EuroSun2018
12th International Conference on Solar Energy for Buildings and Industry

September 10-13, 2018 | Rapperswil, Switzerland

In cooperation with:

SWISSOLAR
7th Swissolar Solar Heating Conference

SIGES
Conference on the Simulation of Building-Integrated Energy Systems

SAC 2018
8th International Conference on Solar Air Conditioning

www.eurosun2018.org
We thank our Sponsors and Supporters!

Silver Sponsors:

Bronze Sponsors:

Promoter:

Hosts:

A Conference of:

Supporters:

Conference Organizer

Online Management

www.eurosun2018.org
Editorial

Editorial to the Proceedings of EuroSun 2018
Häberle, A., Stickelberger, D., Stricher, W., Renne, D.

Scientific Program

Solar Buildings

Evacuated Glazing with Silica Aerogel Spacers

Radiative Cooling to Cover Cooling Demands of an Earthbag Building in a Training Medical Cerner in Burkina Faso
Castell, A., Carrobé, A., Martorell, J., Medrano, M., Rincón, L., Vail, S.

Definition of a Reference Office Building for Simulation Based Evaluation of Solar Envelope Systems

Gavehovitch, B., Giroux-Julien, S., Ménézo, C., Peyrol, E.

The SOLAR DECATHLON Knowledge Platform – Concept and Initial Application
Hendel, S.

Difference in Evaluation of Discomfort Glare from Windows between Middle-Eastern and Japanese Students
Iwata, T.

Khan, M., Hassabou, A., Hethorst, B., Spinnler, M.

Kim, M.

Control Strategies for a Residential Property with Solar Building, Thermal and Electricity Storages
Korvola, T., Adburafikov, R., Reda, F.
Modular Rooftop Building-Integrated Photovoltaic/Thermal Systems for Low-Rise Buildings in India
Kruglov, O., Athienitis, A., Bagchi, A., Ge, H., Lee, B., Rounis, E., Stathopoulos, T. .. 89

Leconte, A., Moureaux, S. .. 98

Thermal Monitoring on an Earthbag Building in Mediterranean Continental Climate
Martorell, I., Carrobé, A., Medrano, M., Rincón, L., Solé, C. .. 109

Solar Seminar Room in the University of Balearic Islands with a New Advanced Radiant System
Moïà-Pol, A. ... 116

bFAST: A Methodology for Assessing the Solar Potential of Façades in Existing Building Stocks
Polo López, C.S., Corti, P., Frontini, F., Polo Lopez, C.S., Saretta, E. .. 122

High Solar Fraction By Thermally Activated Components
Ramschak, T., Becke, W., Fink, C., Heimrath, R., Lerch, W., Mach, T. .. 133

Early Design Stage Consideration of Building Form and BIPVT Energy Performance
Yip, S., Athienitis, A., Lee, B. .. 140

An Aesthetic Energy Producing Roof with Integration of PV Modules and Solar Thermal Collectors

Solar Assisted District Heating and Cooling

Comparison of Solar District Heating Concepts at Various Land Prices
Best, I., Orozaliev, J., Vajen, K. .. 156

Energetic and Economic Analysis of a Solar-Assisted Trigeneration System
D’Antoni, M., Fedrizzi, R. .. 168

Thermo-Chemical District Networks
Koller, C., Bergmann, T., Danesi, S. .. 178

Distributed vs Centralized Solar District Systems. Study Case in Balearic Islands Districts
Moïà-Pol, A., Sabater, P. .. 187

Development of a Software System for Optimal Operation of Heating Networks with Central Solar Plant

Opportunities for the Integration of Solar Thermal Heat, Photovoltaics and Biomass in a Brazilian Hospital
Pina, E.A., Lozano, M.A., Serra, I.M. .. 200

Experimental Plant for Analyzing the Technical Feasibility of Decentralized Solar Heat Feed-In
Schäfer, K. .. 212
Solar Heat for Industrial Processes

Optical Analysis of an Evacuated Tube Collector with Built-In Semicircular Concentrator for Process Heat Applications
Christodoulaki, R., Drosou, V., Tsekouras, P. 222

Environmental Assessment of Industrial Solar Thermal Systems

RESSSPI: The Network of Simulated Solar Systems for Industrial Processes
Frasquet, M., Niel, Y., Silva, M., Benevenent, J. 239

Cleaning Strategies for Fresnel Linear Concentrator Mirrors in Solar Heating Plants
Gabbrielli, R., Del Medico, F., Di Palo, M., Gollino, G. 248

Solar Heat in Industrial Processes in Switzerland - Theoretical Potential and Promising Sectors
Guillaume, M., Bunea, M.S., Caflisch, M., Martin, J., Rittmann-Frank, M.H. .. 257

Solar Heat Integration in Rotational Molding Process: Case Study
Laadel, N.E., Agafit, H., Bennouna, E.G., Mounak, A. 268

Standardisation of Solar Process Heat Applications to Increase Market Penetration

Thermal Analysis and Validation of a Geodesic Dome Dryer for Capsicum Baccatum
Vergara, S., Hadzic, M., Herrera, E., Lopez Vasquez, E., Perez, J., Tipula, R. 290

Domestic Hot Water and Space Heating

Efficient Design of Solar Assisted Heating Systems for Multi-Family Houses
Backes, K., Adam, M., Eggert, D., Götzelmann, D., Helbig, S., Wirth, H.P. .. 301

Energetic Behaviour of a Solar Thermal System Producing Domestic Hot Water and Preheating the Ventilation Air
Carbajo Jiménez, P., Fraisse, G., Leconte, A., Ouvrier Bonnaz, O., Wurtz, E. .. 310

Comparative Dynamic Performance Tests of Two Real Technology Packages for Buildings Heating System Retrofit
Chaze, D., Fulgini, F., Nicolas, L., Patric, B. 322

Drainback Solar Thermal Systems in Switzerland – Market Overview and Main Barriers
Eicher, S., Bony, J., Bunea, M., Citherlat, S., Guillaume, M. 334

Experimental Analysis of Air-Water Heat Exchanger with Microchannel Coil Exposed to Different Working Parameters
Glazar, V., Kirini, M., Leni, K., Trp, A. 345

Hardware-In-The-Loop Tests on Complete Systems with Heat Pumps and PV for the Supply of Heat and Electricity
Haberl, R., Bamberger, E., Haller, M., Reber, A. 357

Sustainability Assessment of Most Relevant Solar Thermal Heat Systems
Kicker, H., Lang, R.W., Wallner, G.M. 367
Artificial Intelligence for the Efficient Control of Solar Heating Systems
Kramer, W. .. 377

Simulation-Based Optimization of Solar Combsystem. Sensitivity Analysis at Optimum
Kusy, O., Vajen, K. .. 385

Measurement Evaluation and Simulation of an Innovative Drainback Solar Combi-System
Louvet, Y., Orozalev, J., Vajen, K. 397

Simulation and Monitoring of PV Heat Pump System with Seasonal Storage
Matuska, T., Broum, M., Sourek, B. 409

Towards Automated Continuous Performance Benchmarking of DHW and Combi Systems
Schmelzer, C., Georgii, M., Kusy, O., Orozalev, J., Vajen, K. 418

Schmidt, C., Schäfer, A. ... 426

Polymer Collectors with Temperature Control - Thermosyphon Valve Development and System Integration
Thür, A., Hauer, N., Schroll, J. 436

Review of Combined Solar Thermal and Heat Pump Systems Installations in Lithuanian Hospitals
Valancius, R., Cerneckiene, J., Singh, R.M. 444

Valancius, R., Cerneckiene, J., Fokaides, P., Jurelionis, A., Valciunas, J. 449

Space Cooling Application with Unglazed Solar Absorber
Wemhoener, C., Schwarz, R. 455

The Development of the Sunridge, an Orientation Independent Thermal Solar System
de Geus, A., de Boijer, H. ... 463

Direct Solar Thermal Systems with Thermosiphon Frost Protection and Innovative Control Strategies Using a Thermo-Differential Bypass Valve
van Ruth, N., Kratz, P. ... 474

Solar Air Conditioning and Refrigeration (8th International Workshop on Solar Air Conditioning)

Selection of High-Performance Working Fluid for a Solar-Geothermal Absorption Cooling System and Techno-Economic Study in the Northern Mexican Conditions
Altamirano Gundapi, A., Le Pierrès, N., Stutz, B. 481

Life Cycle Assessment Experiences for Solar Heating and Cooling Systems
Beccali, M., Cellura, M., Cusenza, M.A., Longo, S., Muguier, D., Selke, T., Vicente Guiles, P.G. 493

Monitoring and Energy Performance Assessment of the Compact DEC HVAC System “Freesco Facade” in Lampedusa (Italy)
Beccali, M., Di Pietra, B., Finocchiaro, P., Motta, M. 505
Modelling of an Absorption Cycle With a Direct Ammonia Vapor Generator Inside a Concentrating Parabolic Trough Solar Collector

Modelling and Simulation of a PV Driven Refrigerator with Phase-Change Materials in the Internal Walls
Coca-Ortega, A., Coronas, A., Müller, J., Torres, V. .. 524

Simulations of Solar Thermal Cooling System for a Building at Innovation Park Muscat
Cordes, T., Al-Riyami, S., Scheuren, J., Schlatmann, R. .. 536

Simulation of a Solar Fired Absorption System for a Case Study in the Dairy Industry
Correa-Jullian, C., Cortés, F., Crespo, A., Ibarra, M. ... 544

Design and Construction of a 10 KW Sorption Heat Pump Prototype
Daguene-Frick, X., Gantenbein, P., Haebeler, A., Persdorf, P. ... 554

Development of a Photovoltaic Driven Thermodynamic Chiller – Application to Solar Air Conditioning And Cooling Storage
Escarcejaux, P., Baup, O., Marvillet, C., Mugnier, D., Weber, C. ... 562

Measurement Results and Operating Experience of Large-Scale Solar Air Conditioning Plants
Feierl, L., Holter, C., Peter, H. ... 574

Experimental Investigation on the Dynamic Performance of a Thermally-Driven Adsorption Chiller Integrated with a Gas Boiler
Fuentes, E., Balsells, M., Bellan, I., Impala, V., Mogro, O., Salom, J., San-Joaquin, S., Sayans, A. 585

PV Driven Dew-Point Cooling for Australia
Goldsworthy, M., Sethunavanatraman, S. .. 597

Experimental Comparison of Scroll and Swash-Plate Compressors for PV Driven Compression Chillers and Heat Pumps
Heithorst, B., Bauer, G., Irgang, L., Rauscher, B., Sattelmayer, T., Spinnler, M. 609

Design and Practical Validation of a Hybrid Absorption/Compression Chiller Driven by Low-Grade Heat
Helm, M., Eckert, T. .. 621

Modified Solar-Assisted Ejector Cooling System
Huang, B., Ko, H. ... 633

Levelized Cost of Thermal Energy Storage and Battery Storage to Store Solar PV Energy for Cooling Purpose
Luerksen, C., Cheong, K.W.D., Gandhi, O., Rein&l, T., Sekhar, C. .. 638

Comparison of Modeled and Measured Heat and Mass Transfer in a Liquid Desiccant Air-Conditioning System
Mandow, W., Fleig, D., Jordan, U., Lowenstein, A., Mützel, M., Vajen, K. ... 648

Development of Solar Assisted Sorption Unit for Extraction of Water from Ambient Air in Desert Climate
Matuska, T., Sourek, B., Zmihal, V. .. 659

Using the Heat of Sun to Cool: A Case Study of 100 TR (350kWth) Solar Air-Conditioning System
Mehta, K., Gadhia, D. ... 665
Technical and Economic Performance of Best Practice SHC Plants – A Compilation of IEA SHC
Task 53 Results
Neyer, D., Köll, R., Mugnier, D. .. 673

Experimentally Validated Dynamic Model for a Hybrid Cascade System for Solar Heating and
Cooling Applications
Palomba, V., Frazzica, A., Große, A., Kühnert, S. ... 684

Performance Analysis of a Small Scale Solar Cooling Plant Based on Experimental
Measurements
Pellegrini, M., Bianchini, A., Guzzini, A., Saccani, C. ... 692

New Water Adsorbent for Adsorption Driven Chillers
Risti, A., Krajnc, A., Zabukovec Logar, N. ... 704

Efficient Solar Driven Air Conditioning System for Hot Climates: Case Study of Doha
Tamainot-Tello, Z. .. 710

Performance Investigation of Liquid Desiccant Dehumidification System Integrated with Solar
Thermal Energy and Shallow Geothermal Energy
Tseng, C., Chen, S., Liang, J., Yang, L. .. 716

Application of PCM in Building’s Envelope of Lightweight Prefabricated Houses as an addition
to a PV driven renovation cooling system by EU project HEART
Zavri, E., Dovjak, M., Strith, U., Zupanc, G. ... 728

PV and PVT Systems for Buildings and Industry

Field Test Results of an Innovative PV/T Collector for an Outdoor Swimming Pool
Brottier, L., Bennacer, R. .. 738

Performance Assessment of a Photovoltaic-Thermal Roof .. 743

Electrical and Thermal Performance Evaluation of a District Heating System Composed of
Asymmetric low concentration PVT Solar Collector Prototypes
Cabrera, D., Costeira, J., Gomes, J. .. 755

Potential of Covering Electricity Needs of a Flat of a MFH with Decentral Compact Heat Pumps
with PV – Simulation Study for Different DHW Profiles and PV Field Sizes
Calabrese, T., Dermentzis, G., Siegle, D. ... 764

Assessment of the Suitability of Different Photovoltaic Cell Technologies for Product
Development of Building Integrated Solutions Using the Hierarchy Process (ahp)
Haghighi, Z., Isabella, O., Konstantinou, T., Ortiz Lizcano, J.C., Zeman, M., van den Dobbelsteen, A. .. 774

Economic Feasibility of Solar PV System for Buildings
Huang, B., Hsu, P.C. .. 784

Comparative Economic Analysis of Single and Dual-Fluid Based Photovoltaic Thermal Systems
for Building Energy Needs
Hussain, M.I. .. 788

Implementation and Experimental Validation of a Photovoltaic-Thermal (PVT) Collector Model
in TRNSYS
Jonas, D., Frey, G., Theis, D. .. 798
Numerical Simulation of the Thermal Performance of Four Prototypes of CPC Collectors That Use Bifacial PV Cells
Lança, M., Gomes, J., Hayati, A. .. 810

Organic PVT - A Novel Hybrid Collector Combining Organic Photovoltaics and Polymer Absorbers

Degradation of photovoltaic systems based on long-term measurements and laboratory tests
Muntwyler, U., Schott, T. .. 828

Development and Field Testing of a Novel Hybrid PV-Thermal Solar Collector
Murrell, A., Alonso Alvarez, D., Ekins-Daukas, M., Mellor, A., Povall, S., Williams, C. ... 835

Study on Distributed MPPT System in Solar EV
Nemoto, Y., Fujisawa, T. ... 841

Glazed PVT Collector Integrated Into Façade Module
Pokorny, N., Jirka, V., Matuska, T., Sourek, B. 850

Design and Performance Assessment of a Prefabricated BIPV/T Roof System Coupled with a Heat Pump
Rooinis, E.D., Athenitiis, A., Dumoulin, R., Ioannidis, Z., Kruglov, O., Stathiopoulos, T. 859

Solar Hybrid PVT Coupled Heat Pump Systems Towards Cost-Competitive NZEB
Sanz Martínez, A., Fuente Dacal, R., Martín Miranda, A.J. .. 869

Experimental Performance Evaluation of PV/T Panels at Negative Reduced Temperatures
Simonetti, R., Manzolini, G., Molinaroli, L. .. 881

Experimental Investigation of PVT Collectors with Phase Change Material
Simón, R., Brun, G., Guedea, I., Vilén, R. ... 891

A Techno-Economic Comparison Between PV and PVT Integrated Ground Source Heat Pumps for Multi-Family Houses
Sommenfeldt, N., Madaou, H. .. 901

Multi-Objective Optimization of a Solar Heat Pump System Using PVT and Ice-Based Latent Storage
Tamasauskas, J., Poirier, M., Zmeureanu, R. .. 911

PV Power Production Estimation by Using Radiometric and Meteorological Data
Trigo, M., Alonso-Montesinos, J., Batlle, F.J., Cortés, M., Ferrada, P., Martinez-Durban, M., Marzo, A., Portillo, G., Rosiek, S. .. 923

Improvements on the Efficiency of the Photovoltaic Panel by Integrating a Spray Cooling System with Shallow Geothermal Energy Heat Exchanger
Yang, L., Chen, S., Liang, J., Tseng, C. ... 930

Extended Hottel-Whillier Models for uncovered PVT-Collectors
Zehnäussern, D., Battaglia, M. ... 941

An Overview of PVT Modules on the European Market and the Barriers and Opportunities for the Dutch Market
de Ketzer, C., Bottse, J., Folkerts, W., de Jong, M. .. 949
Solar Thermal Collectors and Solar Loop Components

Annual Efficiency - Easy Understanding of Collector Performance
Abrecht, S. ... 956

Assessment of Durability of Solar Absorbers - Performance Criterion
Carvalho, M.J., Diamantino, T., Páscoa, S. 964

Accelerated Aging Tests for Solar Absorber Coatings
Diamantino, T., Carvalho, M.J., Chambino, T., Ferreira, C., Gonçalves, R., Nascimento, I., Páscoa, S. 973

Influence of Using Different SiO2 Antireflective Coatings and Sintering Conditions on the Durability and Optical Performance of the Selective Solar Absorber
Farchado, M., Germán, N., Morales, Á., San Vicente, G. 983

Testing and Modeling of Direct Steam Generating Parabolic Trough Collectors

Basic Study on Flow Stabilization of Top-Heat-Type Thermosiphon
Fujisawa, T., Kawaguchi, T. ... 1006

García, H., Delgado, O., Gutierrez, A., Ramírez, C. 1017

Tailoring Alumina Matrix Optical Properties for Colored Solar Thermal Absorber Coatings
Isac, L., Duta, A., Perniu, D. ... 1025

Experimental Investigations on the Stagnation Behavior of Thermochromic Flat Plate Collectors
Müller, S., Giovannetti, F., Hafner, B., Reineke-Koch, R. 1032

Theoretical Analysis of Combined Solar System Based on Dual Purpose Solar Collector
Pokorny, N., Matuska, T., Shemelin, V., Sourak, B. 1043

Solar Flux Map Distribution of a Parabolic-Spheric Dish Based on Photographic Method
Roccabruna, M., Crema, L., Menna, F., Remondino, F. 1055

Abrasion and Cleaning Tests on Antireflective and Antireflective/Antisoiling Coatings for Solar Glass Glazing
San Vicente, G., Farchado, M., Germán, N., Morales, Á. 1063

Radiative Collector and Emitter: Experimental Results
Vall, S., Medrano, M., Solé, C. ... 1071

Surface Modification of AISI 316 Stainless Steel by Oxynitrocarburizing for Solar Collector Applications
Vargas, G., Chávez, A.F., López, L. .. 1077

Electroplating of Selective Surfaces for Concentrating Solar Collectors
Zák, E., Mossegård, J., Nordénström, A., Wågberg, T. 1086

Thermal Storage
Stratification in Large Thermal Storage Tanks
Battaglia, M., Haller, M. ... 1097

Thermal Collection and Seasonal Storage Potential of a Mixed-Use Neighborhood
Hachem-Vermette, C., Cellura, M., Guarino, F. .. 1108

Experimental Study of a 600 W Seasonal Solar Heat Storage Reactor for the Heating of Buildings
Hennaut, S., André, P., Baiwir, R., Collard, L., Davin, E. 1118

Sensible Thermal Energy Storage in Packed Bed for Industrial Solar Applications
Kocak, B., Paksoy, H.O. ... 1130

Encapsulation of Inorganic Phase Change Materials by Sol-Gel Method for Thermal Energy Storage
Lucio, B., Romero, M. ... 1137

Preliminary Results for the First Year of Operation of a Seasonal Storage Solar Combi System for a Single Detached House
Meister, C., Beausolel-Morrison, L. ... 1144

Modeling and Validation of Different Heat Exchanger Geometries for Solar Ice Storage Systems
Paulini, S., Bruggemann, D., Piessing, T. .. 1154

Validation of an Ice Storage Model and Its Integration Into a Solar-Ice System
Philippens, D., Battaglia, M., Carbonelli, D., Kunath, L., Thissen, B. 1162

Decentralized DHW Production from Exhaust Air in the Bathroom Prewall
Ruesch, F., Büchel, E., Haller, M., Persdorf, P., Urena, D. 1174

Design and Evaluation of a Compact Thermal Storage System Using River Stones for a Continuous Drying Process of Agricultural Products in Peru
Tipula Ramos, R.R., Hadzich Marin, M.A., Herrera, E., Lopez Vasquez, E., Vergara Dávila, S.G. ... 1181

Development of a Solar Paddy Dryer by Fluidization Technique Using Heat from a Solar Pond
Tundes, S., Rongchai, K. ... 1189

High Temperature Seasonal BTES for Effective Load Shifting and CO2 Emission Reduction
Weber, R., Baldini, L. ... 1201

Semi Continuous Thermochemical Reactor for Thermal Storage
Wyttcnbach, J., Descy, G., Descy, A. .. 1210

Testing & Certification

Optical Properties of Solar Absorbers – Results on Round Robin and Guidelines
Carvalho, M.J., Bohren, A., Fischer, S., Loren, A., Nielsen, J.E., Pascoe, S., Sallaberry, F., Wilson, H.R. ... 1223

In Situ Characterization of Thermal Collectors in Field Installations
Fahr, S., Gumbel, U., Kramer, K., Zirkel-Hofer, A. 1231

Modelling the Relative Humidity Inside Flat Plate Collectors
Fischer, S., Marquez, F. ... 1241
Comparative Analysis of Life-Cycle Assessment Tools (LCA) Using the Example of Different Energy Supply Variants of a Purpose-Built Building
Kastner, R., Reim, M., Weismann, S., Yu, Y. .. 1253

Quasi-Dynamic Testing of a Novel Concentrating Solar Collector According to ISO 9806:2013
Kurina, A., Gomes, J., Ollas, P., Olsson, O., Pius, G. 1262

Comparison of Two Whole System Test Methods: CCT and PLPE
Menegon, D., Haberl, R., Halter, M. ... 1274

Analysis of Applicability of PLPE Method for the Test of a Solar Cooling System
Menegon, D. ... 1285

OTSun: An Open Source Code for Optical Analysis of Solar Thermal Collectors and PV Cells
Pujol-Nadal, R., Bonnin-Ripoll, F., Cardona, G., Hertel, J.D., Martinez-Moll, V. 1295

Ageing Performance of New Solar Cover Materials After Outdoor Exposure
Ruesch, F., Brunold, S. ... 1302

CFD-Based Development, Testing and Optimization of Flat Plate Collectors
Vetter, B., Druck, H., Fischer, S. ... 1309

System Simulation (2nd SIGES Conference on the Simulation of Building-Integrated Energy Systems)

An Improved Model for Phase Change Material (PCM) Thermal Storage Tanks
Andrés Chicote, M., Sanz Jimeno, R. ... 1322

Model Predictive Control for Building Automation
Bolt, P., Fischlin, R., Jaeger, C., Meier, O., Ritzmann, R., Zierbart, V. 1330

Techno-Economic Evaluation of Energy Self-Sufficiency for the
PIPE Network Analysis for Solar Thermal Plants
Eismann, R. ... 1353

Dynamic Modelling of a Hybrid Solar Thermal/Electric Storage System for Application in Residential Buildings

Potential of Direct Solar Thermal Driven Absorption Heat Pump in Hybrid Systems
Gritzer, F., Neyer, D., Ostheimer, M., Thür, A. .. 1376

Dynamic Modeling and Optimization of Energy Use in Retrofitted Buildings at District Heating Level
Iturralde, J., Chicote, M.A., Martin, J., Martin, E., Pascual, C., Urra, I., Vasallo, A. 1387

BIM Use Case: Model-Based Performance Optimization
Jakobi, M., Stöckli, U., Witzig, A. ... 1395

From Simulation to Reality: IEC 61499 Compliant Control Applications for Solar Energy Systems
Jakobi, M., Meier, L., Quaschning, V., Stöckli, U., Tjaden, T. 1403
Solar Resource and Energy Meteorology

A First Approach of the Influence of the Forecasting Horizon in the Electricity Generation Simulation of a Solar Tower Plant
Alonso-Montesinos, J. .. 1482

Climatic and Global Validation of Daily MODIS Precipitable Water Data at AERONET Sites for Clear-sky Irradiance Modelling

Brazilian Photovoltaic Potential

Assessing Solar Electricity Potential and Prospective Present Day Costs For A Low Latitude Caribbean Island: Trinidad
Dookie, N., Chadee, X.T., Clarke, R.M. 1511

Accuracy of Solar Resource Assessments on the Basis of Publicly Available GHI Databases
Epling, M. .. 1522

Solar Irradiation Over a Flat Surface with Different Tracking Strategies

Validation of Real-Time Solar Irradiance Simulations Over Kuwait Using WRF-Solar
Gueymard, C., Jimenez, P. .. 1540

Progress in Sky Radiance and Luminance Modeling Using Circumsolar Radiation and Sky View Factors
Gueymard, C., Ivanova, S. .. 1551
Solar Education

On the Importance of Education when Implementing Renewable Energy
Broman, L., Kandpal, T.C., Ott, A. .. 1649

A Simple Tool for Assessing Solar and Daylight Access in Urban Canyons
Compagnon, R., Chatzipouika, C. .. 1655

Development of a Compact and Didactic Solar Energy Kit Using Arduino
Costeira, J., Cabral, D., Gomes, J., Hayati, A., Vieira, M. 1663

Using Heliodon for Solar Building Design Education in the Age of Computer Simulations
Pajek, L., Božiek, D., Dovjak, M., Košir, M., Kuni, R., Potonik, J., Šubic, N. 1668

Dialogue Between Research Solar Practices and Training Activities: Interactive Webinar by Integration of ICT in Education
Poló López, C.S., Frontini, F. ... 1678

Understanding the Dynamics of Solar Energy Systems by Using Simulation Narratives
Witzig, A., Borth, J., Danesi, S. ... 1687
Renewable Energy Strategies and Policies

Indoor Climate Agreements in Energy-Efficiency and Renovation Projects - A Question of Justice?
Henning, A. .. 1694

Photovoltaics or Solar Thermal –The Winner Takes it All?
Muntwyler, U., Schuepbach, E. .. 1704

Preliminary Economic Evaluation of the First Grid-Connected Photovoltaic System in the Aysén Region Under the Current Law of Distributed Generation in Chile
Osorio-Aravena, J.C., Muñoz-Cerón, E. ... 1711

Accompanying Project Owners and Professionals All the Way to Secure Solar Thermal Plants
Porcheyre, E., Mugnier, D... 1716

Zheng, R., He, T., Li, B., Wang, M., Zhang, X. 1722

Author Index

Index of all Authors .. 1729
Life Cycle Assessment experiences for solar heating and cooling systems

Marco Beccali¹, Maurizio Cellura¹, Maria Anna Cusenza¹, Sonia Longo¹, Daniel Mugnier², Tim Selke³ and Vicente Quiles Pedro Gines⁴

¹ University of Palermo - Department of Energy, Information Engineering and Mathematical Models (DEIM), Palermo (Italy)
² TECSOL, Perpignan (France)
³ AIT Austrian Institute of Technology GmbH, Vienna (Austria)
⁴ Universidad Miguel Hernandez, Elche (Spain)

Abstract

Solar heating and cooling systems can significantly contribute to the energy and climate European goals. A complete assessment of this contribution needs the analysis of these systems from a life-cycle perspective, in order to estimate the energy and environmental costs of their manufacturing and end-of-life, and to compare these costs with the benefits obtained during operation. A well-established methodology to fulfil this task is the Life Cycle Assessment (LCA). The paper describes some LCA experiences of solar heating and cooling systems, developed within the Task 53 “New generation solar cooling & heating systems (PV or solar thermally driven systems)” of the International Energy Agency. The results of these analyses can be useful to orientate manufacturers, researchers and decision makers for a more sustainable use of solar technologies.

Keywords: solar heating and cooling, life cycle assessment, sustainability, environmental impacts

1. Introduction

Solar heating and cooling (SHC) systems can significantly contribute to the energy and climate European goals (European Commission, 2014; European Commission, 2011) by reducing the use of fossil fuels and the related environmental impacts for building air-conditioning (Beccali et al., 2016; Bukoski et al., 2014; Longo et al., 2017).

The SHC systems mainly use energy from renewable sources during operation. However, they consume energy and cause environmental impacts during the whole life cycle (manufacturing, operation and end-of-life) (Beccali et al., 2014). Thus, to correctly assess the real benefits due to the installation of SHC technologies, their life cycle energy and environmental impacts should be estimated (Beccali et al., 2012a; Finocchiaro et al., 2016).

A useful tool to assess resource use, energy and environmental burdens related to the full life cycle of products and services is the Life Cycle Assessment (LCA) methodology (ISO, 2006a, 2006b).

In this paper, some experiences of LCA applied to SHC systems are described, developed within the Task 53 “New generation solar cooling & heating systems (PV or solar thermally driven systems)” of the International Energy Agency (IEA) (Mugnier et al., 2015).

2. Description of the examined systems

The SHC systems examined in this study are the following:

- a PV – air conditioner unit (S1);
- a PV cooling system based on an air to water compression chiller (working fluid: propane) (S2);
- a compact desiccant evaporative cooling system, called “Freescool” (S3).

The system S1 is designed to operate by using the electricity produced by a photovoltaic plant. The main components of the PV – air conditioner system are the PV panels and the air conditioning unit (Fig. 1).
The system S2 is a PV cooling designed to operate by using the electricity produced by a photovoltaic power plant. The main components of S2 are the PV system, the heat pump and the chilled water circuit (Fig. 2).

The system S3 (Fig. 3) is designed for air-conditioning in buildings and it is composed by a solar photovoltaic/thermal air collector, two adsorption beds, an integrated cooling tower, two wet heat exchangers, fans, batteries and all other auxiliaries needed to perform the air handling process also in stand-alone operation.
3. Life Cycle Assessment of the three systems

The LCA is a standardized methodology widely adopted by the scientific community to assess the environmental impacts of products and services from a life cycle perspective (i.e. including extraction of raw materials, transports, manufacturing process, use and end-of-life) (ISO, 2006a, 2006b).

The LCA consists of four steps, briefly described in the following:

- **Goal and scope definition.** In this step the intended application(s) and the object of the study (i.e. the exact product or other system(s) to be analysed) are described and defined in detail (European Commission - Joint Research Centre - Institute for Environment and Sustainability, 2010). This step also includes the identification of system boundaries (unit processes that are part of a product system), functional unit (quantified performance of a product system for use as a reference unit), allocation procedures, selected impact categories and impact assessment methodologies, etc.

- **Life Cycle Inventory (LCI) analysis.** This step involves data collection and calculation procedures to quantify the resources consumption, the air, water and soil emissions, and the waste production.

- **Life Cycle Impact Assessment (LCIA).** This step is aimed at evaluating the significance of potential environmental impacts using the LCI result.

- **Life cycle interpretation.** In the final step of the LCA the results of a LCI and/or a LCIA are summarized and discussed as a basis for conclusions, recommendations and decision-making in accordance with the goal and scope definition.

The LCA methodology allows to capture the complexity hidden behind a product/service and to identify opportunities to improve its environmental performance at various phases of the life cycle preventing the risk to shift the impacts from one life cycle phase to another (i.e. from use phase to manufacturing one) and/or from one impact category to another.

3.1 Goal and scope definition

The goal of the study was to assess the energy and the environmental impacts caused by three different SHC systems and to highlight the potentials of the LCA methodology in evaluating the performance of this kind of systems in terms of impacts associated to a wide range of environmental categories.

The selected functional units (FUs) are:

- For the S1 system, the PV – air conditioner (FU1);
- For the S2 system, the PV cooling (FU2);
- For the S3 system, the FU is represented by a system with a useful life of 15 years that provides cooling and heating for the building, considering a cooling solar fraction of about 0.85 (FU3).

The system boundaries include the manufacturing step for the S1 and S2 systems, while the whole life cycle was investigated for the last one, including the raw materials supply, the manufacturing of the system, its operation and end-of-life. The transports, installation and maintenance steps were not taken into account due to data unavailability. However, their impact on global energy consumption and the environment can be considered likely negligible (Kalogirou, 2009).
The following energy and environmental indexes are selected to illustrate the energy and the environmental performance of the examined system:

- Global energy requirement (GER);
- Global warming potential (GWP);
- Ozone depletion potential (ODP);
- Human toxicity, non-cancer effects (HT-cc);
- Human toxicity, cancer effects (HT-nce);
- Particulate matter (PM);
- Ionizing radiation, HI (IR-hi);
- Ionizing radiation, E;
- Photochemical ozone formation (POFP);
- Acidification (AP);
- Terrestrial eutrophication (T-EU);
- Freshwater eutrophication (F-EU);
- Marine eutrophication (M-EU);
- Freshwater ecotoxicity (F-E);
- Land use (LU);
- Water resource depletion (WRD);
- Mineral, fossil & renewable resource depletion (MFRRD).

The characterization models used for the impact calculations are the Cumulative Energy Demand (CED) (Frischknecht et al., 2007) method for the energy impacts, and ILCD 2011 Midpoint method for the environmental impacts (European Commission and Joint Research Centre, 2012).

The eco-profiles of materials and energy sources used to produce the main components of the analysed FUs are based on the Ecoinvent database (Frischknecht et al., 2005; Wernet et al., 2016) Impacts of end-of-life, only for FU3, are calculated by using the following databases:

- Buwal 250 in the case of recycling (BUWAL250, 1998);
- Ecoinvent for landfilling (Frischknecht et al., 2005);
- Eth-Esu for the end of life of the solar panels (E.U.ESU Group, 1996);
- European Reference Life Cycle Database (ELCD) for the iron metals (Joint Research Center, 2016).

3.2 Life Cycle Inventory

This step was finalized to the first hand data collection (primary data) concerning the main inputs and outputs in terms of materials, components, energy sources and waste production. In addition, specific energy and environmental impacts (secondary data) of the above inputs and outputs were identified by using environmental databases (Wernet et al., 2016).

In the following, the authors describe the data collection related to each investigated SHC system.

Data collection – S1 system

The data are collected from the PV – air conditioner data sheet provided by the manufacturer.

The PV system consists of three modules made of polycrystalline silicon cells. The modules are connected in parallel. The nominal power of each panel is 235 W and the area 1.67 m². The PV modules are covered by a 3.3 mm tempered glass.

The air conditioner system has a cooling power of 3.7 kW and a heating power of 3.8 kW. The Seasonal Energy Efficiency Ratio (SEER) and the Seasonal Coefficient of Performance (SCOP) are, respectively, 7.5 (energy efficiency class A++ in cooling mode) and 4 (energy efficiency class A+ in heating mode).

Data collection – S2 system

The data are referred to the data sheet provided by the manufacturer. The PV system consists in 18 mono-
crystalline photovoltaic modules and in a battery energy storage system (BESS). The modules are connected in parallel. The nominal power of each panel is 280 Wp. The overall nominal capacity is 5.04 kWp. Each panel has an area of 1.62 m², a frame made of anodized aluminium and it is covered with a transparent tempered glass of 3.2 mm. The BESS is constituted by four lead acid batteries. The nominal energy capacity is 28.8 kWh.

The heat pump consists in:

- Two semi-hermetically compressors. The cooling power ranges from 2.38 to 5.38 kW. The Coefficient of Performance (COP) is 3.56;
- Refrigerant (Propane, R290);
- Refrigerant tank (2.8 l);
- Filter drier for refrigerant;
- Sight glass for refrigerant circuit;
- Electronic pressure switch;
- Low and high security pressure switch;
- Solenoid valves and coil for solenoid valves;
- An air-cooled condenser (micro-channel type condenser);
- An evaporator (brazed plate heat exchangers);
- A super-heater (brazed plate heat exchangers);
- Pump with a mass flow ranging from 2 to 12 m³/h;
- Expansion tank (steel);
- Electronic expansion valve;
- An effective circuit oil, including a filter drier, a sight glass for oil circuit, isolation valves for oil level regulation, a mechanical oil level regulator, an oil tank valve, an oil tank, an oil separator);
- Frame and various panels of the heat pump box.

The chilled water circuit consists in a 1000 l thermal storage tank and in a 200 l thermal storage tank with an electrical resistance to simulate the building loads (which was not considered in the inventory). Finally, a monitoring system is included to control the performance of the system. The chilled water consists in a mix of water and methyl propylene glycol (30% glycol).

Data collection - S3 system

Data were obtained from the direct measurement of the size and mass of each component and technical datasheets of each component of the system.

The data collection process involved the following equipments:

- Two adsorbent beds filled with silica-gel;
- Two Pb-Ca solar batteries, 12V - 65Ah;
- Air ducts connecting the evaporative cooling module and the evaporative tower;
- Electric components, including electric wires and junction boxes;
- Two 38 W circulation pumps;
- Solar photovoltaic panel (power 170W, height per length 1150mm*966mm) and solar thermal panel (aluminium based, TiNOx coating (0.3 μm), and quartz glass (0.3 μm));
- Two electrovalves;
- Three polyester-based air filters;
- Ethylene propylene diene monomer (EPDM) thermal insulation;
- Evaporative cooling module, including hydraulics components and two heat evaporative heat exchangers;
- Galvanized steel bars utilized for the case;
- Fuse box;
- Control board with micro-controller governing all the electricity driven equipment;
• Servo-motor for rolling shading devices;
• Internal frame;
• Steel frame;
• Evaporative tower;
• Hydraulic components;
• Four ways air valve displaced among the two adsorbent beds;
• Two fans with 190 and 300 mm diameter.

In the operation phase (Tab.1-2) a heating period of 121 days and a cooling period of 90 days were considered to assess yearly impacts. Average monitored data are used to extrapolate seasonal performance for the whole heating (12 h a day) and cooling (8 h a day) season length. For the whole year, 113.4 kWh of total electricity consumption is considered for the yearly use phase calculation, of which only 24.9 kWh are imported from the grid. 2,590 l of water have been considered as well. A useful life of 15 years is expected for the system.

Tab. 1: Cooling season, use phase data for system S3

<table>
<thead>
<tr>
<th>Consumption</th>
<th>Unit of measure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling energy delivered to the building</td>
<td>kWh/day</td>
<td>13.32</td>
</tr>
<tr>
<td>Electricity consumed (cooling mode)</td>
<td>kWh/day</td>
<td>1.04</td>
</tr>
<tr>
<td>Electricity from the grid (cooling mode)</td>
<td>kWh/day</td>
<td>0.26</td>
</tr>
<tr>
<td>Water consumption</td>
<td>l/day</td>
<td>28.78</td>
</tr>
</tbody>
</table>

Tab. 2: Heating season, use phase data for system S3

<table>
<thead>
<tr>
<th>Consumption</th>
<th>Unit of measure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar heat produced (including ventilation)</td>
<td>kWh/day</td>
<td>6.1</td>
</tr>
<tr>
<td>Electricity consumed (heating mode)</td>
<td>kWh/day</td>
<td>0.17</td>
</tr>
<tr>
<td>Electricity from the grid (heating mode)</td>
<td>kWh/day</td>
<td>0.01</td>
</tr>
<tr>
<td>Sensible heating energy delivered to the building</td>
<td>kWh/day</td>
<td>2.34</td>
</tr>
<tr>
<td>Water consumption</td>
<td>l/day</td>
<td>0</td>
</tr>
</tbody>
</table>

In the end-of-life phase it has been considered the recycling for glass based materials, landfill disposal for the solar PV/thermal modules and silica based components, rock wool and paints. No credit for recycling is associated to the end-of-life phase.

3.3 Life Cycle Impact Assessment: results and interpretation

In the following, the impacts on GER of each examined SHC system are indicated.

Concerning the S1 system, the GER of the PV – air conditioner manufacturing is 2.60E+04 MJ\text{primary} of which 86% is non – renewable primary energy. The PV panels manufacturing is responsible for the highest primary energy consumption. In detail, this component causes 88% of the GER (Fig. 4).

The GER of manufacturing phase of the PV – cooling unit (S2) is 2.86E+05 MJ\text{primary} of which 88% is non – renewable primary energy. The PV panels manufacturing and the chilled water circuit are responsible for the
highest primary energy consumptions (Fig. 5). In detail, they account, respectively, for 71% and 16% of the GER.

The impact on GER of the system S3 is 3.59E+04 MJ$_{\text{primary}}$, of which 75.7% is caused during the construction phase, 11.2% during operation and the remaining 13.1% during the end-of-life (Fig. 6).

The environmental impacts associated to the examined SHC systems are shown in Tab. 3.

Fig. 4: GER processes contribution of the manufacturing phase – S1

Fig. 5: GER processes contribution of the manufacturing phase – S2
Fig. 6: GER processes contribution of each life cycle phase – S3

Tab. 3: Environmental impacts of the examined SHC systems

<table>
<thead>
<tr>
<th>Impact category</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWP (kg CO₂eq)</td>
<td>1.87E+03</td>
<td>4.57E+03</td>
<td>2.15E+03</td>
</tr>
<tr>
<td>ODP (kg CFC-11eq)</td>
<td>1.21E-02</td>
<td>1.28E-02</td>
<td>2.19E-04</td>
</tr>
<tr>
<td>HT-cc (CTUh)</td>
<td>2.66E-04</td>
<td>8.85E-03</td>
<td>7.10E-04</td>
</tr>
<tr>
<td>HT-nc (CTUh)</td>
<td>2.26E-03</td>
<td>2.22E-03</td>
<td>2.36E-03</td>
</tr>
<tr>
<td>PM (kg PM2.5eq)</td>
<td>7.63E-01</td>
<td>5.43E+00</td>
<td>5.32E+02</td>
</tr>
<tr>
<td>IR-hh (kBq U⁷⁷⁹⁹eq)</td>
<td>3.96E+02</td>
<td>4.91E+02</td>
<td>4.12E+02</td>
</tr>
<tr>
<td>IR-e (CTUe)</td>
<td>1.21E-03</td>
<td>1.59E-03</td>
<td>1.25E-03</td>
</tr>
<tr>
<td>POFP (kg NMVOCeq)</td>
<td>5.13E+00</td>
<td>1.71E+01</td>
<td>6.84E+00</td>
</tr>
<tr>
<td>AP (molec H⁻¹eq)</td>
<td>8.90E+00</td>
<td>3.74E+01</td>
<td>1.45E+01</td>
</tr>
<tr>
<td>T-EU (molec N₆eq)</td>
<td>1.43E+01</td>
<td>5.50E+01</td>
<td>2.22E+01</td>
</tr>
<tr>
<td>F-EU (kg P₄eq)</td>
<td>1.50E+00</td>
<td>5.76E+00</td>
<td>1.63E+00</td>
</tr>
<tr>
<td>M-EU (kg N₆eq)</td>
<td>1.50E+00</td>
<td>6.25E+00</td>
<td>2.13E+00</td>
</tr>
<tr>
<td>F-E (CTUe)</td>
<td>5.32E+04</td>
<td>2.30E+05</td>
<td>5.64E+04</td>
</tr>
<tr>
<td>LU (kg Cdefinol)</td>
<td>1.20E+03</td>
<td>9.07E+03</td>
<td>2.05E+03</td>
</tr>
<tr>
<td>WRD (m³watereq)</td>
<td>4.80E+03</td>
<td>8.87E+00</td>
<td>4.86E+03</td>
</tr>
<tr>
<td>MFRRD (kgShv₆eq)</td>
<td>6.35E-01</td>
<td>5.87E+00</td>
<td>3.13E-01</td>
</tr>
</tbody>
</table>

Fig. 7 shows the process contribution of the manufacturing phase of S1 on the examined impact categories. The highest impacts are observed for the PV panels in all the examined environmental categories, the only exception is the ODP for which the air conditioner manufacturing contribution is 98%, mainly related to the refrigerant R134a
production.

Fig. 7: Environmental impacts processes contribution – S1

Fig. 8 illustrates the contribution of each component of the S2 system to the examined impact categories. The PV panels account for the highest impact in all the examined impact categories. The only exceptions are the ODP and MFRRD, for which they represent about 12% and 40% of the overall impact, respectively. The contribution of the PV in the other impact categories ranges from 40.7% (for HT-nce) to 93% (for WRD). The BESS contributions range from a minimum of about 0.9% in ODP up to 50.4% for MFRRD. The heat pump is responsible for the highest contribution to the ODP (about 86%) due to the refrigerant R134a production, used as a proxy for the refrigerant R290. The chilled water circuit gives an impact variable from 0.8% for ODP to 35.6% for HT-nce.

Fig. 8: Environmental impacts processes contribution – S2

With reference to the S3 system, Fig. 9 illustrates the share of each life cycle impact on the total impacts.
The manufacturing phase has a predominant weight in most of the indicators, reaching values above or close to 95% in the case of the indicators WRD, F-E, F-EU, HT-nce, HT-ce. Moderately lower impacts are reported and always higher than 70% for all other impacts, the lowest being ODP at 73.55%. Since the manufacturing phase is largely the most relevant among all the others, some further insights will be discussed on this phase. The most impacting components are the adsorbent bed, the solar batteries, the PV/thermal system, the air filters, the evaporative cooling module, the external, internal and steel frames. The sum of the impacts for these components is higher than 85% of the total impacts for all the indicators, the only exception being ODP reaching 79.91%.

A detailed analysis of the manufacturing phase was carried out and the main outcomes are briefly discussed in the following bullet points:

- the highest share of impacts in DEC based processes is associated to the adsorbent beds, ranging from the 5.53% of the ODP and the 22.85% of the LU;
- for solar batteries the most relevant indicators are HT-nce (48.39%), F-EU (43.72%) and F-E (46.06%). The other indicators range between the 10.80% of the HT-ce to the 27.85% of the AP;
- the photovoltaic-thermal system impacts share varies between 13.27% of the indicator HT-nce and 21.67% of M-EU. HT-nce (7.73%), F-E (7.14%) and ODP (37.40%) are outside the overall trend;
- the air filters have a less relevant role, since their impact would range in most cases between the 4.35% (ODP) and 6.70% (GER). HT-nce, F-UE and F-E would fall below the lower threshold;
- the evaporative cooling modules impacts the total between the 9.18% of the POFP to the 13.19 of IR-e. Only some indicators, such as HT-nce (3.81%), F-EU (5.92%) and F-E (5.51%) are below 6%;
- in systems using PV collectors:
 - the external frames impacts are variable between the 3.18% of HT-nce to the 10.34% of HT-ce;
 - the internal frames result variation range is included between 3.48% of ODP and 7.08% of the GER;
 - the steel frames impacts vary between the 2% of WRD to the 5% of GWP. The only indicator outside the trend is the HT-ce, reaching the 10.87% of the overall impact.

4. Conclusions

The results of the LCA analyses allowed identifying the main energy and environmental “hot spots” to be taken into account for improving the environmental sustainability of the SHC systems. In detail, the results showed that the PV panels account for the highest impact caused during the manufacturing of the PV cooling system and the PV – air conditioner unit. The only exception is for ODP mainly caused by the heat pump (about 86%) in the first system and by the air conditioner (about 98%) in the second one. Referring to the compact desiccant evaporative cooling system (S3), the manufacturing step has a predominant weight in most of the impact categories, reaching values above or close 95% in the case of the freshwater ecotoxicity, freshwater eutrophication and human toxicity.
The most impacting components to the above impact categories are the solar batteries (about 40%).

The results of the research can represent a “knowledge basis” to assess the real advantages arising from the installation of SHC technologies for reducing the energy and environmental impacts of buildings air-conditioning and to orientate manufacturers, researchers and decision makers for a more sustainable use of solar technologies.

5. References

