DiDuSoNet: A P2P architecture for distributed

Dunbar-based social networks

Barbara Guidil*? - Tobias Amft3 - Andrea De Salvel’? . Kalman Graffi? - Laura Riceil

Abstract Online Social Networks (OSNs) are becoming
more and more popular on the Web. Distributed Online
Social Networks (DOSNs) are OSNs which do not exploit
a central server for storing users data and enable users to
have more control on their profile content, ensuring a higher
level of privacy. In a DOSN there are some technical chal-
lenges to face. One of the most important challenges is the
data availability problem when a user is offline. In this paper
we propose DiDuSoNet, a novel P2P Distributed Online
Social Network where users can exercise full access con-
trol on their data. Our system exploits trust relationships for
providing a set of important social services, such as trust-

< Barbara Guidi
guidi @di.unipi.it

Tobias Amft
amft@cs.uni-duesseldorf.de

Andrea De Salve
desalve @di.unipi.it

Kalman Graffi
graffi@cs.uni-duesseldorf.de

Laura Ricci
ricci @di.unipi.it

Department of Computer Science, University of Pisa,
Largo B. Pontecorvo, 56127, Pisa, Italy

2 IIT-CNR, via G. Moruzzi, 1 56124 Pisa, Italy
Technology of Social Networks Group Department

of Computer Science, University of Diisseldorf,
Diisseldorf, Germany

ness, information diffusion, and data availability. In this
paper we show how our system manages the problem of
data availability by proposing a new P2P dynamic trusted
storage approach. By following the Dunbar concept, our
system stores the data of a user only on a restricted number
of friends which have regular contacts with him/her. Dif-
ferently from other approaches, nodes chosen to keep data
replicas are not statically defined but dynamically change
according to users churn. In according to our previous work,
we use only two online profile replicas at time. By using
real Facebook data traces we prove that our approach offers
high availability.

Keywords Distributed Online Social Networks - P2P -
Data availability - Dunbar

1 Introduction

In the last few years Online Social Networks (OSNs) have
achieved unprecedented success, changing the way of how
people interact with each other and becoming storehouses
of huge amount of data in the form of messages, photos
and personal information. Once users have published their
personal information within a centralized online social net-
work, they lose the control over their data and they are
under the risk of privacy breaches and malicious exploita-
tion. A current trend for developing OSN services is towards
the distribution of the social network infrastructure, often
through a P2P approach. A Distributed Online Social Net-
work (DOSN) [1] is an OSN implemented on a distributed
information management platform, such as a network of
trusted servers, P2P systems or opportunistic networks.

In a P2P Distributed Online Social Network there is no
single provider but a set of peers that take on and share

mailto:guidi@di.unipi.it
mailto:amft@cs.uni-duesseldorf.de
mailto:desalve@di.unipi.it
mailto:graffi@cs.uni-duesseldorf.de
mailto:ricci@di.unipi.it
Rectangle

Rectangle

Rectangle

the tasks needed to run the system. The development of
the existing functionalities of OSNs in a distributed con-
text requires finding ways for providing robustness against
churn, distributing storage of data, propagating updates,
defining an overlay topology and a protocol enabling
searching and addressing, etc. One of the main challenge
comes from guaranteeing the data persistence of a user data
even when he is offline. P2P networks are dynamic, there-
fore users’ data could become unavailable due to churn.

Some DOSNSs rely on external storage systems, for exam-
ple exploiting a distributed file system [2], while some
other more recent approaches ([3—5]) propose to store social
data of a user on the storage support provided by users’
friends. In these proposals, the data owner serves his own
data when he is online, and elects a subset of his friends
to make the data available when he is offline. The two
well-known techniques that are used to manage the prob-
lem of data availability in a DOSNSs are Distributed Caching
and Dynamic Data Replication. In particular, the replication
technique has been widely used in existing DOSNs. One of
the problems of the replication is regarding to the number of
replicas and the data consistence.

The focus of the paper is to present DiDuSoNet (Dis-
tributed Dunbar-based Social Networks), a novel P2P Dis-
tributed Online Social Network in which the Dunbar’s
approach is used to manage a set of social services and in
particular the data availability problem. Dunbar has found
that maintaining social relationships is costly in terms of
cognitive capabilities. These cognitive constraints impose
an upper limit on the maximum number of relationships an
ego can actively maintain. This limit is about 150 and it
is known as the Dunbar’s number [6-8]. By introducing a
Trusted Social Storage Approach, our goal is to guarantee
that there is, with high probability, always a copy of each
profile available on at least one online node in the network,
which is in the following called Point of Storage (PoS).

We have evaluated the system through a set of simula-
tions conducted on real Facebook traces which show that
a user has almost always at least one online friend. These
experimental results show the soundness of our approach.
Henceforth, we use the terms node, user, and peer inter-
changeably.

The rest of this paper is structured as follows: Section 2
shows the related work; Section 3 introduces the System
Model and it provides a detailed overview of the system.
Section 4 presents the Trusted Social Storage Approach
which our system provides and an analysis of how our
system manages the problem of the dynamism of the stor-
age nodes. In Section 5 we show the strategy used to
elect the trusted social storage, and in Section 6 the algo-
rithms. In Section 7 we present the simulation methodology
and we show information about the real Facebook dataset
used for our simulation analysis. In Section 8 we show the

experimental results and finally, in Section 9 we present the
conclusions.

2 Related work

This section discusses the related work and presents:

1. an overview of existing DOSNS.
2. an overview of the existing studies on data availability
in DOSNs.

2.1 Distributed online social networks

Recently, several P2P architectures for DOSNs have been
proposed. LifeSocial [9] is a P2P-hosted OSN where users
employ public-private key pairs to encrypt profile data
that are securely stored in a FreePastry-based DHT. Peer-
Son [10] is a distributed infrastructure for social networks
whose focus is related to security and privacy concerns. It
exploits encryption, direct data exchange and access con-
trol. Safebook [11] addresses privacy in OSNs by storing
encrypted profile content in a P2P storage infrastructure.

Most of DOSNs rely on servers or other external services
to guarantee data availability.

Diaspora [12] is a social network in which users’ profiles
are hosted on servers that are administrated by individual
users who decide themselves where their information will
be stored. SuperNova [13] is a DOSN that manages the
availability by using a super-peer architecture that provides
highly available storage.

Others DOSNSs built on Friend-to-Friend (F2F) networks
do not require any complex encryption mechanism for data
management. In [14] the authors argued that a user should
choose the nodes with whom it shares data based on existing
social links instead of choosing them at random.

2.2 Data availability in DOSNs

Important research efforts have been focused on studying
the problem of data availability in DOSNs.

Friendstore [10] is a social back-up system that ensures
availability by storing data on trusted nodes only. In [3],
the authors propose a replication strategy in a DOSN in
which replicas of users’ profiles are stored only on a set
of trusted proxies. Furthermore, different replica-placement
techniques to guarantee data availability are proposed in
[3] and [4]. Instead of replicas in [15] authors propose
to store data blocks on nodes by considering their avail-
ability. Papers [16] and [17] present new techniques to
predict users’ availability based on their historical behaviour
and authors in [18] demonstrate that the online presence
of OSN users tend to be correlated to those of their
friends.

Rectangle

Rectangle

Only a few studies have been made on data availability in
F2F storage systems: in [19], authors show that F2F systems
cannot guarantee high data availability for users with a few
friends online and [5] focuses on the impact of availabil-
ity correlation and very small friend sets on F2F systems’
data availability. Furthermore, Li and Dabek [20] argued
that a node should choose its neighbours where the data
are stored based on existing social relationships instead of
randomly.

3 The system model

DiDuSoNet is a two-tier level system, as shown in Fig. 1. It
grounds on a Dunbar-based P2P Social Overlay where the
connections between nodes correspond to the social rela-
tions of the Dunbar-based ego networks of the users. Users
are able to communicate with each other directly via point
to point connections through the Dunbar-based P2P Social
Overlay (for sending private messages or private data). The
Social Overlay provides a set of Social Services to man-
age trustness, information diffusion, and data availability.
The trustness is provided from our Dunbar-based Social
Overlay, where each node is connected to a set of trusted
nodes. The information diffusion issue is managed as shown
in [21]. Instead, the data availability issue is introduced in
our previous work [22] and it is explained in whole in this
paper. Two problems can be observed:

— contact information, namely the IP address, changes
during the time. Therefore it is not recommendable
to store contact information about friends only if they
enter the network.

— if a node enters the network it has no contact infor-
mation which could be used to establish an initial
connection to any friend (bootstrapping). Even if a join-
ing node might know about the contact information of
one friend, it might be not possible to determine the
IP addresses of all friends, for example if the first con-
tacted node does not share these friends with the joining
node.

We exploit a DHT [23] for managing these issues, there-
fore the problem of searching new friends, and for helping
the data availability management.

To assist the reader, Table 1 summarizes all the symbols
used in this paper.

In a DOSN each user is associated with a profile, which
is a personal web page where each user freely posts con-
tent — e.g. text, snippets, pictures, videos and music. In
response to these postings other users, usually friends, post
comments and other content. Our system is profile-based.
In modern OSNs communication is said to be profile-based,
since around 90 % of server requests are related to profile

Dunbar-based
Social Overlay

1

Social Services

Social Overlay

DHT

P2P look-up Service

Fig. 1 The Framework

page content [24]. Profiles generally have small dimen-
sion, since pretty much everything in the profile pages —
comments, links, thumbnails, small pictures — are small
objects. The only exception are movies and large collections
of high-quality pictures: however, these are usually not part
of profiles anyway, and are linked from services such as
YouTube and Flickr [25].

We consider that each node in the network has its profile
and the profile contains public and private data. Which data
are public or not is a user’s choice. Users can only access
to friends’ private data through the Dunbar-based Ego Net-
work. Therefore, private data are only stored in a controlled
manner on well-known nodes. On the other hand, we store
information in the DHT which enables each node which is
interested in a certain profile to search for the responsible
node which maintains either the data itself or a valid replica.
Each user is identified by two different IDs: the first one
is the SociallD and it is used to identify a node in the sys-
tem; the second one is the ID related to the underlying DHT
which is used to navigate within the DHT. We can assume
here that two persons which are friends in our system know
each other and know about the SocialID of each other.

For the data availability problem, data objects of a spe-
cific node n are copied and stored on elected nodes chosen
from the set of friendly nodes. These nodes are called Point
Of Storage (PoS). In case that a generic node n leaves the
network, its friends have to find out which node is PoS for
this node and has therefore a copy of n’s data. Since the
PoSs might change over time (due to churn), it is important

Rectangle

Rectangle

Table 1 Table of symbols used in this paper

Table of Symbols

PoS(u) A node which is a Point Of Storage for the node u

PoS~Y(u) Set of nodes that have node u as Point Of Storage

SSeg0, (1) The Social Score assigned to a node u, which is a neighbour of the node n
EN (u) Ego Network of node u

Vi Nodes contained into the ego network of u and u

E, Edges contained into the ego network of u

TieStrengthy,
CG,(u)
MSL(u)
Prof(u)
df(u)

ef (u)

the tie strength from the node » to the node u

the gain in term of trusted connection obtained by the election of u as PoS(n)
the medium session length of the node u

the profile of the node u

set of nodes that are included in the Dunbar-based ego network of u

set of nodes that are included in the ego network of u

that all friends of n are able to find n’s PoSs. We use the
DHT to maintain the knowledge about the PoSs: for every
node n we store a list of its PoSs into the DHT. Whenever
one PoS of n changes, the list is updated inside the DHT.

3.1 Dunbar-based social overlay

We refer to the concept of Social Overlay (SO) as introduced
in [25]. In a SO nodes of a P2P system are only connected
to each other if their owners are friends. Our intuition is
to use a Social Overlay which is based on a well-known
social concept: the Dunbar’s approach [6—8]. Authors show
that the number of friends a user can maintain stable social
connections with is approximately 150. This limit is known
as Dunbar’s number. The stability of a connection may be
defined as a function of the tie strength which character-
izes the relation and it is a numeric value that quantifies the
strength of the relationship between two users.

In OSNGs, the tie strength can be calculated by taking
into account different factors such as contact frequency
between the two users, the number of likes, posts, com-
ments, private messages, tags, etc. [26]. Everett and Borgatti
in [27] define ego networks to be networks consisting of
a single actor (ego) together with the actors they are con-
nected to (alters) and all the links among those alters.
Thus we can formally define the ego network of a user
u as ENw) = (V,,E,), where V, = {u} U {v €
Viu,v) € E} NE, = {(a,b) € Ela = uvVvb =
u Vv {a,b} < V,}. The ego network of a user can be seen
as a subset of G which represents the local view of the
user.

The size of an ego network may be large, for instance
the maximum amount of relationships a user can establish
is generally very high (5000 connections in Facebook). As
explained in our previous work [22], we use the Dunbar’s

number to create a dynamic social overlay where each user
is connected only to a limited set of friends arranged in a
hierarchical inclusive sequence ordered by increasing level
of intimacy [8]. This permits us to reduce the total amount of
social information each peer has to keep in memory and the
number of connections of the P2P overlay. This ego network
will be referred as Dunbar-based ego network.

Our resulting Social Overlay is an unstructured P2P
Overlay Network and it is composed by the Dunbar-based
Ego Networks of each node in the network.

3.2 P2P look-up service: DHT

The DHT provides the functionality to find nodes to a given
ID (SociallD) and to store, search, and retrieve data objects
in a distributed fashion. Another advantage of using the
DHT is its robustness against churn. Further, we assume that
a node n which joins the network knows at least about the
SociallD of its friends. To ascertain the Overlay ID of a node
in the DHT we simply hash the SocialID. The procedure of
searching friends inside the DHT is the following now:

— We hash the SociallD of the friend we want to find.

— Obtaining the hash value, we can search for the node
which is responsible for this value.

— The node which is found to be responsible and has the
same Overlay ID as the hash value is the friend we are
looking for. If no node with the same Overlay ID exists
in the DHT, the friend is not online and the look up
returns a reference to the node which stores the data of
the friend. Note that, additionally, public key authoriza-
tion can be used to verify the identity of a node in the
network.

In the bootstrap phase, each node n performs a look up
on the DHT to retrieve its Dunbar friends. For each friend

Rectangle

Rectangle

which is on-line, the current physical address is returned, so
that » may open a connection to that friend and it can build
the Dunbar-based Social Overlay. If the friend is not online,
the node which is responsible for the data of n is retrieved
by the look-up.

On top of the DHT we implemented a data availabil-
ity service which autonomously selects two nodes in an
ego network as points of storages for each profile that is
published. By this means we need a mechanism which
allows a node to search for profiles in the network. We
utilize the features of a DHT which allow to search a
value for a given key to realize the search of a profile
in a distributed P2P Overly. For this reason we introduce
the point of storage list that is referred as (PoS Table),
in which the Overlay IDs of all PoSs for a given Social
ID are stored. For every ego node which publishes pri-
vate data for its friends such a PoS Table is stored in
the DHT.

Whenever a node searches for a published profile of
any other node it simply has to start a lookup to the PoS
Table of the profiles owner. If the PoS Table is obtained
from the DHT the searching node gets in contact with one
of the PoSs from the list and requests the desired data
(profile). Again, additional public key authorization can
be used to prevent data to be accessed by non friendly
nodes.

The costs of spreading the knowledge about the PoSs and
of searching for PoSs is O(1). Only O (log N) messages are
needed in most DHTs (Pastry, Chord) to store and retrieve
data objects. Data, which are stored inside the DHT, are
available to all nodes that participate in the network. Con-
trary to that, data which are stored inside the Dunbar-based
Social Overlay are private and available only for friends.
Private data are stored only on the owner of the data and
are replicated to trusted nodes (PoSs). Due to churn it might
happen that the owner of the data is not available so that
two selected friends of the owner act as PoSs. Furthermore,
each PoS of n maintains a list of n’s friends so that it will
be able to identify nodes which request n’s data and will be
able to select other PoSs in case they want to leave the net-
work, too. In case a node wants to hide the Overlay IDs of
its PoSs to prevent other non friendly nodes from spying,
they can use attribute-based encryption (ABE) schemes [28]
or ciphertext-policy attribute-based encryption (CP-ABE)
schemes [29] to delimit the access of the PoSs list to selected
friends only.

For our simulation we use Pastry as underlying DHT,
which is a P2P overlay network with good performance
and high reliability [30]. It is completely decentralized,
scalable, and self-organizing. Nevertheless, any other DHT
could be used for our proposed scheme as long as its
routing mechanism is deterministic, as for example in
Chord [31].

4 Trusted social storage approach

In our Trusted Social Storage Approach, each user dynam-
ically elects a subset of his Dunbar friends, which we will
refer as Points of Storages (PoS), to store a replica of his
social data. We define Prof{u) as the profile of a node
u, PoS(u) as the set of Point of Storages of node u and
PoS~ ') = {nlu € PoS(n)} as the set of nodes for which
u is Point of Storage. When a node » is online, it is a PoS
for itself and it needs to elect another PoS to guarantee the
two online copies of its profile. The node has to send a copy
of all its data objects to the PoS via point-to-point connec-
tion by using the Dunbar-based Social Overlay, as well as
a list of friends that belong to n’s ego network. Addition-
ally, both nodes exchange ping-pong messages frequently
to detect node failures (sudden departures). Friends nodes
can download data objects (e.g. profile) directly from one
of both nodes. When a user « disconnects from the system
with a notification, it executes the following two steps:

— it elects a second PoS for itself by considering its
Dunbar’s friends,

— itexploits PoS ~1(u) to elect a new PoS for each node n
in PoS~!(u) that is offline at that moment (if a node is
online is able to elect another PoS by itself). To imple-
ment the election of a new PoS for n, u must also know
the list of all friends of n and all the social informa-
tion about them required to implement the PoS selection
strategy, that we will describe in Section 5, for instance
the tie strength and the average session length of these
nodes.

When a node is elected as PoS for some user u, its
SociallD is added in user u’s entry list in the PoS Table.
When it leaves the network, it deletes its entry in the PoS
Table of u, but it keeps a copy of the Prof{u) until its recon-
nection. When it reconnects to the system, it has to check if
there is at least one online PoS for the node u. In case it finds
one online PoS, it destroys its local copy of Prof{u), other-
wise it elects itself as PoS of the node u and an old version
of the Prof{u) will be available.

Through the PoS Table, each user always knows the cur-
rent PoS of his friends and can access the newest version
of their profiles currently online. We assume there is an
authentication mechanism that allows the access to the user
u’s PoS information only to his friends.

Friends of u# might exchange his data, but if they are
not mutual friends themselves they cannot host each other’s
data. We assume user u’s knowledge of the social net-
work corresponds to his Dunbar-based ego network, which
is the set df(u), the state (online/offline) of each user €
df(u), and the tie strength of each link in {(x,y) | x,y €
{u} Udfu)}. A user u also knows the set of nodes n in
PoS7'(u) ={n | u € PoS(n)}.

Rectangle

Rectangle

Another challenge of our approach is the robustness
against single-node failure. A PoS may voluntarily dis-
connect suddenly or because of different types of failure
without being able to pass a replica of its data to another
node. To address this goal we keep two online copies of each
user’s profile at any time: an online node » must have one
online PoS so that a copy is still present in the system also
in case of failure of n or of PoS(n). For the same reason
an offline node with more than one online friend must have
two online PoSs.

5 PoS selection strategy

The choice of friends where to store replicas of users’ pro-
files is a fundamental issue in our system. We consider
social and structural properties of the social graph, and the
user’s behaviour to define our approach. We assign to each
node a score, called Social Score (SS), measuring the users’
suitability as PoS of a specific node. The Social Score of a
user x which is a Dunbar neighbour of a user » is defined as
follows:

SSego, (x) = (a-TieStrengthy,)-(B-CG,(x))-(y-MSL(x))

where all the terms TieStrengthy,,, CG,(x) and M SL(x)
are normalized and «, § and y are weights autonomously
chosen by the users according to the relevance given to each
criteria.

The ConnectionGain (CG,(x)) for an online node x in
the ego network of a user n is the gain in terms of trusted
connections obtained by the election of x as PoS(n) and
is proportional to the number of common neighbours of
x and n. If CG,(x) has a high value, then x may trans-
fer the profile of n to neighbours of n through a trusted
connection.

M SL(x) is the Medium Session Length and represents
the average duration of a user session. We approximate this
measure so that it is able to distinguish at least between users
almost always connected to the social network (e.g. through
mobile devices), those that connect only for short periods
of time and those that use the social network as a means of
social interaction and therefore have quite long sessions on
average. We will name Fair Strategy the strategy that gives
to all the weights the value 1.

5.1 Dynamism and points of storage (PoS)

In this section we explain our data availability service pro-
tocol to manage the problem of dynamism (due to churn)
from the point of view of a PoS. As long as there is at
least one online friend for each node the availability can be
always satisfied but if no friend is online, then data stored
in the system will not be accessible by any means. As long

as no friend of the user is online that is a minor turn-off,
since no one is interested in accessing the user’s profile. But
if a friend of the user reconnects to the system and does
not keep in memory a copy of the user’s profile he can-
not access the user’s data until one PoS of the user or the
user himself reconnects to the system. We have to consider
that in most of the famous OSNs, users usually don’t dis-
connect from the system through a log-out phase and this
represents a hard challenge to face for the problem of data
availability.

Let consider the ego network of the node n shown in
Fig. 2, in which there are just selected the 2 PoSs for n,
which are itself and the friend node A. We explain the three
scenarios managed by our system:

Case 1 (Voluntarily disconnection of a PoS) When the
node A is going to disconnect from the system, it sends a
notification to the other PoS, in this case the node n, and
n is the responsible for the election of the second PoS, the
node B as shown in Fig. 3. Nodes n and B exchange ping-
pong messages now. The changes are also stored in the
PosS table.

We have the same behaviour even if is n the PoS that
wants to leave the system. The difference is that the discon-
necting PoS is the owner of the profile (n), so it elects the
second PoS for itself.

Case 2 (Involuntary disconnection of a PoS) This hap-
pens when a PoS leaves the network suddenly without
notification about its departure. In Fig. 4a node n leaves the
network suddenly. B is able to detect this failure since n
will not respond to incoming ping messages. Nodes which
request data from n will be informed about its absence and
can still ask node B for the required data. Furthermore, node
B is able to select a second PoS (node C as shown in Fig. 4b)

Fig. 2 Ego Network of Node n

Rectangle

Rectangle

Fig.3 Case 1: Ego network of the node n after the disconnection of A

in the ego network of n. Similar to case 1, node B sends
a copy of n’s data to node C which is second PoS now.
Keep-alive messages are exchanged between nodes B and
C.

Case 3 (Involuntary disconnection of both PoSs) This
happens when both PoSs leave the network involuntarily
at the same time (e.g. due to failures in the network) as
shown in Fig. 5a. None of the two PoSs is able to inform
the network about its departure. Nodes which request n’s
data will find the PoS Table but will also detect both PoSs
to be unavailable. In this case, no data is available in the
network.

If during this time node A joins the network again which
has been PoS before and has a copy of #n’s data, it searches
for the current PoSs (which are still listed in the PoS Table)
to check if there is an online copy of the n’s profile and to

(a) Ego Network of Node
n after its departure.

Fig. 4 Case?2

delete its old copy. A will detect the absence of any PoS and
it will be the only node which still has a copy of n’s data
(there might be other friends which have a copy, but do not
know that both PoSs are down). A can now elect itself as
PoS of n and update the PoS Table.

As a next step node A selects a second PoS and updates
the PoS Table again (Fig. 5b). D, which is the new PoS
for n, will receive a copy of n’s data and a list of n’s
friends.

If node n joins the network again it knows about the cur-
rent PoSs by accessing the PoS Table. In according to our
model, when n is online, it has to be a PoS for itself, so n
will decide which node will be the second PoS between A
and D.

5.2 Data consistence

In this section, we discuss about the process of updat-
ing data objects to manage the consistence of data. In
according to situation explained in the case 3, if node
n creates a new data object or changes existing data, it
informs the second PoSs about this (the node A as shown in
Fig. 6).

In Fig. 6 can be seen that the node A sends the updated
data to n that is online. The node D should delete its n’s
profile copy because there are just other online copies of this
profile.

Now consider case 3 again in which both PoS
fail (Fig. 7a). If a node which has been PoS before
detects the absence of both PoSs (Fig. 7b) it will
select a second PoS immediately (Fig. 7c) and elects
the second PoS between the online friend nodes
of n.

When node n is joining the network again and detects old
data objects on both PoSs, it sends copies of the new data
objects to the PoSs.

(b) Ego
Node n and

Network of
its two
PoSs after its depar-

ture.

Rectangle

Rectangle

(a) Ego Network of Node
n after a case of involun-

tary disconnection of its
PoSs B and C.

Fig. 5 Case 3

Afterwards, n can decide which of C and D will be the
second PoS and it updates the PoS Table.

When the owner of a profile, the node n in the previ-
ous case, is joining the network again and there are just two
online PoSs in the network, it has to decide which one is the
most suitable to be the second PoS. This choice is done by
considering the Social Score value. n computes and evalu-
ates which of the two nodes has the highest SS. It notifies to
the unselected node that is not a PoS yet and it updates the
PoS Table.

Fig. 6 Ego Network of Node n after the reconnection of n. D is not a

PoS and the updated data are stored on A and n

Network of
reconnection

(b) Ego
Node n:
of its old PoS A after
a involuntarily discon-
nection of both B and
C.

6 PoS election algorithms

In this section we describe the algorithms for the election of
the PoS which must guarantee that each online node has one
PoS among its online friends and that each offline node with
more than one online friend has two PoS among them. The
three possible scenarios in which the algorithm is executed
are:

— when a user u is going to disconnect from the system;

— when a user u is going to disconnect from the system
and it is a PoS for at least one node in the system;

— when a user u does disconnect from the system without
a notification (e.g. crash).

First, we define an auxiliary procedure SelectBest
Pos () that, given user p and a given set of nodes Set,
selects the best PoS for p among them.

Algorithm 1 Best PoS Selection

1: function SELECTBESTPOS(p, Set)

2 if (3x € Set | x.isOnline()) then

3 get SSego, (V) Yv € Set | v.is Online();
4 select n | SS(,g(,p (n) = max{SSeg(,p};

5: return »;

6 else

7 return null;

8: end if

9: end function

Algorithm 1 gets §Sg0,(v) for all online nodes in the
set and elects as the new PoS(p) the node with the highest

Rectangle

Rectangle

(a) Ego Network of Node
n after both PoSs fail.

Fig. 7 PoS dynamism and Data Consistence

Social Score. If all nodes in the set are offline the algorithm
returns null, otherwise the selected node is returned.

Algorithm 2 PoS election for a node p

function ELECTION(p)

1:

2 Set = df (p) — PoS(p);

3 n = Select Best PoS(p, Set);

4 if n # null then

5: send < Prof(p).,ef (p), TieStrength, > ton;
6 update PoSTable(p);

7 else

8: Set = ef (p) — PoS(p);

9: n = SelectBest PoS(p, Set);
10: if n # null then
11: send < Prof(p),ef (p), TieStrength,, > ton
12: update PoSTable(p);
13: end if
14: end if

15: end function

Algorithm 2 shows the procedure to elect a new PoS for
a node p. The best PoS is chosen among df{p) at first and
among ef{p) if all nodes in df{p) are offline (we recall the
dfip) is the set of the Dunbar friend of a node p, while
ef(p) denotes the set of all ego friends of a node p. Selected
PoS receives from p Prof(p), df(p) and all the tie strength
values between p and one of its friends (TieStrength).
Afterwards, p’s entry in the PoS Table is updated with the
information about p’s new PoS. Algorithm 2 is executed
when an online node p receives a disconnection notification
from a node that is its only current PoS(p) and when a node
is going to disconnect from the system and needs to elect its
second PoS.

Let us now consider the procedure executed by a node n
which is going to disconnect from the system with notifica-
tion and which is the PoS for at least a user. n notifies its

(b) Reconnection of the
old PoS C.

(¢) C checks if at least
one PoS is online. It de-
tects that both PoSs are
offline, it elect itself as
PoS and elects D as sec-
ond PoS.

disconnection to online nodes that belong to Pos™!(n) and
these nodes will be able to elect a new PoS on their own. As
far as concerns offline nodes € Pos™!(n), n must select a
new PoS for each of them among their neighbours. Notice
that n received the list ef{p) at the moment of its election
as PoS(p). As for the election procedure the best PoS is the
node with the highest Social Score. Algorithm 3 shows the
procedure previously described.

Algorithm 3 PoS election for an offline node executed by a
disconnecting node

1: function ONDISCONNECT(p)

2 forall u € Pos~!(p)|(u.isOnline()) do
3: Election(u);

4 end for

5: end function

7 Simulation methodology

The lack of data concerning online presence of users in
OSNs is currently the main limitation for the data availabil-
ity management. As far as concerns the study of the users’
behaviour, most studies utilize synthetic users’ availabil-
ity traces, and in the context of distributed systems, some
studies used synthetic availability traces provided by P2P
well-known churn models. However, the scientists realized
that these traces were not useful since the nature of the
P2P systems compared to OSN is very different [32]. At
the best of our knowledge, no existing up-to-date dataset is
able to provide complete information, such as information

Rectangle

Rectangle

regarding the social graph, interactions among users and
temporal information (online sessions) for a real OSN.

7.1 The Facebook’14 data set

We have implemented a Facebook application, called
SocialCircles!, which exploits the former Facebook API
(applications exploiting this API will be supported till 1st
May 2015). The application is able to retrieve the following
sets of information from registered users:

Topology and Profile Information We are able to obtain
friends of registered users and the friendship relations
existing between them. Moreover we download profile
information of registered users and their friends, such as
complete name, birthday, sex, location, works, schools,
user devices, movies, music, book, interest and language.

Interaction Information We have collected information
about interactions between users registered to the appli-
cation and their friends, such as posts, comments, likes,
tags and photo. Due to technical reasons (time needed to
fetch all data and storage capacity), we restrict the inter-
action information retrieved up to 6 months prior to user
application registration.

Online presence data By requesting the online presence
permission, we are able to monitor the chat presence sta-
tus and obtain information about the time spent online
by registered users and their friends. The chat status can
assume a limited set of value: O if user is offine, 1 if user
is in active state and 2 if user is idle (i.e. the user is online
but they have not performed actions for more than 10
minutes).

The dataset obtained from the SocialCircles! application
contains 337 complete ego networks related to the regis-
tered users, for a total of 144.481 users (ego and their alters).
Since few users de-authorized our application, we were able
to retrieve complete interactions information of 328 users.
The resulting Facebook population have the advantage of
representing a very heterogeneous population: 213 males
and 115 females, with age range of 15-79 with different edu-
cation, background and geographically location. Only 308
users were active in the period of crawling. The characteris-
tics of the ego network are: Minimum size = 21, Maximum
Size= 2932, Mean Size= 470.916, and STD Deviation=
358.038.

The contact frequency between each couple of friends
was computed by dividing the number of interactions
between an ego and the alter by the duration of their social
relationship. Since Facebook does not allow us to acquire
information related to the start time of a social relationship,
we estimated the duration of the social relationship as the
time elapsed between the first interaction between the users
and the end time of crawling (in hours). Since no timestamp

is paired with some interactions (such as Tags and Likes),
we approximated the correspondent friendships’ duration
with the overall duration of the period considered by the
crawling process (six months). Then, we exploited contact
frequencies to calculate the tie strength from a user j to a
user k, as proposed in [33].

Network statistics By analysing the dataset, we discovered
that the median Facebook network has about 390 friends
totally. We sampled all the 337 registered egos and their
friends every 8 minutes for 10 days (from Tuesday 3 June
2014 to Friday 13 June 2014). Using this methodology we
were able to access 308 active registered users and the set of
their friends (for a total of 95.578 users). In order to charac-
terize OSN workloads at the session level we consider the
availability trace of each user to determine the start of a ses-
sion (when a user switches from offline to online or idle)
or the end of a session (when a user switches from online
or idle to offline). Furthermore, we examined the number of
concurrent users that accessed the OSN site (see Fig. 8a).
The plot indicates clearly the presence of a cyclic day/night
pattern (confirming the results in [34]). Since the major-
ity of the registered users live in Italy or in central Europe,
time-zone differences are negligible.

The analysis of graph depicts the presence of two peaks:
on average, most users seem to be connected after lunch
time with a peak around 14:30. The other peak is usu-
ally in the evening, around 22:30, probably preceding the
sleeping time. It is interesting to notice that the presence
of weekend seems to have influence on users: Friday and
Saturday night seem not to expose the above mentioned
evening peak, reflecting the fact that many people may go
out.

It is important to notice that these patterns describe just
a global tendency, and cannot be exploited to make any
prediction nor assumption of single user behaviour.

In order to estimate how often and for how long users
connect to OSN we measure the frequency and duration of
sessions for each user.

Figure 8b shows how many sessions are done by users
(95 % C.I. & 0.23). We can notice that the majority of users
(90%) exposes on average less than 100 daily sessions while
the average number of sessions for all users is less than 4
sessions per day. Figure 8c shows for all users the CDF
of the sessions length (95 % C.I. £ 0.65) and the elapsed
time (inter arrival time) between two consecutive user’s ses-
sions (95 % C.I. & 4.44). There is a large variation in the
OSN usage among users. However, almost half of users ses-
sions are shorter than 20 minutes (median value of 24 mins),
and a significant percentage of 34 % last less than 10 min-
utes. Only few users sessions (less than 13 %) have a long
duration, exceeding the 2 hours. We can notice that almost
50% of users present an inter-arrival time shorter than 1

Rectangle

Rectangle

35000

"idle online " total
30000 |
@ 25000
&
=3 H
5 20000 5
8 15000 | &
£ " o
g
Z 10000 f
5000 |
0 L L L L L L L L
03/06 05/06 06/06 07/06 09/06 10/06 11/06 13/06 0 : : : : :
15:00 00:00 09:00 18:00 03:00 11:00 20:00 05:00 0 50 100 150 200 250 300
Time Number of sessions
(a) Auvailability of all users. (b) Number of sessions for all users.
1
0.8
= 06|
[T
a
O 04t
02}
inter arrival
0 ‘ session length
1 10 100 1000 10000
Time (mins)

(c) Sessions length and inter arrival

time for all users.

Fig. 8 Analysis of the temporal properties

hour. These plots confirm therefore the fact that in OSN
the typical session has a short duration. Small inter-arrivals
times correspond to users who constantly use the OSN ser-
vice while large inter-arrival times correspond to users who
connect occasionally to the OSN. It is important to notice
that the size of the active network of each user is slightly
correlated to the temporal properties of the ego, such as
the average session length (0.36) and the number of daily
sessions (0.20): intuitively we would expect that ego with
more active contacts are likely to spend more time on the
OSN.

8 Simulation results

To obtain realistic results we use the event-based simula-
tor PeerfactSim.KOM [35, 36] for our simulations which
contains already implementations of several DHTs like
Pastry [30] and Chord [31]. Each simulation uses GNP
coordinates [37] to estimate delays in the fundamen-
tal network. Furthermore, measurements from the PingEr
project [38] are integrated into the simulator for rea-
sonable approximations of jitter. Each of our simulation
has been run with 10 different random seeds, there-
fore the values we obtained represent the average of 10
different values. In the following, we describe the setup of

our simulation in Section 8.1 and evaluate the results in
Section 8.2.

8.1 Simulation setup

In Table 2 we briefly describe the setup of our simulations.
The experiment size is set to 1859 nodes and contains a
small subset of the Facebook’ 14 data set (SocialCircles!)!
described in Section 7.1. From this set we extracted a subset
of nodes which form a connected graph and represent real
friendship relationships. From minutes 1 to 10 in the sim-
ulation each node starts the application and therefore joins
the DHT Overlay. Although our application and data avail-
ability service is not limited to a specific DHT overlay, we
decided to use Pastry as underlying DHT for our simulations
since routing in Pastry is deterministic, fast, and reliable.
During simulation each of the simulated nodes observes its
interactions with other nodes and calculates thereupon an
ordered list in which known contacts (friends) are sorted
according to their Social Score. Friends with a high degree
of interaction are placed at the top of the list and more
likely considered as PoS for the data availability protocol
than nodes with low contact frequency. In minute 14 those
nodes which represent an ego node in the network start to

! Available at: http://socialcircles.eu/

http://socialcircles.eu/
Rectangle

Rectangle

Table 2 Simulator setup

Simulator Settings

Simulator details
Network model
Churn model

Analyzer

Scenario Settings
Experiment size
DHT Overlay
Parameter o

Pastry.

PeerfactSim.KOM [35].

GNP [37], jitter based on [38], no packet loss.

User churn according to the Facebook’ 14 data set from SocialCircles!.

Focus on: number of online nodes, profile lookups, and message consumption.

1859 nodes, out of which 28 nodes are egonodes.

Different values for frequency of ping-pong messages.

Experiments

A One half of the nodes selects new PoS when leaving, whereas the other half fails suddenly.
B All nodes fail upon churn event, nodes leave without notification.

C Churn behaviour same to A, simulation time is set to 48 hours

Scenario Actions
Minute 1 -10
Minute 12
Minute 14 -16
Minute 30
Minute 120

Nodes join the network, especially the DHT.

Start periodic calculation of interactions among friends.
Egonodes start the data availability service.

User churn is turned on. Most nodes go offline.

End of the simulation.

publish private data (profile) and start the data availability
service protocol. By this means they select a good friend
from the sorted interaction list, which is available, to be sec-
ond PoS for their data. In our simulations 28 nodes in total
publish their profiles in this phase of the simulation. In order
to investigate the rate of available data in the network we
start lookups to the published profiles every minute. From
minute 30 to the simulation’s end user churn is activated.
Nodes decide now to join or leave the network accord-
ing measurements from SocialCircles!. Approximately half
of the nodes which leave the network decide to leave the
network without informing the other PoS about their depar-
ture, whereas the other half informs the other PoS about
it’s intention to leave the network. Therefore it is likely that
both PoSs for a given profile leave the network simultane-
ously without selecting another PoS for the profile. Since
more nodes leave the network than join it again in our sim-
ulations it is furthermore quite likely that certain profiles
are not available throughout the rest of the simulation as
soon as both responsible PoSs leave the network simultane-
ously. Therefore we expect lookup failures at the end of the
simulation time when many nodes have left the network.

8.2 Evaluation
The goal of our simulations is to investigate the quality of

our data availability service in ego networks for a given real-
world user behaviour. In order to judge the quality of our

proposed protocol we focus on the number of available pro-
files in the network under churn. Additionally we observe
the quantity of nodes which are responsible for storing the
published data objects (PoSs) and we investigate the costs
of our protocol to prevent data loss due to failing nodes.

As can be seen in Fig. 9a the number of participating
nodes in the network decreases abruptly as soon as the sim-
ulation of user churn starts. Approximately 50 percent of the
participating nodes leave from minute 30 until the end of the
simulation, from 1859 online nodes at the beginning, only
800 to 900 are online at the end of the simulation. In gen-
eral we observe that more nodes leave the network during
our simulations than join the network.

During the simulation 28 nodes publish their profiles and
select a second PoS to increase the availability of the pro-
files. Whenever any PoS leaves the network, voluntarily
or abruptly without further proclamation of their departure,
another node in the network will be selected to take on the
tasks of the leaving node. In Fig. 9b we present the num-
ber of online PoSs during the simulation. In Fig. 9a it can
be seen that most nodes leave the network abruptly in min-
utes 38 and 39 of the simulation. Although in this time many
PoSs fail due to churn the amount of PoSs slightly recovers
after the sudden reduction.

We obtain that some of the published profiles are
unreachable throughout the whole simulation time. This cir-
cumstance is caused by the sudden failure of both PoSs of a
certain profile. If none of the current PoSs of the profile nor

Rectangle

Rectangle

2000 T T
1800 [~
1600 |~
1400 |-
1200 [~
1000
800 -
600
400

Online Hosts [number]

alpha=60s

alpha=120s
alpha=1 8?5

0 20 40 60 80 100 120

Time [minutes]
(a) Number of nodes online.

Fig. 9 Experiment A: Quantity of online nodes and points of storages

any other node which has been PoS for the profile before
rejoins the network again the published profile will remain
unavailable, none of the lookups for this data item will be
successful then. Figure 10 shows the ratio of available pro-
files to the number of total profiles disseminated in the
network. In the fortieths minute when the churn rate reaches
its maximum the number of reachable profiles decreases
rapidly and thereafter increases again so that after 25 min-
utes approximately 95 % of all profiles are available in the
network. The remaining profiles are unavailable unless at
least one of the current PoSs for this data item join the
network again.

We tested our data availability service with different val-
ues of o, where 1/« is the frequency with which ping
messages are sent by the first PoS to the second PoS and
the frequency with which pong messages are sent back
respectively. The lower « is chosen the higher the frequency
of sent ping messages and the higher the data availability
is. Figure 10 reveals that higher values of o do not nec-
essarily lead to an availability rate worse than that with
lower values.

g
g
P 09 [~
£
=
o
8 o085
8
o
0.8 [LA alpha=60s b
alpha=120s
alpha=180s -
0.75 : : :
0 20 40 60 80 100 120

Time [minutes]

Fig. 10 Experiment A: Ratio of available profiles to total number of
profiles

60 [‘ | |
_ 50
=
3
£ sl
E 40
£
2 30
=
o
& 20
: alpha=60s
il alpha=120s -
alpha=180s
0 20 40 60 5 o0 0

Time [minutes]

(b) Number of points of storages online.

Next, we focus on the costs of the data availability service
in terms of message consumption. In order to react on fail-
ing nodes, PoSs which are responsible for a certain profile
exchange keep-alive messages. For every created ping mes-
sage a pong message is sent back to inform the supporting
PoS about the presence of a PoS. By this means, for every
published profile two messages are frequently created to
keep the availability of the data object alive. The total num-
ber of keep-alive messages sent in a given time-interval T is
therefore proportional to 2n§, where 7 is the total number
of profiles published in a given network and 1/« is the fre-
quency with which ping messages are created. Figure 11a,
b present the simulated amount of keep-alive messages per
minute which are used to prevent PoS failures.

In our second experiment, nodes which leave the net-
work due to user churn do not inform other nodes about
their departure, instead they leave without selecting a new
PoS which could take over the responsibility for the pub-
lished profile the PoS maintains. Figure 12a is equal to
Fig. 9a, approximately half of the nodes fail due to churn.
The number of available PoSs during the simulation of
Experiment B is shown in Fig. 12b. Although failing nodes
do not select another PoS the data availability rate is sim-
ilar to that given in Experiment A. In Fig. 13c it can be
seen that data availability is the higher, the faster keep-alive
messages are exchanged between two PoSs, and the faster
node failures are detected. The message costs remain pro-
portional to 2n§, where n is the total number of profiles
published, T is the observed time interval and 1/« is the fre-
quency with which ping messages are sent, as can be seen
in Fig. 12d.

Figure 13 shows the results of Experiment C in which
we investigate our data availability service with given user
behaviour from the Facebook’14 data set (SocialCircles!)
and with 48 hours of simulated time. During the whole
simulation the quantity of online nodes fluctuates around
800 nodes, which is less than 50 percent of all simulated

Rectangle

Rectangle

70 T
alpha=60s
[alpha=120s

6l

=]

50

40 [

Messages [number]

10

0 i L 1 L 1
0 20 40 60 80 100 120

Time [minutes]
(a) Message consumption for different
alpha.

140

T
alpha=30s

120 |~ alpha=60s - -~

=)

100
8o |-alph3d=240s

60 [~alpha=60Qs . . /-\

Messages [number]
o
T
=3

20

0 20 40 60 80 100 120
Time [minutes]

(b) Message consumption is proportional

to ping-pong frequency.

Fig. 11 Experiment A: Quantity of ping-pong messages for different values of alpha

nodes (Fig. 13a). The results given by Fig. 10 and 13c
indicate that our proposed data availability service protocol
with only 2 PoSs provides high availability of data objects
under realistic circumstances and realistic user behaviour.
Furthermore, the number of keep-alive messages in this
simulation is proportional to the number of published pro-
files and proportional to the inverse of . As shown in
Fig. 13d for ¢ = 30s the amount of messages is higher

2000
1800 -
1600 [~
1400
1200 -
1000 [~
800 [
600 |-

than for higher values of o (lower frequency). For ¢ =
180s, the highest value for «, the fewest messages are
sent.

8.3 PoS election evaluation

To evaluate the PoS election strategy and how is good in
term of data availability we use the complete Facebook

60

50 [~

40 [~

30 [

20 [~

Online Hosts [number]

Profiles Online [ratio]

400
200

0.95

0.9

0.85

0.8

0.75

alpha=30s
alpha=60s ~ -
alpha=180s

0 20 40 60 80 100 120

Time [minutes]

(a) Number of nodes online.

alpha=30s
alpha=60s
aIpha=18?s :

0 20 40 60 80 100 120

Time [minutes]

(c) ratio of availability profiles to total
amount of published profiles.

PoSs Online [number]

Messages [number]

alpha=30s
10 alpha=60s ~ =
alpha=1 895

0 | 1 |
0 20 40 60 80 100 120

Time [minutes]

(b) Number of points of storages available
in the network.

120 T

100

80

60

40

20

0 20 40 60 80 100 120

Time [minutes]

(d) Costs in terms of messages.

Fig. 12 Experiment B: Simulation results, all nodes leave the network without selecting another point of storage (failure)

Rectangle

Rectangle

2000
1800 f} :
= 1600 R
3
£ 1400 i
3
E 1200 |
0
% 1000
o
I 800
2
£ 600
o 400 |- alpha=60s |
7alpha=1205 B
200 ~aipha=180s
| 1 1 | 1
0
0 500 1000 1500 2000 2500 3000
Time [minutes]
(a) Number of nodes online.
5
g
‘s
£
z
S
"]
]
s ‘
o 0.96 | [|& alpha=60s
Bl alpha=120s -~ -
alpha=180s
0.95 | | | | 1
0 500 1000 1500 2000 2500 3000

Time [minutes]

(c) ratio of availability profiles to total
amount of published profiles.

60
_ 50 R
f:
E 40 b
£
£ 30
z
o
a 20 .
g alpha=60s
10 - alpha=120s
alpha=180s
0 | | |
0 500 1000 1500 2000 2500 3000
Time [minutes]
(b) Number of points of storages available
in the network.
140 \
alpha=60s
120 [alpha=120s ~ - - 7
=y alpha=180s
g 100 .
£
2 80 A
]
o 60 .
?
= 40y 7
20 § : .
| | | |

0 500 1000 1500 2000 2500 3000

Time [minutes]

(d) Costs in terms of messages.

Fig. 13 Experiment C: Simulation results, half of the leaving nodes select another PoS wheres the other half fails. The simulation time is set to

48 hours

dataset (308 ego networks). The simulation replicates the
actual online status of the users by considering the times-
tamp information. We exploit the metrics proposed in [22]
to evaluate our system:

1. Pure Availability: [3] fraction of time in a day a user’s
profile is reachable through his PoS, that is the union of
times the user has at least one online PoS.

2. Friend Availability: [3] fraction of time in a day a user’s
profile is reachable through his PoS from his friends. In
other words, since the profile of a user is accessible only
from his friends, this metric focus on the fraction of
time the profile of a user is available when his friend are
online. In a social network higher Friend Availability
(even with a lower Pure Availability) is desirable.

3. Average PoS Tie Strength: average tie strength value
between the user and his online PoS. A high value
means that the PoS have been chosen among more
trusted friends.

4. Average Number of Elections: average number of PoS
elections made by a user.

In [22], we have already assessed the individual PoS
selection strategies and the social score strategy which
takes into account all of them. In this work, we con-
sider all possible pairs of individual selection strategies;

namely TieStrength and ConnectionGain (TieStrength &
CQG), TieStrength and Medium Session Length (TieStrength
& MSL) and ConnectionGain with Medium Session Length
strategy. Furthermore, we compare each heuristic with the
social score (i.e. TieStrength & CG & MSL) and consider
a larger dataset obtained from a Facebook application (see
Section 7.1).

Pure availability and friend availability Pure Availability
and Friend Availability in the Facebook Dataset are shown
in Fig. 14a. Since availability depends on users’ traces and
only marginally on PoS selection strategies, results are very
similar for all the proposed strategies. Hence, we show
only the graphs corresponding to the TieStrength & CG &
MSL selection strategy. Pure Availability increases mono-
tonically and an availability of 90 % is achieved for nodes
with more than 40 friends. As we expected, Friend Avail-
ability is always greater than or equal to Pure Availability. It
is remarkable to note that also a user with a relatively small
number of friends (e.g. 20) achieves more than 90 % of
Friend Availability on average. For nodes with a very small
number of friends (i.e. < 10) the difference between Pure
Availability and Friend Availability is remarkable, since
neither the node nor its friends are online for long periods
of time.

Rectangle

Rectangle

08 r

06

04

Average availability

0.2

AvgPureAy ———
AvgFriendAv -
.

1000

0 1 1
1 10 100

Number of friends

(a) Pure Availability and Friend Availability

W TieStrength & MSL W TieStrength & CG LICG & MSL

M TieStrength & CG & MSL M AvgTieEgo
0,008
0,007
0,006
0,005
0,004
0,003
0,002
0,001

Average Tie Strength

(c) Average tie strength

Fig. 14 Simulation results

Average tie strength Since a user’s PoS are always chosen
between his online friends, we expect load increases propor-
tionally to the users’ ego network size and to the percentage
of time they spend online in the system.

The maximum load is about 70 profiles and it is almost
the same for all the considered strategies. Figure 14b shows
a plot of the average tie strength values between the nodes
and their online PoS as function of the Dunbar ego net-
work size by considering the different paired strategies. The
average value of the tie strength returned by the different
strategies is almost the same for small sized Dunbar ego net-
works, since the choice of PoS is always restricted among
nodes that are online at the moment of the election. As the
Dunbar ego network size grows, the difference between the
average tie strength values obtained with the different strate-
gies increases and, as expected, the highest tie strength value
is obtained with the TieStrength & CG & MSL strategy.
Since the CG & MSL strategy selects PoS regardless the
tie strength value with the ego, it presents the smallest tie
strength among all heuristics.

The histogram in Fig. 14c shows the average value of
tie strength between egos and their online PoSs. The aver-
age values of the different strategies are compared with the
average tie strength between the same egos and all their ego

0.014

TiéStrengtI"] & MSL‘
TieStrength & CG -~
g 0012 CG&MSL e
§ TieStrength & CG & MSL
g 001
3
2 0.008
K
a 0.006
)
=}
o 0.004
)
z
0.002
0

0 20 40 60 80 100 120 140 160
Dunbar ego network size

(b) Average PoS tie strength and Dunbar
ego network

M TieStrength & MSL M TieStrength & CG
[CG & MSL WTieStrength & CG & MSL
242,4

242,35
242,3
242,25
2422
242,15
242,1
242,05

Average number of elections

(d) Average Number of Elections

friends (AvgTieEgo). As before, the average PoS tie strength
is much higher for TieStrength & CG & MSL than for the
other strategies while CG & MSL strategy is quite similar
to the average tie strength of the Dunbar ego network.

Average number of elections The average number of elec-
tions made by each user is shown in the histogram of
Fig. 14d. The minimum average number of elections is
obtained with the TieStrength & MSL and CG & MSL
strategies that exploit information about users’ sessions for
PoS elections while for the remaining strategies these val-
ues are quite similar. Currently, medium session length
is computed during the simulation, by considering previ-
ous sessions of the users during the considered period. We
believe that the number of elections may be further reduced,
by using longer periods of times and/or by refining the
methodology used to predict users’ availability.

9 Conclusion
This paper has presented an architecture for Distributed

Online Social Network with the aim to guarantee data avail-
ability even when users are offline. We have presented a

Rectangle

Rectangle

distributed storage support in which users’ data are stored on
trusted friends. It guarantees the users’ data persistence and
the data consistence. Each node dynamically elects a mini-
mal set of Point of Storages among his friends by choosing
at first between Dunbar friends. User data are dynamically
transferred between online users in order to maximise the
availability of users’ profiles in the social network. Our
experimental results show that our system is able to guaran-
tee an high availability with only two online copies of each
profiles. Furthermore, our Point of Storages management
guarantees an high availability of the online profile data by
considering real users’ online traces obtained from a real
Facebook dataset. We plan to investigate how to manage the
load balancing in our system and we want to apply a more
sophisticated policy which considers the Dunbar-based ego
network and users’ information to allow a better control of
where user data are stored. Furthermore, we plan to consider
privacy techniques to manage the access to the PoS Table
which is stored into the DHT and to study more in detail the
problem of data consistence.

References

1. Datta A, Buchegger S, Vu L-H, Strufe T, Rzadca K (2010) Decen-
tralized online social networks. In: Handbook of social network
technologies and applications. Springer

2. Adya A, Bolosky WIJ, Castro M, Cermak G, Chaiken R, Douceur
JR, Howell J, Lorch JR, Theimer M, Wattenhofer RP (2002) Far-
site: Federated, available, and reliable storage for an incompletely
trusted environment. In: Proceedings of the 5th symposium on
operating systems design and implementation (OSDI)

3. Narendula R, Papaioannou TG, Aberer K (2012) A decentralized
online social network with efficient user-driven replication. In:
International Conference on Social Computing (SocialCom)

4. Schioberg D, Schneider F, Trédan G, Uhlig S, Feldmann A
(2012) Revisiting content availability in distributed online social
networks. CoRR. arXiv:1210.1394

5. Tinedo RG, Artigas MS, Lopez PG (2012) Analysis of data avail-
ability in F2F storage systems: When correlations matter. In:
Proceedings of the 12th international conference on peer-to-peer
computing (P2P)

6. Dunbar RIM (1998) The social brain hypothesis. Evolutionary
Anthropology: Issues, News, and Reviews vol. 6

7. Roberts SGB, Dunbar RIM, Pollet TV, Kuppens T (2009) Explor-
ing variation in active network size: Constraints and ego charac-
teristics. Soc Networks 31

8. Sutcliffe A, Dunbar R, Binder J, Arrow H (2012) Relationships
and the social brain: Integrating psychological and evolutionary
perspectives. Br J Psychol 103

9. Graffi K, Gross C, Stingl D, Hartung D, Kovacevic A, Steinmetz
R (2011) LifeSocial. KOM: A secure and p2p-based solution for
online social networks. In: IEEE CCNC

10. Tran DN, Chiang F, Li J (2008) Friendstore: Cooperative online
backup using trusted nodes. In: Proceedings of the 1st workshop
on social network systems (SNS)

11. Cutillo LA, Molva R, Strufe T (2009) Safebook: A privacy pre-
serving online social network leveraging on real-life trust. IEEE
Commun Mag 47

12. Diaspora Website https://diasporafoundation.org/

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Sharma R, Datta A (2011) SuperNova: Super-peers based
architecture for decentralized online social networks. CoRR.
arXiv:1105.0074

Li J, Dabek F (2006) F2F: Reliable storage in open networks.
In: Proceedings of the 5th international workshop on peer-to-peer
systems (IPTPS)

Pamies-Juarez L, Lopez PG, Artigas MS (2009) Heterogeneity-
aware erasure codes for peer-to-peer storage systems. In: Interna-
tional conference on parallel processing (ICPP)

Blond S, Fessant F, Merrer E (2009) Finding good partners
in availability-aware P2P networks. In: Proceedings of the 11th
international symposium on stabilization, safety, and security of
distributed systems (SSS)

Mickens JW, Noble BD (2006) Exploiting availability pre-
diction in distributed systems. In: Proceedings of the 3rd
symposium on networked systems design and implementation
(NSDI)

Boutet A, Kermarrec A-M, Le Merrer E, Van Kempen A
(2012) On the impact of users availability in OSNs. In: Pro-
ceedings of the 5th workshop on social network systems
(SNS)

Sharma R, Datta A, Dell’Amico M, Michiardi P (2011) An
empirical study of availability in friend-to-friend storage sys-
tems. In: International conference on peer-to-peer computing
(P2P)

Li J, Dabek F (2006) F2F: Reliable storage in open networks.
In: Proceedings of the 5th international workshop on peer-to-peer
systems (IPTPS)

Conti M, De Salve A, Guidi B, Ricci L (2014) Epidemic diffusion
of social updates in dunbar based dosn. In: 2nd workshop on large
scale distributed virtual environments on clouds and P2P (LSDVE
2014)

Conti M, De Salve A, Guidi B, Pitto F, Ricci L (2014) Trusted
dynamic storage for dunbar-based P2P online social networks.
In: On the move to meaningful internet systems: OTM 2014
conferences

Balakrishnan H, Kaashoek MF, Karger D, Morris R, Stoica I
(2003) Looking up data in P2P systems. Commun ACM 46
Benevenuto F, Rodrigues T, Cha M, Almeida VAF (2009) Char-
acterizing user behavior in online social networks. In: Proceedings
of the 9th conference on internet measurement

Mega G, Montresor A, Picco GP (2011) Efficient dissemination
in decentralized social networks. In: International conference on
peer-to-peer computing (P2P)

Arnaboldi V, Guazzini A, Passarella A (2013) Egocentric online
social networks: Analysis of key features and prediction of tie
strength in Facebook. Comput Commun 36

Everett MG, Borgatti SP (2005) Ego network betweenness. Soc
Networks 27

Sahai A, Waters B (2005) Fuzzy identity-based encryption. In:
Advances in Cryptology - EUROCRYPT 2005. Springer
Bethencourt J, Sahai A, Waters B (2007) Ciphertext-policy
attribute-based encryption. In: Symposium on security and privacy
(SP)

Rowstron AIT, Druschel P (2001) Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems.
In: Proceedings of the international conference on distributed
systems platforms

Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan H
(2001) Chord: A scalable peer-to-peer lookup service for inter-
net applications. In: Proceedings of the international conference
on applications, technologies, architectures, and protocols for
computer communications

Bhagwan R, Savage S, Voelker G (2003) Understanding availabil-
ity. In: Proceedings of IPTPS’03

http://arxiv.org/abs/1210.1394
https://diasporafoundation.org/
http://arxiv.org/abs/1105.0074
Rectangle

Rectangle

33.

34.

3s.

36.

37.

38.

4

La Gala M, Arnaboldi V, Conti M, Passarella A (2012) Ego-
Net digger: A new way to study ego networks in online
social networks. In: Proceedings of the 1st ACM international
workshop on hot topics on interdisciplinary social networks
research

Golder S, Wilkinson D, Huberman B (2007) Rhythms of social
interaction: Messaging within a massive online network. In: Com-
munities and technologies 2007, pp 41-66

Graffi K (2011) PeerfactSim.KOM: A P2P system sim-
ulator experiences and lessons learned. In: Proceedings
of the international conference on peer-to-peer computing
(P2P)

Feldotto M, Graffi K (2013) Comparative evaluation of peer-
to-peer systems using PeerfactSim.KOM. In: International
conference on high performance computing and simulation
(HPCS)

Ng TSE, Zhang H (2002) Predicting internet network distance
with coordinates-based approaches. In: Proceedings of the inter-
national conference on the joint conference of the ieee computer
and communications societies

Matthews W, Cottrell L (2000) The PingER Project: Active inter-
net performance monitoring for the HENP community. IEEE
Commun Mag 38

Barbara Guidi is a PhD stu-
dent at the Department of
Computer Science, University
of Pisa. She received his Bach-
elor degree in February 2007
and the M.Sc degree in Octo-
ber 2011, from University of
Pisa. She started her Phd in

!
,.lg il & January 2012 and she is cur-

rently an associate researcher
at the Istituto di Informatica e

4]

~ Telematica (IIT), CNR, Pisa.
}zﬁ # \ Since the beginning of her
X PhD, Barbara Guidi has been

working on a new promising
approach to the definition of

Distributed Online Social Networks based on Dunbar’s theory .

Tobias Amft he started to

&\ study computer science, at the
A Heinrich Heine University of

y““ Dusseldorf. In summer 2012

=3 6‘ [he recelveq t.he B:Sc. degree
l after submitting his bachelor

‘A i thesis. Tobias Amft received
~—ay his M.Sc degree in March
2014 from the Heinrich Heine

University after submitting his

g master thesis in the field of

\ \ peer-to-peer systems and com-

A , ‘ puter networks. Since April
) 2014, Tobias Amft is a doc-

toral student and researcher
in the Lab for Technology of

Social Networks, led by Jun.-Prof. Dr.-Ing. Kalman Graffi. Beside his
research he is pursuing the M.Sc. degree in physics.

Andrea De Salve is a PhD
student at the Department
of Computer Science of the
University of Pisa. In 2009, he
received the Bachelor degree
and in 2012 he obtained the
Master degree in Computer
Science at the University of
Pisa. His research interests
include: P2P systems and its
application to distributed of
the OSNs, and Protocols and
algorithms for large scale dis-
tributed system. Since 2012,
he is working in the field
of privacy-preserving systems
for Decentralized Online Social Networks.

Professor Dr.-Ing. Kalman
Graffi is heading the lab
for Technology of Social
Networks, in the Institute
of Computer Science, at the
Heinrich-Heine-Universitit
Dsseldorf, Germany. Dr.
Graffi received his diploma
degrees in Computer Science
and Mathematics from the
Technische Universitdt Darm-
stadt in 2006. From 2006 to
2010, he was a PhD student
at the Multimedia Commu-
nications Lab (KOM), at the
Technische Universitt Darm-
stadt. In 2010, he finished his PhD (Dr.-Ing.) on the “Monitoring and
Management of Peer-to-Peer Systems” at the Technische Universitt
Darmstadt “mit Auszeichnung” (summa cum laude). From 2011 to
2012, he was postdoctoral researchers at the Theory of Distributed
Systems Lab at University of Paderborn. Findings from his research
have been published in more than 30 refereed scholary publications.
He serves as reviewer for prestigious conferences and journals.

Laura Ricci is a Professor
of the Department of Com-
puter Science, University of
Pisa where she has taught
several courses in the area
of Computer Networks. She
is a Research Associate of
ISTI CNR, Pisa, where she
has collaborated to interna-
tional projects in the area of
cloud, high performance and
P2P computing. She is the co-
chair of the LSDVE work-
shops series, Large Scale Dis-
tributed Virtual Environments
on Cloud and P2P, held in con-
junction with EUROPAR. She has been the guest editor of several
special issues in international journals and has chaired workshops
in International Conferences. Laura Ricci is author of more than 90
papers published in in refereed journals, books and conference pro-
ceedings. Her main research interests are in the area of distributed
computing, in particular cloud, P2P and data intensive computing.

https://www.researchgate.net/publication/277852989
Rectangle

Rectangle

