XX Convegno Annuale ABCD sul Tema

STRESS CELLULARE:
SOPRAVVIVENZA ED APOPTOSI

17-18 Aprile 2009
Starhotels Du Parc, Parma

Presidente: Pier Giorgio Petronini
Organizzatori: Roberta Alfieri, Lina Ghibelli, Andrea Cavazzoni

ABSTRACTS
Sea urchin embryos: development and stress toxicity

Annalisa Pinsino¹, Maria Agnello¹, Simone Filosto¹, Maria Carmela Roccheri¹
¹Dipartimento di Biologia Cellulare e dello Sviluppo “A.Monroy”, Università degli Studi di Palermo, Palermo

(mariroc@unipa.it)

Heavy metals like Cadmium (Cd) are toxic as trace elements, others, like Manganese (Mn) play roles as nutrients but act as toxicants at elevated concentrations. In echinoderms, stress response is stage specific event, embryos are sensitive to pollutants, and often show alternative developmental phenotypes. Here, we investigated distinct and simultaneous effects of exposure to Cd and Mn in sea urchin (P. lividus) embryos and the capacity of these to withstand to each single insult, activating different strategy for protection. CdCl₂ exposure causes delay and morphological aberrations accompanied by the synthesis of specific stress proteins. Atomic Absorption Spectrometry (AAS) analysis pointed out the progressive accumulation of the metal in embryos, causing apoptosis. Here we demonstrate that ROS increase significantly during Cd insult. Moreover, we show the interference between Cd and Ca uptake during development, suggesting the competition for using the same ionic channels. Likewise, we investigated on effects of Mn on embryos cultured in the presence of the MnCl₂ from fertilization. Mn produce specific malformation in a time- and dose-dependent manner: we found an increase in the pluteus abnormality showing retarded, arms lacking, abnormal apex and skeleton defects. The highest concentration completely inhibits elongation of spicules in about 80% of embryos. By AAS analysis we found that: Mn is accumulated into the embryos 24 hrs after fertilization, while Ca concentration is reduced. The inhibition of spicule formation and perturbation to the skeleton-producing cells (PMC) migration into the blastocoele could be linked to the competition between Mn and Ca for membrane transport sites or other specific molecular targets. 2DE proteins were analyzed in control and exposed embryos, highlighting protein expression differences in response to Mn exposure. We explored if Mn would produce a stress response in embryos, by the up-regulation of synthesis of Hsps or by apoptosis. We found Mn exposure does not induce Hsps neo-synthesis, neither triggers apoptosis nor starts ROS production, but cause an increase in some Hsc levels. Phosphorylation events mediated by protein kinases (ERK and p38 MAPK) were investigated of Mn-treated embryos. Both kinases showed a modify activation–times in Mn-treated embryos. The effects of Cd/Mn co-treatment were studied on embryos treated with a Mn concentration 10-fold molar excess with respect to Cd concentration. We found several abnormalities, developmental delay and apoptosis as results of summary of the single metal treatment.