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Abstract

An efficient and accurate method is proposed to solve the incompressible flow
momentum and continuity equations in computational domains partitioned into
subdomains in the framework of the smoothed particle hydrodynamics method.
The procedure does not require any overlap of the subdomains, which would
result in the increase of the computational effort. Perfectly matching solutions
are obtained at the surfaces separating neighboring blocks. The block inter-
faces can be both planar and curved surfaces allowing to easily decompose even
geometrically complex domains.

The smoothing length of the kernel function is maintained constant in each
subdomain, while changing between blocks where a different resolution is re-
quired. Particles leaving each block through the interfaces are deactivated and
correspondingly new particles are generated at the neighboring block using a
dynamically adaptive procedure to control their frequency of release. No split-
ting and coalescing method is thus employed to take into account the different
size and mass of the particles going through the interfaces. Mass conservation
is guaranteed during the procedure, which is a challenging task in a Lagrangian
method based on the domain decomposition.

The test cases in both 2D and 3D approximation show the accuracy of the
method and its ability to strongly reduce the computational efforts through a
multi-resolution approach.
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1. Introduction

Smoothed particle hydrodynamics (SPH) is a Lagrangian particle method
in which the equations are solved using discrete convolution integrals with fil-
ter functions of assigned shape, indicated as kernel functions. Each particle is
assigned a support domain, including all the surrounding particles having dis-
tance lower than the product between the characteristic width h of the kernel
function (known as smoothing length) and a constant k depending on the shape
of the kernel function. The accuracy of the computation is directly related to
the smoothing length, which plays a role corresponding to the cell dimension in
grid-based methods. In order to obtain high quality solutions, a reasonably high
number of particles must be contained in each support domain, maintaining a
relatively regular space distribution during the time evolution of the simulation.

The number of particles N depends on their isotropic initial distance ∆x,
which is commonly assigned as proportional to the smoothing length h. Thus,
in 3D computations, it is N ∝ h3. Each particle moreover is assigned a given
mass m = ρ∆x3, where ρ is the particle density.

In mesh methods, in order to reduce the computational efforts, grids are
usually non uniform, being stretched and/or clustered close to external or inter-
nal boundaries and in regions of the computational domains with high gradients
of the hydrodynamic variables. On the contrary, in the classic SPH approach
the smoothing length is uniform in space due to the difficulty of changing the
width of the kernel function while the particles move from one region to another.
The computational efforts are thus very high, since the value of the smoothing
length must be chosen according to the one imposed by the regions requiring
the finest discretization. The same computational overload would be undergone
by grid-based methods employing in the whole domain cubic cells with constant
size.

In order to overcome this drawback, several refinement strategies have been
proposed in the SPH approach, using a variable smoothing length (h = h(xp),
where xp is the particle position) to increase the computational efficiency (Feld-
man and Bonet, 2007; López et al., 2013). Due to the Lagrangian nature of
the method, these approaches require introducing splitting and coalescing tech-
niques for the particles, since their dimension and support domain is required
to adapt to the space dependent h (Vacondio et al., 2013a,b; Xiong et al., 2013;
Spreng et al., 2014; Barcarolo et al., 2014; Vacondio et al., 2016; Hu et al., 2017).

Here a different approach is proposed, based on multi-domain decomposi-
tion, which allows to use different values of the smoothing length in the blocks,
while maintaining inside each of them the simplicity of the classic SPH method
with constant h. In the proposed procedure, differently from Shibata et al.
(2017), no overlapping of the subdomains is employed, thus avoiding any artifi-
cial increase of the computational domain. During the simulations the particles
leaving each subdomain through the internal interfaces (outflow) are removed
from the computation, while a specific procedure allows to generate new parti-
cles in correspondence of inflow interfaces. The procedure, which is similar to
the one employed by Napoli et al. (2016) in the coupling of the SPH and finite
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volume methods, guarantees perfect mass conservation in each block and in the
whole domain and allows each interface to switch from inflow to outflow (and
viceversa) during the simulation. Inflow and outflow conditions are allowed to
coexist in the same interface, as discussed by Monteleone et al. (2017).

The proposed multi-domain technique is employed here in the framework of
the Incompressible SPH approach (Lind et al., 2012; Napoli et al., 2015; Kunz
et al., 2016), based on the fractional-step resolution of the Navier-Stokes equa-
tions. The discretized Pressure Poisson equations, required to impose the null-
divergence condition, are solved using for the whole domain a unique equation
system, obtained putting together the single sub-systems of each subdomain.
The solution of the system is obtained through a pre-conditioned BicGStab al-
gorithm (Van der Vorst, 1992). The simultaneous solution of the sub-systems
allows to obtain a perfectly matched solution among the single subdomains,
where different particle sizes are employed.

Three different test cases are used to show the efficiency and accuracy of the
proposed method: the 3D unsteady channel flow in a cylindrical pipe, the 2D
vortex shedding in the wake of a circular cylinder and the hemodynamic systolic
cycle in a cerebral vessel with an aneurysmatic sac. Although all the test cases
are relative to confined flows, in principle no limitation exists to the application
of the proposed method to free-surface flows.

The paper is organized as follows: in the second section a general description
of the ISPH method is given, in the third the proposed multi-domain technique
is described in detail and in the fourth the validation through the employed test
cases is discussed. Some conclusions are finally drawn in the last section.

2. ISPH basic formulation

The generic function f at the position x can be expressed in the smoothed
form 〈f(x)〉 through the integral convolution:

〈f(x )〉 =

∫
D

f (x)W (x− x′, h) dx′ (1)

where W is a kernel function of smoothing length h and D is the computational
domain.

In the SPH approximation the fluid is represented by a finite number of
particles which move according to the Navier-Stokes equations. Each i particle
has its own mass and density (mi and ρi) and support domain Ωi whose dimen-
sion depends on the smoothing length h. The convolution integral (1) for the i
particle can be thus approximated as the summation over the Ni particles lying
into Ωi:

fi =

Ni∑
j=1

mj

ρj
fj Wij (2)

where the index j is used to indicate the properties of the generic j particle in
Ωi and Wij = W (xi − xj , h).
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Figure 1: Sketch of the generation of the mirror particles (empty black circles) from effective
particles (full black circles) having distance d < kh from the boundary (bold black line). The
dotted blue line around the effective particle S indicates its support domain ΩS .

As discussed by Liu and Liu (2010) and Morris et al. (1997), the first deriva-
tives and the Laplacian operator can be expressed as

∂f

∂x

∣∣∣∣
i

= −
Ni∑
j=1

mj

ρj
(fi − fj)

∂Wij

∂x
(3)

and

∇2fi =

Ni∑
j=1

2
mj

ρj

(xi − xj) · ∇Wij

d2ij
(fi − fj) (4)

where the symbol ”·” indicates the scalar product, ∇Wij is the gradient of the
kernel function and dij is the distance between the i and j particles.

In order to account for the truncation of the support domain occurring near
the boundaries of the domain, in SPH mirror particles are usually displaced
outside the computational domain, having mass and density equal to the effec-
tive particles from which they are generated (Fig. 1). The specific boundary
conditions (no-slip, free-slip, Dirichlet, etc.) are imposed assigning to the mirror
particles values coherent with the selected condition. An extended discussion on
the mirror particle generation and suitable assignment of boundary conditions
can be found in Napoli et al. (2015).

In the ISPH approach the Navier-Stokes equations are solved in three steps.
First the non-solenoidal intermediate velocity u∗i is obtained for each i particle
(i = 1, . . . N) solving the equations after having removed the pressure gradient
(predictor-step). In the SPH approximation the resulting equations read as:
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u∗i − ur
i

∆t
= νi

3

2

Ni∑
j=1

2
mj

ρj

(xr
i − xr

j) · ∇Wij

d2ij
(ur

i − ur
j)+

− 1

2

Ni∑
j=1

2
mj

ρj

(xr−1
i − xr−1

j ) · ∇Wij

d2ij
(ur−1

i − ur−1
j )

+ g (5)

where boldface symbols are used to indicate vectors, ui is the particle velocity,
∆t is the time step, νi is the particle kinematic viscosity, g is the mass force
and the superscripts r and r − 1 are used to indicate time levels. The Adams-
Bashfort scheme is used in eqn. (5) to obtain a second-order accurate explicit
approximation.

In order to obtain the corrective velocity field, the Pressure Poisson equations
are then solved for each particle:

Ni∑
j=1

2
mj

ρj

(xr
i − xr

j) · ∇Wij

d2ij
(ψi − ψj) =

1

∆t

Ni∑
j=1

mj

ρj
(u∗i − u∗j ) · ∇Wij (6)

where ψ is the pseudo-pressure having the dimension of the kinematic pressure
(p/ρ) and the right-hand side term is the opposite of the divergence of the
intermediate velocity divided by the time step. The boundary conditions for
eqn. (6) are obtained assigning to the mirror particles the Neumann condition:

∂ψ

∂n

∣∣∣∣
i

=
ur+1
in − u∗in

∆t
(7)

where the velocities are calculated at the intersection point between the bound-
ary and the normal line starting from i, n is the direction normal to the boundary
at the same intersection point and the subscript n indicates normal components
(uin = ui · n). The boundary conditions for the intermediate velocities u∗i are
obtained through an extrapolation from the interior values as discussed by Zang
et al. (1994) in the framework of the finite-volume application of the fractional-
step method.

In the third step the updated solenoidal velocity is finally obtained as:

un+1
i = u∗i −∆t

Ni∑
j=1

mj

ρj
(ψi − ψj)∇Wij (8)

3. The proposed multi-domain SPH method

3.1. The multi-domain decomposition

As discussed in the Introduction, in order to adapt the numerical method
to the spatial resolution required in each subregion, the computational domain
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Figure 2: Sketch of the subdivision into 6 blocks of the computational domain analyzed in
Test Case 3 (subsection 4.3). The external surfaces and the block interfaces are discretized
into triangles (e.g., the rectangular gray area in block 1 and the elliptical red area at the
interface between blocks 1 and 2). The change in the particle initial distance is visible in the
enlargement inside the circular black line in the vicinity of the interface between blocks 5 and
6.

is partitioned in non-overlapping blocks (Fig. 2, where a scheme relative to the
test case in Section 4.3 is shown). The blocks are separated by plane or curved
surfaces which will be indicated in the following as block interfaces (or simply
interfaces). These separation surfaces can be discretized into triangles, which
allow to obtain suitable descriptions of complex shapes while easily identifying
the normal directions (Napoli et al., 2015).

The smoothing length h and the relative initial particle distance ∆x are
maintained constant inside each block, while different values are assigned to
the particles contained in different blocks. As a consequence, the classic SPH
equations (eqns. (5)-(8) in the proposed approach) can be used inside each
block, although specific procedures must be included to account for the proper
treatment of near-interface regions. Specifically, since in these areas the support
domain of the particles can be truncated by the block interfaces, additional
interface particles (IP in the following) are added in the neighboring subdomain.
The IP particles play an important role in order to obtain a suitable matching
of the solution in neighboring blocks, as will be discussed in the next subsection
3.2.

The IP particles are generated from the effective particles having distance
shorter than ∆x from one of the interfaces. The particles are displaced in
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the direction normal to the interface, at distance from the relative generating
particle equal to v∆x with v = 1, 2, ...V where V is the integer part of the
ratio (kh/∆x). The number of interface particles generated from each effective
particle is thus selected to reach the contour of the support domain.

In Fig. 3.a IP generation from the effective particles of block A is described.
For the sake of clarity a bi-dimensional sketch is considered in the figure, where
the triangle interfaces are represented by a segment (bold red line in the figure).
The particle S of block A, having distance from the interface shorter than ∆xA,
generates two IP particles in the direction normal to the interface (S′ and S′′).
The two IP particles S′ and S′′ have distance from the generating particle S
equal to ∆xA and 2∆xA, respectively. These particles are contained in the
neighboring block B. A 3D scheme is shown in Fig. 3.b where the interface is a
curved surface. In the figure the generation is described considering two effective
particles of the blocks A and B (S and R in the figure, respectively). Since S
and R have distance from the relative triangle planes (dR and dS) shorter than
∆xB and ∆xA, respectively, two IP particles are generated from each of them.
The lines normal to the triangle planes are identified, allowing to generate the
IP particles R′ and R′′ and the IP particles S′ and S′′ having distance from the
corresponding effective particles equal to once and twice the starting particle
distances (∆xA, for block A and ∆xB for block B).

As discussed in the Introduction, in the procedure no overlapping region is
created between neighboring subdomains, which are entirely separated. Never-
theless, since the effective particles of a block generate, through the interface,
IP particles lying in the neighboring subdomain, an overlapping region is cre-
ated where effective particles of a block coexist with IP particles generated by
the neighboring block. In Fig. 4, relative to the first test case discussed in sub-
section 4.1, two subdomains A (green effective particles) and B (blue effective
particles) are shown. The effective particles of A and B are separated by an
interface which is represented by red triangles in Fig. 4.a (3D view) and is
plotted as a red line in Fig. 4.b (2D view). No effective particles of block B
(blue points in the figure) are contained in block A (which is filled with green
particles) and viceversa, since the blocks are separated. On the contrary, the IP
particles generated by the effective particles of block B (red points in the figure)
are contained inside block A, while on the other hand the IP particles generated
by block A (black points) are contained inside block B. As it will be discussed
in section 3.2, the hydrodynamic values of the IP particles generated by a block
are obtained through an interpolation starting from the effective particles of the
block in which they are contained.

3.2. The solution matching at the block interfaces

To obtain the SPH approximations of eqns. (2)-(4) at the effective particles
close to the block interfaces, the values of the f variables at the IP particles
must be identified.

As shown in Fig. 5, the IP particles of block A neighboring block B are con-
tained inside B. Their hydrodynamic properties can be thus obtained through
a Taylor series expansion around the closest effective particle of block B. Using
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Figure 3: Sketch of the IP particle generation. a) 2D scheme where the effective particles
of block A (full black circles) having distance d < ∆xA from the block interface (bold red
line) generate IP particles (empty black circles). The dotted blue circle around the effective
particle S indicates the support domain S, containing the particles S′ and S′′; b) 3D scheme,
where a curved interface surface is used. Effective R and S particles generate two IP particles
each in the neighboring subdomain in the direction normal to the interface triangle.
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Figure 4: EP : effective particles; IP : interface particles; IT : interface triangles; Block A:
green particles; Block B: blue particles. Block subdivision. a) 3D sketch; b) 2D sketch.

the symbols P and R to indicate an IP particle of block A and the closest
effective particle of block B, respectively, the expansion reads as:

fP = fR +

NR∑
j=1

mj

ρj
(fj − fR) ∇WRj

 · (xP − xR) (9)

where the sum is extended to the NR particles inside the R support domain
ΩR with radius khB (dotted green line) and the expansion is truncated at first
order.

As it can be seen in the figure, the support domain ΩR contains both effective
and IP particles (full and empty squares in the figure, respectively) and thus
eqn. (9) can be rewritten as:

fP = fR+

NR,eff∑
e=1

me

ρe
(fe − fR) ∇WRe +

NR,IP∑
g=1

mg

ρg
(fg − fR) ∇WRi

·(xP−xR)

(10)

using the subscripts e and g to separate the summations over the NR,eff effective
particles and the NR,IP IP ones (with NR = NR,eff+NR,IP ). This separation is
useful since the values fg in eqn. (10) are unknowns, which can be obtained using
corresponding Taylor series expansions around the closest effective particles of
block A.

As a consequence, the eqns. (10) relative to the neighboring A and B blocks
must be solved as a system containing one equation for each IP particle of the
blocks:
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ΩS
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Figure 5: Sketch of the interface particle distribution. Full and empty black circles: effective
and IP particles of block A; full and empty black squares: effective and IP particles of block
B; bold red line: block interface; dotted blue and green lines: support domains ΩS and ΩR

of particles S and R belonging to block A and B, respectively.

fAP −
NR,IP∑
g=1

cgf
B
g = RHSP P = 1, · · ·NA

IP

fBQ −
NS,IP∑
g=1

dgf
A
g = RHSQ Q = 1, · · ·NB

IP (11)

where Q is an IP particle of block B whose closest effective particle in block A
is S, the superscripts A and B are used to indicate particles of blocks A and B,
respectively, NA

IP and NB
IP are the numbers of IP particles in the blocks, the

coefficients cg and dg are

cg =
mg

ρg
∇WRg · (xP − xR)

dg =
mg

ρg
∇WSg · (xQ − xS)

and the right-hand-side terms RHSP and RHSQ are

10



RHSP = fBR +

NR,eff∑
e=1

me

ρe
(fBe − fBR ) ∇WRe −

NR,IP∑
g=1

mg

ρg
fBR ∇WRg

 · (xP − xR)

RHSQ = fAS +

NS,eff∑
e=1

me

ρe
(fAe − fAS ) ∇WSe −

NS,IP∑
g=1

mg

ρg
fAS ∇WSg

 · (xS − xQ)

The equation system (11) must be solved at each interface. In order to
obtain vectorial values (e.g., the velocities u), the system must be solved at
each interface once for each component, using the same coefficient matrix and
updating the right-hand-side only.

A different procedure is used for the pseudo-pressure ψ, since eqns. (9) must
be solved simultaneously with the Pressure Poisson eqns. (6). This implies that
all the fR and fj terms in eqn. (9) are unknowns and, moreover, the equations
relative to the different interfaces must be solved simultaneously too. As a
result, a global system made of the N Pressure Poisson equations and the NIP

interface particle Taylor expansions must be solved, where N and NIP are the
sums of the effective and interface particles belonging to each block.

3.3. The inflow/outflow procedure through the block interfaces

The employment of a multi-domain approach in the framework of a La-
grangian method, as SPH, requires taking into account the movements of the
particles from one block to another.

In the proposed approach the inflow and outflow procedures must be handled
separately. Specifically, at the end of each time step, after having calculated
the particle velocities through eqn. (8) and having accordingly updated their
position, it is checked for each particle if it has gone through one of the interfaces.
In this case the interface is considered an outflow for the block and the particle
is simply removed from the list of particles of the block it comes from. External
boundaries and internal interfaces connecting neighboring blocks are treated in
the same way from this point of view, since in both cases the particle is leaving
the block to which it belongs. As it is shown in Fig. 6.a, thus, a particle P
leaving block A towards B is cancelled at the next time step (r+1 in the figure).
If at the end of the time step a particle approaches one of the interfaces without
crossing it (particle Q in the figure), one or more IP particles are generated as
it has been described in section 3.1.

On the other hand, considering the scheme in Fig. 6.b, the entering of new
particles in block B is handled as described in the following. At the end of
each time step the region between the starting particle distance ∆x and kh
from the interfaces is considered (light green area in the figure). In order to
verify if the generation of new particles is required into this region, for each
effective particle contained in this checking area (S and T in the figure) and
having positive velocity component in the direction normal to the interface (thus
pointing towards the interior of the block), a conical scan region is identified,
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Figure 6: Inflow/outflow procedure sketch. a) Outflow. Full and empty black circles: effective
and IP particles of block A at time r; full and empty blue circles: effective and IP particles
of block A at time r+1; b) Inflow. Full and empty black squares: effective and IP particles of
block B; yellow area: conical scan region with opening angle β; R: effective particle generated
inside the cone with vertex in T ; empty blue squares: IP particles of R; green area: checked
region.
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which is indicated with the yellow color in the 2D scheme shown in the figure.
The vertex of the cone and the axis direction are assigned equal to the particle
position and velocity direction, respectively, as shown in Fig. 6.b (particles S
and T ). The conical volume thus is placed on the upstream region contained
between the checked particle and the interface. The region is used to verify if the
movement of the considered particle towards the interior of the block is causing
the development of an empty region, which would require the generation of a
new particle to fill it. Thus, a new particle is released if no effective particle is
found in the conical region, as occurring in the figure with reference to the cone
with vertex in T . The new particle (R in the figure) is displaced at distance
∆x from the cone vertex along the cone axis direction. If on the contrary some
effective particles are found in the conical region (which occurs in the figure for
the cone with vertex in S), no particle is generated inside the cone since no
empty region has been identified.

In order to control the frequency of new particle release, the cone amplitude
β is dynamically adjusted at each time step: specifically, the angle β is increased
by a fixed amount (1◦ in our test cases, starting from the initial value of 30◦)
when the total number of effective particles in the block becomes higher than
the starting number N0 and it is reduced by the same amount in the opposite
case. The dynamic updating of the cone amplitude allows to maintain constant
the number of particles in each block, thus correctly satisfying the continuity
constraint, since the widening of the cone increases the probability to find effec-
tive particles inside the conical region and thus reduces the frequency of release.
The efficiency of the procedure, which is similar to the one employed by Napoli
et al. (2016) in a FVM-SPH coupled approach, will be demonstrated in the test
cases discussed in the next section. The particles removed from the computation
after having left a block through the interface are saved in a storage list, from
which they are collected when new particles have to be released. The continu-
ous increase of the existing particles is thus avoided, which would occur if the
released particles would be newly generated instead of been taken from the list
of the previously cancelled ones.

To summarize, the inflow/outflow procedure is applied as follows:

• Deleted particles. If one effective particle at the end of a time step crosses
one of the triangles defining an external boundary or an internal interface
(connecting one block with the neighboring one) it will be removed from
the computation. The interface triangle is thus considered an outflow for
the current block;

• Particles with distance d < ∆x from the interface. If an effective particle
has distance d from the interface shorter than the particle distance ∆x,
two or more IP particles are generated as discussed in section 3.1. This
is valid for both inflow and outflow interfaces;

• Particles with ∆x < d < kh and ui · n > 0. If an effective particle has dis-
tance from the interface ranging between the starting particle distance ∆x
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and kh, and the velocity component normal to the interface plane is pos-
itive (ui · n > 0, implying an inflow condition) it must be checked if the
release of a new particle is required. Thus the procedure described above
based on the cone region analysis starts;

• Particles with ∆x < d < kh and ui · n < 0. If an effective particle has dis-
tance from the interface ranging between ∆x and kh but its velocity com-
ponent normal to the interface triangle is negative (thus the particle points
outside the interior of the particle block), no new particle is released start-
ing from the current effective particle, nor any IP particle is generated
since the distance from the interface is larger than ∆x.

3.4. Overall summary of the proposed method

In order to provide a general description of the single steps required to
advance in time the solution in the proposed multi-domain technique, a flow
chart is shown in Fig. 7. Although the method is applied here in the ISPH
framework, it could be straightforwardly integrated in the WCSPH approach
as well. The actions indicated in the flow chart are briefly explained in the
following:

• ACTION 1: The domain is partitioned into non-overlapping blocks as
explained in section 3.1. Each block has a different smoothing length and
is separated from the neighboring ones by plane or curved interfaces. The
action is a preparatory step, which is performed only once before starting
the iterative process for the time marching of the solution.

• ACTION 2: For each block the mirror and IP particles are generated as
discussed in sections 2 and 3.1 (see Figs. 1 and 3), respectively. The
generation of IP particles is performed considering the interfaces between
blocks as if they were external boundaries.

• ACTION 3: In the predictor step, eqn. (5) is solved for the effective
particles of each block to calculate the intermediate velocity u∗.

• ACTION 4: The equation system (11) is solved at each interface to ob-
tain the intermediate velocity u∗ of the IP particles generated from the
neighboring blocks.

• ACTION 5: The pseudo-pressure ψ of the effective and IP particles of all
the blocks is calculated solving one single system made up of one Pressure
Poisson equation (eqn. 6) for each effective particle and one interpolation
equation (eqn. 9) for each IP particle.

• ACTION 6: In the corrector-step, the updated velocity u is calculated for
each effective particle solving eqn. (8).

• ACTION 7: Identical to Action 4, considering the updated velocity u.
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• ACTION 8: The position of the effective particles is updated using the
corrected velocities u calculated in Action 6.

• ACTION 9: As discussed in section 3.3, the particles crossing external
outflow boundaries or internal block interfaces are deactivated and saved
in a storage list.

• ACTION 10: New particles are released from inflow and interface triangles
as described in section 3.3.

• ACTION 11: The mirror and IP particles are generated as in Action 2.
This step is required here in order to perform the next action.

• ACTION 12: The shifting procedure proposed by Xu et al. (2009) is used
to overcome the well-known tensile instability problem and improve the
particle distribution.

After the twelfth action, the solution time is advanced by one time step and
the procedure is restarted with Action 2. The activities specifically required by
the proposed multi-domain technique are indicated in red in the flow chart of
Fig. 7.

4. Test cases

The proposed procedure has been verified considering three test cases, both
in 2D and 3D approximation, in the laminar regime.

In all the test cases the Wendland kernel function (Wendland, 1995) has
been employed, with the value k = 2 for the proportionality constant between
the radius of the support domain and the smoothing length h. The starting par-
ticle distance ∆x has been set equal to kh/2. In order to improve the particle
distribution and to overcome the so called tensile instability related to the par-
ticle clustering along the streamlines (Monaghan, 2000), the shifting procedure
proposed by Xu et al. (2009) has been used.

The equation systems (11) at each interface as well as the larger system of
the Pressure Poisson equations have been solved using the BiCGStab method
(Van der Vorst, 1992), with a pre-conditioning algorithm to speed-up the con-
vergence (Saad, 2003).

The numerical model has been implemented in the open-source PANORMUS
package (Napoli, 2011).

4.1. Test case 1: Transient Poiseuille flow

The first test case is the Poiseuille flow inside a circular pipe, which has been
solved starting from the rest till achieving the steady-state. The pipe diameter
has been set to D = 0.1 m, with length L = D. The flow density and kinematic
viscosity have been set to ρ = 1000 kg/m3 and ν = 1 · 10−6m2/s and the
pressure gradient ∇P = 2 · 10−2 Pa/m has been used to drive the flow. The
resulting analytical maximum velocity is umax = 0.0125 m/s, with a Reynolds
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Figure 7: Flow chart of the proposed method in the ISPH framework. The actions closely
related to the multi-domain approach are highlighted with the red color.
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Figure 8: Test case 1. Domain subdivision into blocks 1 (gray) and 2 (blue). The bold red
line indicates block interface triangles, while A and B are the inflow and outflow sections,
respectively. a) surface representation; b) cross-section with particle representation.

number Re = umD/ν = 625, where um is the cross-section averaged streamwise
velocity at the steady-state.

The domain has been partitioned into two coaxial cylindrical blocks, as
shown in Fig. 8, with the diameter of the internal block D2 = 0.6D. The
interface (plotted in red color in the figure) is therefore a curved surface corre-
sponding to the internal lateral wall of block 1 and the external lateral wall of
block 2. The smoothing lengths of the external and internal blocks have been
set to h1 = 2 · 10−3 m and h2 = 3 · 10−3 m, respectively (correspondent to
kh1 = 4 · 10−3 m and kh2 = 6 · 10−3 m). The resulting initial number of effec-
tive particles is equal to N01 = 62 750 in the first block and N02 = 10 428 in
the second one. The reduction of the particle numbers with respect to the value
obtained using the smallest value of kh in the whole domain is quite moderate
in this simple test case (about 25% only) since the geometry and parameters
have been chosen only to show the accuracy of the method through the result
comparison with the well-known analytical solution. A larger reduction could
have been easily obtained employing a higher ratio of the smoothing lengths.

Dirichlet pressure boundary conditions have been imposed at the cross-
sections A and B (pA = 2 · 10−3 Pa and pB = 0), as discussed by Monteleone
et al. (2017), to obtain the selected pressure gradient, while adherence boundary
conditions have been set on the external lateral surface of block 1.

The velocity profiles across the pipe diameter at two intermediate time levels
and at the steady-state are plotted in Fig. 9, showing a very good agreement
with the analytical solution (Szymanski, 1932) and a quite satisfactory matching
of the solutions near the block interface.

The time evolution of the effective particle numbers N1(t) and N2(t) is shown
in Fig. 10, made non-dimensional with the relative starting numbers. The
changes in the total number of particles are quite limited in both the blocks,
with ratios N1(t)/N01 and N2(t)/N02 much lower than 0, 1% in most of the
computational time. Higher values (lower than 1%) can be seen only at the
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Figure 9: Test case 1. Velocity profile as a function of the radial coordinate r. Open circles:
SPH solution in block 1. Dotted lines: SPH solution in block 2. Blue, green and red lines:
analytical solutions at t1 = 500 s, t2 = 1 000 s and at the steady-state, respectively.
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Figure 10: Test case 1. Time evolution of the numbers of particles N1(t) and N2(t) normalized
with the initial numbers N01 = 62 750 and N02 = 10 428.

starting of the simulation, due to the perfectly regular initial distribution of the
particles, which results in the leaving and entering of entire slices of particles
through the inflow and outflow sections. This effect is particularly evident in
block 2 where the particle velocity is larger, but is rapidly cancelled as the
particle distribution becomes less regular.

4.2. Test case 2: Von Kármán vortex shedding

The 2D laminar flow around a circular cylinder has been analyzed, increasing
the refinement of the solution in the vicinity of the immersed body. To this aim,
three subdomains have been considered, as shown in Fig. 11, with blocks 2 and 3
in the annular regions close to the cylinder and block 1 elsewhere. The smallest
value kh3 = 0.02D (where D = 0.1 m is the diameter of the immersed cylinder)
has been used in block 3 (between the diameters D2 and D), the intermediate
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Figure 11: Test case 2. a) Domain subdivision into blocks 1 (blue), 2 (yellow) and 3 (green).
The bold red lines indicate the two block interfaces; b) domain dimension. L1 = 0.2 m,
L = 2.2 m, D1 = 0.2 m, D2 = 0.15 m, D = 0.1 m, H1 = 0.20 m and H = 0.41 m. Front
point A (xA = 0.15 m, yA = 0.20 m) and end point B (xB = 0.25 m, yB = 0.20 m) of the
cylinder; c) boundary conditions.

value kh2 = 0.04D in block 2 (betweenD2 = 1.5D andD1 = 2D) and the largest
value kh1 = 0.1D in block 1, covering most of the domain. The resulting initial
number of effective particles is 48 086 in the whole domain (with 34 816 particles
in block 1, 3 456 in block 2 and 9 814 in block 3), about 5% of the value that
would have been obtained using the smallest kh (0.02D) in the whole domain.
During the simulation the number of particles in the blocks remained almost
constant, with changes limited to 0.8% in the largest block 1 and 0.6% and
0.25% in blocks 2 and 3, respectively.

The geometry, fluid properties and boundary conditions have been assigned
as in the test case 2D-2 of Schäfer et al. (1996), which has been used for com-
parison. The length L and the height H of the computational domain have been
set equal to 22D and 4.1D, respectively. The centre of the cylinder is located at
distance L1 = 2D from the inflow section and H1 = 2D from the bottom wall.

The fluid density and kinematic viscosity have been set to ρ = 1 kg/m3 and
ν = 10−3 m2/s, and a parabolic profile has been imposed at the inflow with
mean velocity um = 1 m/s, resulting in the Reynolds number Re = umD/ν =
100. Since the simulation has been started from the rest, in order to obtain a
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smoother transition, the selected inflow velocity has been imposed after 0.1 s
from the starting of the simulation, with a linear increase from the initial null
value. Adherence boundary conditions have been used at the lateral walls and
on the immersed body, while null velocity derivatives and null pressure have
been imposed at the outflow.

The periodic detachment of vortices from either sides of the cylinder, char-
acteristic of the considered flow at Re values in the range of about 50 ÷ 150,
is easily identified in Figs. 12 and 13. Specifically, in Fig. 12.a the particle
streamwise velocity is plotted at time t = 8 s after the starting of the simula-

(a)

(b) (c)

(d) (e)

Figure 12: Test case 2. Velocity field at time t = 8 s. a) Streamwise particle velocity in the
whole domain; b) streamwise particle velocity near the circular cylinder; c) velocity vectors
near the circular cylinder; d) particle distribution at the subdomain transitions; e) velocity
vectors at the subdomain transitions colored as the corresponding blocks in figure 11.
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(a) (b)

(c) (d)

Figure 13: Test case 2. Velocity vectors at different times levels. a) t = 6.31 s; b) t+ T/4; c)
t+ T/2; d) t+ 3/4T ), where T = 0.328 s is the vortex shedding period. Enlargements inside
the red lines: velocity vectors colored as in Fig. 11.

tion, corresponding to about 24 vortex shedding periods T as it will be discussed
below. An enlargement of the near cylinder region is shown in Figs. 12.b and
12.c, where the particle streamwise velocity and velocity vectors are plotted
respectively, showing a very good matching of the solution through the block
interfaces. A further enlargement is shown in Figs. 12.d and 12.e, which allow
to clearly identify the increasing particle distance while moving outwards from
the cylinder and the corresponding velocity vectors.

The vortices are shown in Fig. 13 at the time levels t = 6.31 s (one of the
peaks of the lift coefficient that will be defined below), t + T/4, t + T/2 and
t+ 3/4T , where the enlargements inside the red rectangles highlight the vector
transitions near the interfaces.

The smoke lines are plotted in Fig. 14 with reference to the inflow positions
corresponding to the cylinder height (between y = H1−D/2 and y = H1+D/2),
using different colors from red to light blue to indicate growing distances from
the axis of the domain.
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Figure 14: Test case 2. Smoke lines at time t = 8 s.

The non-dimensional drag and lift coefficients have been calculated as

CD =
2

ρu2mD

∫
S

(
ρν
∂ut
∂n

ny − pnx
)
dS

CL = − 2

ρu2mD

∫
S

(
ρν
∂ut
∂n

nx + pny

)
dS (12)

where S is the cylinder surface (discretized into line segments in the 2D ap-
proximation), ut is the tangential velocity, p is the pressure and n is the surface
normal direction pointing outwards, with components nx and ny in the hor-
izontal and vertical directions respectively. The surface integrals in eq. (12)
have been calculated in discrete form considering the middle points of the line
segments. The time evolution of CD and CL is plotted in Figs. 15.a and 15.b
which show that stable conditions, corresponding to the complete vortex devel-
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Figure 15: Test case 2. a) Drag coefficient CD; b) lift coefficient CL; c) pressure difference
∆p (pA − pB).
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opment, are achieved after about 5 s. The maximum value of the drag coefficient
after t = 5 s oscillates between 3.345 and 3.370, with an average value of 3.354,
slightly larger (about 3.5%) than the optimal value of 3.22 − 3.24 estimated
by Schäfer et al. (1996). Correspondingly, the maximum value of CL oscillates
between 0.956 and 0.989, with an average value of 0.972, only 1.7% lower than
the estimated optimal value of 0.99.

The pressure difference between the front point A(L1 − D/2, H1) and the
end point B(L1+D/2, H1) of the cylinder (see Fig. 11.b) is plotted in Fig. 15.c.
The obtained mean value in the time period t = 5÷ 10 s is ∆p = 2.484 Pa, in
perfect agreement with the values suggested by Schäfer et al. (1996), where the
range 2.46÷ 2.50 Pa is reported. The mean frequency of separation f has been
estimated from the period of oscillation T of the lift coefficient CL, resulting
in the value f = 3.043 Hz. Correspondingly, the value of the Strouhal number
St = Df/um = 0.304 has been obtained, which is again in perfect agreement
with the reference values of 0.295÷ 0.305.

In order to show the accuracy of the proposed decomposition method, the
comparison of the results with those obtained using a constant value of the
smoothing length is shown in Fig. 16. The comparison is done with the results
obtained at t = 2 s with kh = 0.04D. The velocity field and the smoke lines are
plotted in figures 16.a and 16.b, respectively, showing a very good agreement
with the one domain results. The pressure field in the vicinity of the cylinder
is plotted in Fig. 16.c, showing again that the proposed multi-domain tech-
nique allows to obtain accurate results with a relevant reduction of the particle
number.

The speed up of the proposed method is directly related to the reduction of
the particle number since the overload of the computation due to the interface
treatment is negligible. Specifically, the solution matching at the interfaces
described in subsection 3.2, which is done twice at each time step (one after the
predictor step and one after the velocity correction), requires a computational
time lower than 1% of the entire iteration time. The particle generation at the
interface (subsection 3.3) involves a computational time of about 0.7% of the
entire time step. On the whole, thus, the total overload of the computational
time due to the proposed multi-domain technique is limited to about 2.5% of
the remaining computation.

4.3. Test case 3: Blood flow analysis of a cerebral aneurysm

In the third test case the simulation of the blood flow inside a human cere-
bral vessel with small branches and a giant aneurysm (Morley and Barr, 1969)
is analysed. The geometry has been selected among the ones available at the
AneuRisk project database (Aneurisk-Team, 2012), where the data of the ves-
sel lateral surface discretized into triangles are provided (case C0093 of the
available list). The domain, which has been used in section 3.1 (Fig. 2) to de-
scribe the partitioning into non-overlapping blocks, represents a high complex
3D geometry with branches having very different mean diameters and a quite
large aneurysmal sac. A multi-resolution approach is thus necessary since the
smoothing length h in each branch should be at least 20 times smaller than the

23



SD

MD

(a)

SD

MD

(b)

0 1 2
Pressure [Pa]

-0.7 2.4

SD MD

(c)

Figure 16: Test case 2. Comparison between single domain (SD) and the proposed multi-
domain (MD) approaches at t = 2 s. a) Streamwise particle velocity. The scale is the same
of Fig. 12 ; b) smoke lines; c) pressure field in the vicinity of the immersed body.

mean diameter to obtain a sufficiently accurate description of the velocity pro-
file. As seen in Fig. 2, the computational domain has been thus subdivided in
six blocks, having different values of kh in the range 1÷5 ·10−4 m. Specifically,
a quite small value of kh was required in block 6 (kh6 = 1·10−4 m), which would
have been excessively small for the branches of blocks 1 and 5 and even more
for the blocks 2 and 4 corresponding to the aneurysmal neck and sac, respec-
tively. Thus, adopting a constant kh in the whole domain would have implied
a huge number of particles, with a resolution exceedingly high in most of the
domain. Moreover, the pathological dilatation is characterized by relatively low
velocities, making even less necessary the fine discretization.

The resulting total number of particles is 112 618, about 2% of the number
that would have been obtained using the smallest kh value (1 · 10−4 m) in the
whole domain.

The boundary conditions for each block are shown in Fig. 17. At the inlet
section A pulsatile flow condition has been prescribed. To this aim a typical
waveform of healthy individual has been chosen (Radaelli et al., 2008; Marzo
et al., 2011), with period T = 0.792 s and time-averaged flow rate of about
0.3 ml/s obtained following the power law relationship between the flow rate
and the cross-sectional area proposed by Cebral et al. (2008). The velocity
profile at the inlet has been thus obtained applying the Womersley solution
(Womersley, 1955). A constant pressure has been imposed at the outlet sections
(B, C and D in figure), while at the five block interfaces (red areas in the figure)
the procedure described in sections 3.2 and 3.3 has been applied.
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Figure 17: Test case 3. Boundary conditions for each block.
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Figure 18: Test case 3. Particle velocity magnitude in m/s. Enlargement at interface 5 (red
rectangle) separating block 5 from block 6.
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Figure 19: Test case 3. Velocity vectors. Enlargements at interfaces 2 and 3 (bold red line)
and interfaces 4 and 5 (dashed red line) using different colors to indicate velocity vectors
relative to particles belonging to different blocks (see scheme in Fig. 2 for the colors).

Rigid vessel walls have been considered with no-slip boundary conditions.
For simplicity, blood has been considered a Newtonian fluid with constant kine-
matic viscosity ν = 3.7·10−6 m2/s and density ρ = 1060 kg/m3. The simulation
has been performed over six systolic cycles.

The Fig. 18 shows the particle velocity magnitude in the whole domain
and an enlargement in the vicinity of interface 5 which highlights the very
good matching of the solution in the neighboring blocks (5 and 6). Further
enlargements are shown in Fig. 19 where the velocity vectors are plotted.

The pressure evolution in eight points distributed in the blocks along the
vessel centerlines are shown in Fig. 20 during one systolic period. The plotted
patterns are coherent with the imposed velocity flux at the domain inflow (where
the point P1 is placed) and show a correct time evolution of the pressure values
from one block to the others, with correct pressure drops while moving in the
downstream direction along the centerlines.

In this test case no comparison data are available, but it is very suitable to
show the global efficiency of the proposed method, with an even larger reduction
of the particle numbers with respect to the previous case discussed in section
4.2, and the perfect satisfaction of the mass conservation. To this aim the vol-
ume discharges in different branch cross-sections have been calculated based on
the number of particles going through the corresponding sections during a fixed
amount of time (∆t = 0.002 s). The obtained discharge Q1 in the cross-section
S1 of the inflow vessel (Fig. 21.a) is thus compared with the sum of the dis-
charges Q3 and Q5 in two cross-sections of the downstream branches 3 and 5 (S3
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Figure 20: Test case 3. Pressure in [Pa] over one systolic cycle in different points of the
centerline (P1, P2, P3, P4, P5, P6, P7, P8).

and S5 in the figure), showing that the continuity constraint is correctly obeyed
(Q1 = Q3+Q5). Since a further bifurcation occurs in block 5 downstream of the
S5 cross-section, the discharge Q5 is compared in Fig. 21.b with the sum of the
discharges in the downstream cross-sections S5′ (in the same block 5) and S6 (in
block 6), showing again that the mass conservation is fulfilled. It is worthwhile
highlighting that the satisfaction of the continuity equation in cross-sections
belonging to different subdomains in a Lagrangian method, although being a
necessary requirement for a reliable solution, is not automatically guaranteed,
since it is not explicitly enforced in the solved equations.

A further confirmation of the mass conservation satisfaction is obtained in
Fig. 22 showing the time evolutions of the particle number Nn (n = 1, .., 6)
in each of the six blocks normalized with the corresponding initial number of
particles N0n (N01 = 18 241, N02 = 17 336, N03 = 5 735, N04 = 30 160,
N05 = 32 207 and N06 = 9 033). The maximum amplitude of the oscillations
in each block is always lower then 0.1% with the exception of the initial stages
of the first systolic cycle where values of about 0.2% have been achieved. This
result confirms the effectiveness of the proposed dynamic adjustment of the cone
angle amplitude β at the inlet interface of each block discussed in section 3.3.

5. Concluding remarks

The proposed method allows to alleviate one of the main drawbacks of the
SPH method, which is the high computational cost with respect to mesh-based
methods. This problem is not exclusively related to the method of discretization
of the differential equations in itself, since it mostly depends on the difficulty to
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change the discretization refinement throughout the computational domain, a
task which on the contrary is easily achieved in traditional grid methods. Thus,
the employment of multi-domain techniques is one of the simplest strategy to
overcome this issue in Lagrangian particle methods.

The proposed procedure can be straightforwardly implemented in the stan-
dard SPH formulation, managing the internal interfaces similarly to the external
boundaries where usually mirror particles are generated to account for the sup-
port domain truncation and to apply the selected boundary conditions. Since
no particle splitting/coalescing method is employed to take into account the
variable kernel width when the particles move from one block to another, the
procedure requires the simple deactivation of the particles leaving one block
and, on the other side, the generation of new particles with the required size
and mass in the receiving block. The release of new particles is governed by a
search procedure of the existing particles in the vicinity of the block interfaces,
using conical scan regions of assigned opening angle. In order to guarantee
the conservation of mass, the frequency of release of new particles is increased
or reduced to control the global fluid mass by dynamically adapting the cone
opening angle.

The employed test cases show that, even in relatively long-term simulations
of unsteady flows, the proposed procedure allows to conserve the global mass

S1
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S5

(a)

S6

S5
S5'

(b)

Figure 21: Test case 3. Flow rates Q(t) in ml/s over the last three cycles through the sections
S1, S3, S5, S5′ and S6 (bold black lines in the domain sketch). a) Thin grey line: Q1; dash-dot
orange line: Q3; magenta bold line: Q5; dotted black line: Q3 + Q5; b) dash-dot magenta
line: Q

5
′ ; thin green line: Q6; dotted black line: Q6 +Q

5
′ .
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Figure 22: Test case 3. Time evolution of the number of particles over six systolic cycles. The
time t is normalized with the systolic period T while the number of particles in each block
with the starting number of particles N0n. a) block 1; b) block 2; c) block 3; d) block 4; e)
block 5; f) block 6.
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and that the mass discharges through cross-sections belonging to different blocks
are in perfect agreement with the continuity equation. The numerical solutions
are in very good agreement with the available comparison results, with seam-
less transition of the velocity fields through the interfaces between neighboring
blocks.

The simulations have been performed employing values up to 2.5 of the
ratio between the kernel widths of neighboring blocks (test case 2), and up to 5
between those of non-neighboring ones (e.g., blocks 4 and 6 of the test case 3).
Since the number of particles in 2D and 3D SPH approximations is proportional
to the second and third power of the kernel width, respectively, the multi-block
approach allowed to obtain a very high reduction of the particle numbers (about
20 times in the 2D test case 2 and 50 times in the 3D test case 3). The resulting
reduction of the computational time was almost proportional to that of the
particle number since the overloads due to the interface management described
in subsections 3.2 and 3.3 was almost negligible.

In principle even much higher reductions of the computational efforts could
be achieved using the proposed multi-domain approach with higher values of the
ratios of the employed smoothing lengths, thus extending the field of application
of the SPH approach to real world fluid flow problems. As discussed in the
Introduction, since the method can be in principle applied to free-surface flows,
further validations will be performed in future research considering non-confined
flows.
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