denmark. The purity 95%) and
in ammation favors bone degradationtf). Thus, maintenance correctness of structures were con rmed by mass, sequenck,
of normal lipid homeostasis is essential not only to prevenHPLC analysis. For injections, the peptides were dissolved in
lipid imbalance but also to preserve bone homeostasis. THeBS bu er containing 3.5 mg/ml Hemaccel (Behringwerke AG,
mechanisms linking fat accumulation to bone health are eacl  Marburg, Germany), which was also used for control injections.
Therefore, we investigated some physiological actions & GlEach injection volume was 400.
and GLP-2 in rats by subchronic treatment with a novel GIPR
antagonist, GIP(3-30)NK (14, 22), a partial agonist, (Pro3)GIP Blood Samples
and two di erent GLP-2R antagonists [GLP-2(11-33), and GLP-To obtain serum, blood samples were allowed to clot for 30 min
2(3-33)] (31, 46, 47) in an attempt to (1) evaluate their action and were then centrifuged (10 min at 3,000 g) and stored
in the regulation of lipid and bone homeostasis and (2) idgnti at 20 C until analysis. To obtain plasma, blood was collected

potential mechanisms linking the two together. into chilled tubes containing in nal concentrations EDTASB.
mmol/l and valine-pyrolidide 0.01 mmol/l (a DPP-4 inhibitca,
MATERIALS AND METHODS gift from Novo Nordisk A/S, Bagsvaerd, Denmark). The samples
_ were centrifuged (10 min at 3,000q, 4 C) and plasma was kept
Animals at 80 C until analysis.

All experiments were in accordance with internationallyeuted

principles for the care and use of laboratory animals and ilBiochemical Analysis

compliance with an animal experiment license (2013/15-293480one resorption was assessed by measurements of degradation
00833) issued (to JH) by the Danish Committee for Animalproduct from C-terminal cross linked telopeptides of type 1
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collagen (CTX, RatLaps; IDS Immunodiagnostic Systems Gmbldf treatment with GIP(3-30)NH2 but exhibited signi cantly
Frankfurt am Main, Germany). CTX values were expressed ascreased body weight gain in the third week of treatment
percent of the mean of the baseline values (d&s1, 0) of compared with vehicle treated ratsigure 1. Moreover,
the individual animal. The intra- and interassay coe cieof treatment with GIP(3-30)NH2 resulted in increased body fat
variation (CV's) of the assay is in the range 6—10 and 10-15%nass measured by NMR spectroscopy at the end of the
respectively. Resistin was measured using rat resistin enzyrmeatment period compared with vehicle treated rdtgy(ire 1D)
immunoassay kit (Bertinpharma, Montigny le Bretonneux,while no dierence in lean mass was observddg(re 1E).
France). The intra-assay CV 5%, the inter-assayx 10%. Administration of the GIPR partial agonist (Pro3)GIP (25
Leptin was measured using rat leptin enzyme immunoassay kitmol/kg b.w.) was not associated with changes on food
(Mediagnost, Reutlingen, Germany). The intra- and interagss intake, body weight or body composition during the treatment
CV are<5%. Adiponectin was measured using rat adiponectirperiod (Figure 1).

ELISA kit (Millipore, St. Charles, Missouri, USA). The intra- Subchronic administration of GIP(3-30)NH increased
and inter-assay CV are 2 and <9%, respectively. LPL was plasma triglyceride levels compared with vehicle treated
measured using lipoprotein lipase ELISA kit (Cell Biolabs, Sarats (Figure 2A) but failed to change intrahepatic lipid
Diego, CA, USA). Theintra- and inter-assay CV aréand< 8%, concentration Figure 2B). It also signicantly enhanced
respectively. All samples were analyzed in duplicates in tine sa plasma lipase lipoprotein (LPL) levelgigure 2C). Moreover,

assay to prevent inter assay variation. 3 weeks treatment with GIP(3-30)NH increased plasma
] ] leptin (Figure 2D), while no signi cant e ect on circulating
Pharmacokinetic Study levels of resistin or adiponectin was observéiggres 2E,F.

Samples were taken at 0, 5, 10, 20, 30, and 45min po$harmacokinetic measurements of GIP(3-30)Ntdvealed that
injection of GIP(3-30)NH. Blood was immediately aliquoted a maximum concentration of 17 nM was achieved 10 min after
into tubes containing nal concentrations of EDTA 3.9 mmbl/ administration and that the antagonist is cleared from plasma
Samples were centrifuged (3,00@ for 10 min at 4C) and after about 120 min (data not shown).

the plasma stored at 80 C until analysis. GIP(3-30)N Administration of (Pro3), that acts as a partial agonist with
concentrations were measured in plasma with an in-housea Ki of 19 nM for the rat GIPR, did not modify triglycerides,
developed radioimmunoassag(j using a polyclonal antibody intrahepatic triglyceride content, plasma LPL, or plasma lesels
(code no. 95236) raised in rabbits against porcine GIP(INB3)  adipokines Figure 2).

As standard we used rat GIP(3-30)MHand the tracer was It was also examined whether the GIPR antagonist in uences

129-|labeled human GIP(3-30N}). bone resorption in rats. There was a decline in CTX levels by
) ] ] ) about 30% throughout the course of the study in all the groups
Analysis of Liver and Plasma Triglycerides of rats Figures 2G 4F). The treatment with GIP(3-30)Nk or

Total liver lipids were extracted as previously describeqPro3)GIP did nota ectserum CTX levels compared with vehicle
(31). The extracts were evaporated under vacuum in areated rats during the treatment perio8igure 2G).
rotary evaporator and re-suspended in 1ml of isopropanol

for quanti cation of triglycerides. Plasma and intrahepati Effects of GLP-2(11-33) or GLP-2(3-33)
triglycerides were assessed using triglyceride detetioma .
eTreatment in Rats

kit (Sigma-Aldrich, Saint Louis, USA). All samples wer , )

analyzed in duplicates in the same assay to prevent intgreatment with the GLP-2R antagonists, GLP-2(11-33) (25

assay variation nmol/kg b.w.), and GLP-2(3-33) (25 nmol/kg b.w.) for 3 weeks
' did not modify food intake or body weight compared to

Statistics vehicle treated ratsF{gures 3A—Q. Body mass composition
Results are shown as means SEM. The letter n indicates (Figures4A,B, plasma triglyceridesHgure 40, intrahepatic
the number of animals. The comparison between the groupglglycendes contentKigure 4D), or plasma adipokines such as

was performed by one way ANOVA followed by Tukey's pc)St_leptin, resistin, and adiponectin were similar to vehicle teeh

test using Prism Version 5.0 Software (Graph Pad Softwarfts Figure 45. The treatment with GLP-2(11-33) (25 nmol/kg
Inc., San Diego, CA, USA). R < 0.05 was considered to be b.w.) and GLP-2(3-33) (25 nmol/kg b.w.) did not change the
statistically signi cant. serum levels of CTX during the course of the stuBligtre 4F5.

RESULTS DISCUSSION
Effects of GIP(3-30)NH ; or (Pro3)GIP The ability of GIP to inuence body weight and body
Treatment in Rats composition remains unclear. Judging from the results of this

It was rst investigated if treatment with the GIPR antagsii study, GIP might appear to in uence lipid metabolism in rats.
GIP(3-30)NH2 aected food intake, body weight, or body Indeed, the treatment with a novel GIPR antagonist, GIP(3-
composition. In rats, 3 weeks treatment with GIP(3-30)NH230)NH, led to increased plasma triglyceride levels and body fat
(25 nmol/kg b.w.) had no measurable e ect on body weightmass during the third week of administration while no e ects
and food intake Figures 1A,B. Moreover, the rats did not were found following GLP-2R antagonists treatment. Neither
show di erences in body weight gain during the rst 2 weeksGIP nor GLP-2 appeared to be essential for the regulation oébon
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FIGURE 1 | Effects of the subchronic treatment with GIP (3—30)N{1(25 nmol/kg b.w.), (Pro3)GIP (25 nmol/kg b.w.) or vehicle treatl on food intake, body weight,
total body composition: Body weight(A), Food intake (B), Body weight gain (C), Changes in total fat(D), and lean (E) mass, measured by NMR. Data are mean
values S.E.M. (D 6 rats/group). *p < 0.05 vs. vehicle treatment.

Frontiers in Endocrinology | www.frontiersin.org 4 August 2019 | Volume 10 | Article 492


https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles

Baldassano et al. GIP, GLP-2, and Lipid Homeostasis

FIGURE 2 | Effects of the subchronic treatment with GIP (3-30)Nbl (25 nmol/kg b.w.), (Pro3)GIP (25 nmol/kg b.w.) or vehicle treatl on triglycerides, adipokines, and
CTX: plasma triglyceridegA), intrahepatic triglycerides(B), plasma LPL(C), plasma leptin(D), plasma resistin(E), plasma adiponectin(F), Serum CTX levelqG).
Animals were bled terminally and adipokine levels were detmined by ELISA as described under “materials and methods.” TX values were expressed as percent of
the mean of the baseline values (days2, 1, 0) of the individual animal. Data are shown as mean SEM, nD 6 per group. *p < 0.05 vs. vehicle treatment.

homeostasis in rats, although exogenous administratiobobi To investigate the role of GLP-2 in lipid homeostasis we
hormones has been demonstrated to reduce bone resorption imsed two di erent potential GLP-2 R antagonists GLP-2(11-33)
various experimental settings,¢0-43, 48, 51). (37) and GLP-2(3-33) &, 47). The rats were chronically treated
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FIGURE 3 | Effects of the subchronic treatment with GLP-2(11-33) (25mol/kg b.w.), GLP-2(3-33) (25 nmol/kg b.w.) or vehicle treat on body weight (A), food
intake (B), and body weight gain(C). Data are mean values S.E.M ( D 6 rats/group).

once a day by s.c. injection for 3 weeks. The treatment witl well-described GIPR partial agonist, (Pro3)Gi®)( GIP(3-
GLP-2(11-33) or GLP-2(3-33) did not modify body weight or 30)NH, acts as specic and e cacious GIPR antagonist in
composition, food intake, biochemical parameters relateth wi humans (4, 54). It inhibits the insulinotropic e ects of GIP
lipid metabolism such as plasma triglycerides, plasma adigskin and antagonizes the liporegulatory and vasodilatory e edts o
and intrahepatic lipid. GIP (59. In our rats, the chronic treatment with GIP(3-30)NH
The extent of GLP-2R antagonism elicited by our treatment isnduced body weight gain and signi cantly increased totatip
not clear. The antagonists are relatively wea® @nd their half-  fat mass. In order to investigate whether the variation irdyo
life after s.c. administration in rats is unknown but mustery  weight and consequently in the body composition was due to
short amounting to at the most an hour. Therefore, antagonis changes in food intake, this was measured on di erent days
has only been present for a very short period, and this coulthrough the course of the study. However, the food intake
in uence the results of the experiment. In future studieswitl ~ was unchanged during the 3 weeks of treatment. Therefore, we
be necessary to investigate the doses of the antagonistseeéq investigated the relationship of the increase in body fatssna
to block the actions of physiological levels of GLR2vivo.  to changes in lipid homeostasis. First, plasma triglycerideew
However, these negative GLP-2 data could help researehiéiis, measured. The treatment with GIP(3-30)Nkh rats signi cantly
further study, to give a fuller account of GLP-2 action. increased plasma triglyceride concentration, as is oftem see
To study the action of endogenous GIP in lipid metabolism,in obesity. Thereafter, we looked into possible mechanisms
we used a novel GIPR antagonist, GIP(3-30)Ni2, 53) and  whereby endogenous GIP might in uence the fat deposition
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FIGURE 4 | Effects of the subchronic treatment with GLP-2(11-33) (25 mol/kg b.w.), GLP-2(3-33) (25 nmol/kg b.w.) or vehicle treatd on total body composition,
triglycerides, adipokines, and CTX: Changes in total f{A) and lean (B) mass, measured by NMR, plasma triglyceride€C), intrahepatic triglycerides(D), plasma
adipokine levels(E), serum CTX level§F) expressed as percent of the mean of the baseline values (day, 1, 0) of the individual animal. Data are mean values
S.E.M. (1 D 6 rats/group).
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in the adipose tissue. Triglyceride levels are regulatedRly, L showing no e ect of (Pro3)GIP on food intake, body weight,
an enzyme that hydrolyzes triglycerides and releases &tée f insulin concentrations, and islet morphology 1. Previously,
acids and monoglycerides that are stored in adipose tissueing the same dose, (Pro3)GIP was shown to be able to reduced
(56). GIP(3-30)NH treatment signi cantly increased LPL levels body weight, plasma insulin, and triglyceride levels in HFED f
compared with vehicle treated rats, suggesting that blackinmice 21). Likely, the discrepancies could be due to the type
the GIPR signaling promotes the triglyceride accumulation i of diet. In fact, McClean et al. tested the (Pro3)GIP e ects
the adipose tissue by increasing circulating LPL conceinftat in HFD fed mice, a diet that induces metabolic syndrome
In fact, manipulation of LPL expression causes imbalancg§2). Also during catch-up growth in female rats, associated
in the partitioning of fatty acids among peripheral tissueswith metabolic syndrome, the administration of (Pro3)GIP
which have major e ects on lipid and glucose metabolismreduced visceral fat mass and adipocyte hypertrophy without
(57-59. Our results are consistent with the nding that variations in body weight. However, we previously showectiow
chronic administration of the long acting GIP agonist, D- activities of human, mouse, and rat (Pro3)GIP in the rodenPGI
Ala 2-GIP, in HFD fed mice decreased LPL activity and bodyystems compared with the human systetf) (highlighting the
weight (L7). Moreover, GIP-overexpression in transgenic micesigni cant interspecies di erence within the GIP system.
improved systemic metabolic phenotype and reduced adipose Adipose tissue and bone are closely related. Previous studies
tissue in ammation (L9). Previously, studies have shown thathave widely linked lipid intake and in ammation status, key
GIP stimulates adipocytes lipolysis on adipocytes cell liti@ ( protagonists involved in bone resorptioid 74). In ammation
and modulates reesteri cation of lipidsL@). In contrast, GIP favors bone degradation by stimulating osteoclast activitjle
stimulates LPL activity leading to triglyceride accumigiatin  inhibiting osteoblast-related bone formation, which leads t
cells 0, 61). In particular, GIP was shown to increase LPLunbalanced bone remodeling and subsequent bone loss. Weus,
enzyme activity, in an insulin-dependent manner, in culre decided to investigate the in uence of the endogenous GI® an
3T3-L1 adipocytes, rodent adipocytes, and subcutaneous hum&LP-2 in bone resorption by measuring serum CTX levels. We
(61-64). These contrasting results suggest thatithatro studies  observed a decline in CTX levels throughout the course of the
on cell lines cannot be translated to adipose tissue eiectévo.  study in all the groups of rats, including control treated gpo A
The liver is central for maintenance of lipid homeosta&is)( factor hampering the measurement of bone markers in rats is a
Thus, we also looked at the e ects of the 3 weeks of treatmemiontinuous decline of some markerssj. CTX levels decreases
with GIP(3-30)NH on liver lipid accumulation in rats. We did with the age in rats{6) and our data suggests that CTX decline
not observe di erences in the intrahepatic triglyceride coritm  is already evident within 3 weeks.
the GIP(3-30)NH treated group compared with vehicle treated The results of the pharmacokinetic study of GIP(3-30)NH
group suggesting that antagonism of GIPR signaling did noshowed an average peak level af7.000 pmol/l and revealed
promote the triglyceride accumulation in the liver. that the half-life after injection was 20 min. This means that
Adipose tissue secretes bioactive peptides named “adipokinesXposure for the antagonist was provided for maximally 2 h. In
which act locally and distantly through autocrine, paraerin addition, previousn vitro experiments 22) would suggest that
and endocrine e ects@6). Previous studies in transgenic mousee cient antagonism requires a considerable excess of amtago
models indicated that GIP may modulate the adipokine pro lecompared to the levels of the endogenous hormones, which
secreted from the adipose tissu&7,(68). In our study, GIP(3- further reduces the time of e cient antagonism. As for GLP-
30)NH; treatment did not a ect resistin and adiponectin levels 2, it can be concluded that the animals have been without
but signi cantly increased leptin levels consistent witheth GIPR antagonism for most of the time during the 3 weeks.
expansion of the white adipose tissue. This raises the question of the mechanism behind the observe
Our data may suggest that the GIP system is basically di ererthanges in lipid metabolism. It seems unlikely that antagoni
in humans and rodents with regards to adipose tissue. In husnanfor just a small fraction of the time could result in major
GIP appears to act as a lipid storage hormone. It increasehanges in body weight and lipid metabolism as observed. Rather
adipose tissue blood ow and stimulates fat depositidgid,( it could be suggested that a brief but extensive disturbance
70) and the GIPR antagonist, human GIP(3-30)blHlecreases of the e ects of GIP could lead to a compensatory response
adipose tissue triacylglyceride uptake and increases thddtyy  of a longer duration, which in turn could have consequences
acid/glycerol ratio {4, 55). In rodents, GIP stimulates lipolysis for lipid metabolism. Further experiments, involving repehte
(15), decreased lipase lipoprotein (LPL) activity and body weighadministration of the antagonists and measurements of jpessi
(17), adipose tissue in ammation1@ 19), visceral fat20), and compensatory mechanisms (e.g., increases in GIP levels afte
triglyceride levels41). The GIP antagonist, rat GIP(3-30)NH antagonist administration) as well as changes in glucose and
increases body weight, total body fat mass, leptin, and LPL imsulin levels are required to elucidate this.
rats. Thus, it is becoming clear that important di erences in We were unable to detect increases in food intake in the
metabolic and signal transduction may exist between rodewt animals treated with the GIP antagonist, although an inseea
human adipose tissue. Thus, caution should be exercised when body weight was observed. Probably, small increases in
extrapolating information from one species to another. food intake, not registered by our measurements, explain the
In our experiments, the treatment with the partial GIP agonist changes not only in body weight, but also in triglyceride
(Pro3)GIP did not modify any of the investigated parameters i levels. Alternatively, it has been reported that GIP might
rats. This is in agreement with a previous study by Irwin et alincrease lipid oxidation in rodents7{). Conversely, GIPR
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antagonism might decrease lipid oxidation, which might l¢éad
increased circulating and tissue triglyceride levels. Tamtain  caused by the di erent treatments.
su cient energy metabolism this would imply an increase In conclusion, treatment with GIP(3-30)NH antagonist
in non-lipid oxidation, which would be expected to translatea ected lipid metabolism in rats whereas a partial GIPR agonist
into increased food intake, which was not observed. It i©or a GLP-2R antagonists appeared not to in uence neither lipid
also possible that a reduction in physical activity and energynetabolism nor bone resorption in rats.
expenditure could explain the changes in lipid metabolism,
however, we did not monitor locomotor activity so this is gnl DATA AVAILABILITY
speculative. Thus, it is di cult to fully explain the mechamnis
of action of the GIPR antagonists with respect to fat mass andll datasets generated for this study are included in the
body weight. manuscript and/or the supplementary les.

The subchronic treatment with GIP(3-30)NH (Pro3)GIP
and the GLP-2R antagonists, GLP-2(11-33), and GLP-2(3-33ETHICS STATEMENT
did not aect CTX levels compared with control treated-rats
which suggests that endogenous GIP and GLP-2 do not in uencAll experiments were in accordance with internationallyemed
bone resorption in normal rats. However, because of the shogirinciples for the care and use of laboratory animals and
duration of the antagonism the negative ndings cannot bein compliance with an animal experiment license (2013/15—
assigned much weight. Thus, GLP-2 has been shown to suppreé$34-00833) issued (to JH) by the Danish Committee for
bone resorption in humans4(, 78, 79 and GIP administration Animal Research.
increase bone density in ovariectomized rats)(while GIP
receptor knockout mice have decreased bone size and maggJ THOR CONTRIBUTIONS
altered bone microstructure, and turnoveB(d). Mice with
overexpression of GIP had increased markers of bone formatioSB and BH concepted and designed the study, performed the
decreased markers of bone resorption, and increased bong maxperiments, interpreted data, revised the article, and amatov
(81). Moreover, acute administration of GIP in humans inhibited the nal version. HK performed experiments. LG, HK, MR, and
bone resorption §9). In addition, we cannot exclude that the JH contributed with interpretation of data, article revisional
decline in CTX levels that we observed during the courseunfist approval, and agreement.

in all groups contributed to mask any changes in marker levels
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