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I. INTRODUCTION

A distillation process, in its essence, is nothing but a sys-
tematic way of driving a system toward a state nonorthogo-
nal to its initial condition. In some sense, thus, it often rep-
resents the realization of a projection operator. In recent
years, efforts have been made to realize distillation proce-
dures since they might be exploited to prepare and to control
at one’s will the state of a quantum system. In the field of
quantum technologyf1,2g covering such research areas as
quantum computation, quantum information and quantum
teleportation, it is usually assumed that a desired state, which
is necessary to start a specific quantum manipulation, can be
prepared in principle. In reality, however, it is not at all
trivial and we have to specify explicitly how such a prepa-
ration is actually implemented. Various distillation processes
have been proposed for this purpose so farf1,2g.

Recently a general strategy of distillation specifically ad-
dressed to bipartite systems has been reportedf3g. The key
idea of this distillation process is to repeatedly measure a
systemshere calledmasterand denoted byMd interacting
with another oneshere calledslaveand denoted bySd pro-
voking a nonunitary evolution which forces the latter toward
a subspace determined by the specificM-S coupling and by
the results of the master measurements. It occurs with a
probability that expresses the efficiency of the process.

Such a scheme for distillation shares some points with
quantum nondemolition measurementsQNDd methodsf4,5g,
also based on the idea of repeatedly measuring a system in
interaction with the one we want to observe. It is worth men-
tioning that, although the original scope of the QND was to
measure observablesslet us denote byAS the generic oned
related to the nonrepeatedly measured systemscorresponding
to the slave in the distillation schemed, the proceduresbeing
nothing but a practical realization of a measurement on the
slaved has the collateral effect of projecting the slave onto an
eigenspace of the measured observable. Therefore, QND
provides a way to generate quantum states through theirex-
traction from the initial condition of the relevant physical
systemsi.e., the slaved f6–8g. Despite these similarities be-
tween distillation and QND, the formalism introduced in
Ref. f3g allows one to bring to light all the potentialities of
such a scheme overcoming restrictions present in the stan-

dard description of QND. Indeed, while in the quantum non-
demolition measurement approach it is required that the ana-
log of the M-S coupling should commute with the slave
observable one is going to measuresa sufficient condition to
realize a projection ontoAS subspacesd, in distillation
schemes a necessary and sufficient condition on the nonuni-
tary operator describing the nonunitary dynamics above
mentioned may be directly given in order to establish which
subspace is going to be extracted, that is, distilled.

The interest in such a process is twofold. On the one
hand, as already mentioned, it allows the realization of ap-
plications in the context of quantum state manipulation and
in particular quantum state preparation. On the other hand, it
is also interesting in fundamental physics, describing the be-
havior of a physical system when a part of it is repeatedly
measured.

In this paper we analyze in depth the distillation process
reported inf3g, bringing to light the close connection be-
tween the final result of the distillation process and the
master-slave interaction. In particular, neglecting any envi-
ronment effect, we show that the survival probabilities of the
slave states under the unitary evolution due to theM-S inter-
action are the crucial elements of this process. We shall
prove that the higher is such a unitary survival probability,
the higher is the probability that the relevant slave state is
distilled by the process. On the basis of this observation, we
demonstrate the possibility of steering distillation processes
using mechanisms of control of survival probability relying
on the generalized quantum Zeno effect, i.e., the quantum
Zeno dynamicsf9–12g recalled in the following.

In the next section, we recall the general statement of
repeated measurement-based distillation following Ref.f3g,
and show applications in the specific case wherein the master
is a two-level system. In the third section, we analyze the
nature of the distillation and point out its connection with the
survival probabilities related to the unitary evolution induced
by the M-S interaction. In the same section, we recall the
quantum Zeno dynamics and show how to use it for control-
ling such survival probabilities and hence for steering distil-
lation. The realizations of some classes of projection opera-
tors in a harmonic-oscillator Hilbert space are reported in the
case where the master is a few-level system. The realization
of operators projecting in finite or infinite dimensional sub-
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spaces corresponding to finite or infinite ranges of energy is
described. In the final section, we discuss and show the pos-
sibility of realizing the method presented, in the context of
trapped ions, and give some concluding remarks.

II. DISTILLATION PROCESSES

In this section, we analyze the behavior of a compound
system when a part of it is repeatedly measured. It is easily
understood that the measurements generally introduce non-
unitary elements in the time evolution, and provoke the de-
cay of a subsetssubspaced of slave states when certain con-
ditions are satisfied. In this circumstance, a projection
operator onto a slave subspace is practically realized. The
required conditions concern the spectrum of the nonunitary
operator responsible for the evolution. As will be reported at
the end of this section, in the case wherein the master is a
two-level system, the relevant nonunitary operator is shown
to be diagonalized and such conditions are explicitly exam-
ined. Moreover, it is necessary to analyze the relevant spec-
trum to determine the duration of the unitary interactionsi.e.,
the interval between adjacent measurementsd and to indi-
viduate the classes of distillable subspaces.

A. General statement

Consider two interacting systems, referred to asmaster
sMd andslavesSd. Let hufklj denote a basis ofM, andhuwnlj
indicate a basis ofS. Let us denote byÛstd=e−iĤt the time

evolution operators"=1d for time t, Ĥ being the compound
system Hamiltonian.

Perform a measurement of the master state, and assume
that the result isuf0l. Let the system evolve for timet under

Ĥ, then perform another measurement of the master, and so
on N times. Assume that at each step the master system is
found in the stateuf0l. In such a case, the compound system
is subjected to a nonunitary time evolution characterized by
the operator

ŴsNdstd ; NNfuf0lkf0uÛstdgNuf0lkf0u = NNuf0lkf0ufV̂stdgN,

s1d

where

V̂std ; kf0ue−iĤtuf0l s2d

is a nonunitary operator describing the transformation that
the slave state undergoes owing to both the time evolution

Ûstd and the projection following the successful measure-
ment act onM. The normalization factorNN takes into ac-
count the probability of findingM in the stateuf0l N times.

Let us solve the eigenvalue problem related toV̂std. Since
this operator is not Hermitian, generally its right and left
eigenvalue problems have different solutions. Assume now

that it is possible todiagonalize the operatorV̂std in the
standard wayf13g

V̂std = o
k

gkP̂k, s3d

wherehP̂kj are orthogonal projection operators satisfying the

completeness relationokP̂k=1̂S, 1̂S being the slave identity
operator, andgk are complex numbers having moduli in gen-
eral not greater than 1. We shall denote also byugk, ll the

eigenstates corresponding toP̂k, l being indices spanning the

eventually degenerate eigenspace, so thatP̂k=olugk, llkgk, l u.
Introducingg=maxkhugkuj, one finds, for large enoughN,

ŴsNdstd < :Nuf0lkf0u o
k:ugku=g

gk
NP̂k s4d

which may also be cast in the form

ŴsNdstd < :Nuf0lkf0ugNR̂NP̂dist s5d

whereR̂ªok:ugku=gsgk/gdP̂k sand henceR̂Nd is a unitary op-
erator acting on the distilled slave subspace corresponding to
the projection operator

P̂distª o
k:ugku=g

P̂k. s6d

If a unique eigenvalue ofV̂std having modulusg exists and
in addition its eigenspace is nondegenerate, then the distilla-
tion procedure realizes just a single-state selection.

It deserves to be noted that the distillation is a conditional
procedure in the sense that its success depends onN mea-
surement results. More precisely, the master systemsMd, at
each measurement act, should be always found in the state
uf0l. Moreover, the procedure substantially realizes a projec-
tion operator; hence, if the process is successful, the
would-be distilled states should be present in the initial slave
state r̂s, where the initial state of the compound system is
assumed to ber̂s^ uf0lkf0u. The joint probability of finding
the master system in its initial stateuf0l at each step
spk=1

N `k
sMd, `k

sMd being the probability of finding the master in
uf0l at thekth measurementd tends, in the limitN→` and in
the caseg=1, to the probability of finding the target sub-
spacesi.e., the “distillate”d into the initial slave statef17g
ssee the Appendixd, that is,

p
k=1

N

`k
sMd → TrShr̂sP̂distj, s7d

where TrS is the trace operation over the slave degrees of
freedom.

The quantity in Eq.s7d expresses the efficiency of the
distillation process, that is, the success probability of distil-
lation. In connection with this point, it is worth remarking
that in the caseg=1 the distillation may be thought of as a
simulation of a measurement act on the slave. In fact, it
projects the system onto a prefixed subspace with a probabil-
ity given by the norm of the component of the slave state
onto the distilled subspace.

Incidentally, Eq.s7d explains also the fact that QND may
be used in many physical systems, for instance in trapped
ions, both as a strategy for generating states and for measur-
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ing slave state populationsf6–8g. Indeed, on the one hand
such processes project the system onto the distilled subspace
with an efficiency given by Eq.s7d sstate generationd. On the
other hand, the master is found in the stateuf0l all N times
with a joint probability whichsfor large enoughNd is equal
to the population of the target subspace in the initial slave
state, providing a way to measure such populationsspopula-
tion measurementsd.

B. A case of spin 1/2 as the master

In general, the eigenvalue problem ofV̂std is not trivial,
in the sense that the left and right problems are not adjoint to
each other. As an example of solvable models, let us consider
the case wherein the master is a two-level systemsformally
of spin 1

2d, while the slave is a harmonic oscillator. This is
not just an academic example. Indeed, in the context of
trapped ions, it is possible to realize a wide variety of such
couplings provided the experimental setup is adequately ad-
justed. In fact, the actions of suitably tuned and polarized
laser fields on the confined atom are responsible for specific
vibronic couplingssvibronic, i.e., involving both the internal
and center-of-mass motional degrees of freedomd of the form
f14–16g

Ĥv = «V̂ŝ+ + H.c., s8d

whereŝ+= u+lk−u sŝ−= u−lk+ud is the Pauli raisingsloweringd
operator,u± l being the internal ionic states, and« is a posi-
tive coupling constant related to laser intensities and initial

phases. The generic time-independent operatorV̂ acts in the
slave Hilbert space, and its specific form is determined once
the specific nature of the master-slave interaction is given
f17g.

Assume that the mastersMd is initially in the stateu+l,
hence starting with the density operator

r̂ = r̂v ^ u + lk+ u, s9d

r̂v being the initial slave state. Let the system evolve under

the action of the HamiltonianĤv sM-S interactiond for time
t, and then measure the internal ionic state. Assume the sys-
tem is found inu+l, and then let again the system evolve in

accordance withĤv for another timet, and measure the fer-
mionic state finding it inu+l, and so onN times.

Under these assumptions, the system undergoes the non-
unitary evolution essentially described by theNth power of
the nonunitary operator

V̂std ; k+ ue−iĤvtu + l = coss«tÎV̂V̂†d. s10d

Such an explicit expression provides a very useful insight for
forecasting the result of a distillation based upon interactions
of the form s8d. Indeed, denoting byvk and uvkl the eigen-

values and eigenstates of the operatorV̂V̂†, it is possible to
distill a class of eigenstates simply by adjusting the pulse
area«t. In fact, for large enoughN, it turns out that

cosNs«tÎvkd = s− 1dlkN if «tÎvk = lkp,

cosNs«tÎvkd < 0 otherwise, s11d

and hence, choosing, for a prefixedv, the pulse area«t such
that for instance«tÎv=p, it is possible to distill all those
states belonging to integer-squared multiples ofv, and if no
such eigenvalues exist, only the state corresponding tov is
distilled.

In the context of trapped ions, this result may be used to
realize a wide variety of applications concerning the genera-
tion of states whose Fock statistics involves only Fock states
corresponding to perfect-square numbers, the generation of
common eigenstates of energy and angular momentum, an-
gular momentum Schrödinger cat states, and so onf17g.

III. CONTROLLING DISTILLATION THROUGH
QUANTUM ZENO EFFECT

In this section, we explain the connection between the
final result of the distillation and theM-S interaction, show-
ing that the distilled subspace is generated by those slave
states which undergo unitary evolutions, in the timet, char-
acterized by the highest survival probability. On the basis of
this fact, we propose to use quantum Zeno effect to control
such survival probabilities. Moreover we show some appli-
cations, in particular the realization of what we call high-,
low-, and bandpass bosonic filters, i.e., projection operators
on subspaces whose states possess excitation numbers higher
or lower than a quantity, or in a range.

A. Unitary vs nonunitary survival probability

Consider the orthonormal basis of the M-S system
ugk, lluf jl;ugk, ll ^ uf jl, and denote byuckl,jstdl its evolution

induced by Ûstd: uckl,jstdl; Ûstdugk,lluf jl. Therefore, the
evolution operator may be cast in the form

Ûstd = o
k,l,j

uckl,jstdlkgk,l ukf ju. s12d

Since V̂std;kf0uÛstduf0l=ok,lgkugk,llkgk,l u, we obtain

kf0uckl,0stdl=gkugk,ll. This means that Ûstdugn, lluf0l
= Î`nstdeijnstdugn, ll ^ uf0l + o jÞ0om,qcj ,mqstdugm,ql ^ uf jl,
`nstd being the relevant survival probability related togn

throughgn=Î`nstdeijnstd. Therefore one immediately finds

V̂std = o
n,l

Î`nstdeijnstdugn,llkgn,l u. s13d

Such a decomposition gives a precise physical meaning to

the moduli of the eigenvalues ofV̂std and shows that the
distilled spreservedd slave statesscorresponding to higher ei-
genvalue modulid are those undergoing unitary evolutions
sbetween two measurement actsd which do not inducesor
induce smallerd abandon of the initial master statesuf0l in
favor of the othersuf jl, j Þ0. In other words, in order to be
distilled, the stateugn, lluf0l should not undergosor should
undergo less than the other statesd transitions to states with
different master statesugm,qluf jl, j Þ0. On the basis of this
comment, each stateugn, ll may be thought of as a “channel”
of probability loss, which may be opened or closed depend-
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ing on the specific features ofÛstd. If the channel is closed
the relevant state is preserved, otherwise it is going to be
lost.

B. Quantum Zeno dynamics to control unitary survival
probability: A toy model

The survival probability of a physical system undergoing
a unitary time evolution may be changed using control
mechanisms substantially relying on the dynamical quantum
Zeno effect, i.e., quantum Zeno dynamicsf9–11g. To better
understand this fact, let us temporarily leave our original
physical problem and consider a three-level system, assum-
ing that its dynamics is governed by the tridiagonal Hamil-
tonian

J3 = 1
0 V 0

V* 0 L

0 L* 0 2 , s14d

V being the coupling constant between the ground state and
the first excited statesugl andue1l, respectivelyd, andL being
the coupling constant between the first and the second ex-
cited levelssue1l and ke2l, respectivelyd. We shall consider
the dynamics in the regimeL=0 as theunperturbedone, and
it is straightforward to prove that it corresponds to Rabi os-
cillations betweenugl and ue1l. The second excited stateue2l
is stationary. The introduction of the second couplingLÞ0
gives rise to a modified regime, known asZeno dynamics,
such that foruLu@ uVu the dynamics of the ground state is
hindered. More in detail, assuming that the system starts in
the stateugl, the relevant survival probability is given by

`gfJ3,tg ; zkgue−iJ3tuglz2 = F uLu2 + uVu2cossvtd
uLu2 + uVu2 G2

s15d

with v=ÎuVu2+ uLu2.
Looking at this formula it is easy to see that in the regime

uLu@ uVu, the probability approaches unity,̀g<1, meaning
that the unperturbed dynamics is hindered by the action of
the L coupling which may be interpreted as a measurement
coupling. Indeed the transitions fromue1l to ue2l produce in
some sense a way to measure the population of levelue1l
f10–12g, putting this behavior in the framework of quantum
Zeno effect. Apart from philosophical and semantical discus-
sions, the effect of the secondsstrongd coupling is to hinder
the dynamics due to the first coupling.

The scheme may be generalized, assuming, for example,
that a third excited levelue3l coupled with the second exists,
as expressed by the Hamiltonian

J4sV,L,Gd =1
0 V 0 0

V* 0 L 0

0 L* 0 G

0 0 G* 02 . s16d

It has been shown that, in the regimeuGu@ uLu, the hindering
effect due to theL coupling is canceledf10,18g. In fact, we
have

`gfJ4,tg ; zkgue−iJ4tuglz2 < cos2suVutd, s17d

the unperturbed dynamics being restored.
Let us summarize this phenomenology. The four-level

system under scrutiny performs Rabi oscillations between
the two lowest statessthose coupled byVd when L=G=0.
Such a dynamical regime corresponds to the unperturbed
time evolution. AsL is made nonvanishing, the dynamics
becomes more and more complicated until the condition
uLu@ uVu is reached. In such a situation, the dynamics of the
lowest level is frozen, and this is just the continuous mea-
surement quantum Zeno effect already recalled. OnceG is
also adjusted as a nonvanishing coupling constant, an unex-
pected phenomenon does happen: asuGu grows up, the effect
due to the strong couplingL between the second and the
third levels becomes relatively weaker and weaker, up to the
point, identified by the conditionuGu@ uLu, wherein the origi-
nal Rabi oscillations are completely restored. In agreement
with Refs. f10,18g, one can interpretL and G couplings as
“continuous” measurements so that it is possible to give the
following metaphorical statement: “a watched pot never
boils” suLu@V, G=0d but “a watched cook can freely watch
a boiling pot” suLu@ uVu, uGu@ uLud f10g.

In passing, we mention the fact that thehierarchical chain
of interactions in principle may beextendedswith further
ringsd, maintaining the same substantial features: the last ring
of the chain is able to destroy the effects of the previous one
depending on how the relevant coupling strengths compare
to each other. For instance we could add a fifth level and a
fourth coupling involving the fourth and fifth levels. In this
way, we obtain a 535 tridiagonal matrix. In concomitance
with an increase of the fourth coupling strength, the hinder-
ing of inhibition given by the third couplingsGd is hindered.

C. Low-, high-, and bandpass bosonic filters

Let us now come back to our original framework and
consider the case when the master system is a three-level
system and the slave is a harmonic oscillator. Assume that
the unitaryM-S evolution is induced by the Hamiltonian

ĤL = Vffp
g1sâ†âdâpue1lkgu + H.c.g + Lffq

12sâ†âdâque2lke1u

+ H.c.g, s18d

where p and q are integer numbers related to the specific
choice of the laser frequenciesssidebandsd, V and L the
sreald coupling constants,â the harmonic-oscillator annihila-
tion operatorshere the notation is such thatâ−s; â†s for posi-
tive sd, while ugl, ue1l, and ue2l are the three atomic states
effectively involved in the dynamics. Finally the functions
sassumed to be real, for notational simplicityd fp

g1 and fq
12 are

introduced.

Consider the unitary evolution due toĤL in Eq. s18d in
the special regimeL=0 andp=0. Then the repeated detec-
tions of the atomic stateugl lead to the standard quantum
nondemolition measurements, by which it is possible to ex-
tract, i.e., distill, a number state for instance in the context of
trapped ions and cavity QEDf6,7g. More in detail, denoting
by unl the harmonic-oscillator Fock states, the effective non-
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unitary evolution operator acting upon the vibrational state is
given by

V̂L=0std ; kgue−iĤL=0tugl = cosfVf0
g1sâ†âdtg

= o
n=0

`

cosfVf0
g1sndtgunlknu. s19d

Since in this case the Fock states are eigenstates ofV̂std, we
have ugn, llªunl. It is possible to chooset=tn such that
Vf0

g1sndtn=p. Assuming that fornÞn, f0
g1snd and f0

g1snd are
incommensurable, the eigenvectorunl ^ ugl, and it only is
preserved by the distillation proceduresucosfVf0

g1sndtngu=1d,
while all the others are partially destroyed at each master-
state detectionsucosfVfp

g1sndtngu,1 for nÞndd. In the con-
text of trapped ions a similar approach is used to realize
quantum nondemolition measurementsf6,7g.

In the case of positivep sp.0d, it is possible to realize
what is called a low-pass bosonic filter. In fact, one easily
obtains

V̂L=0std = o
n=0

p−1

unlknu + o
n=p

`

cosfVntgunlknu, s20d

with Vn;Vfp
g1sn−pdÎn! / sn−pd!. UnlessVnt= lp for anyn

and integerl, one realizes the projectoron=0
p−1unlknu that filters

those bosonic states characterized by excitation numbers
lower thanp. In the context of trapped ions, a strategy based
on a coupling of the form in Eq.s18d with p=1 is used to
realize the so-called resolved sideband coolingf6,14g.

Consider now the effect of the freezing agent, i.e., assume

that LÞ0. In this case the total HamiltonianĤL is substan-
tially characterized by the three-dimensional invariant sub-
spaceshunl ^ ugl , un−pl ^ ue1l , un−p−ql ^ ue2lj, wherein the
operator may be represented as a 333 block of the form

Jn = 1 0 Vn 0

Vn
* 0 Ln

0 Ln
* 0

2 , s21d

with Vn=Vfp
g1sn−pdÎn! / sn−pd! as before andLn=Lfq

12sn
−p−qdÎsn−pd! / sn−p−qd!. Of course, depending onp and
q, which are assumed to be non-negative here, there could
exist also invariant doublets and singlets. For instance, in
correspondence ton−p,0 there are singlets, while ifn−p
ù0 andn−p−q,0 there are doublets.

It is straightforward to evaluate the nonunitary operator

V̂L;kgue−iĤLtugl. In particular, in the casep=0 spreviously
analyzed in the absence of a freezing agentd and positiveq,
we obtain

V̂Lstd = o
n=0

q−1

cosfVf0
g1sndtgunlknu

+ o
n=q

` uLnu2 + uVnu2cossvntd
uLnu2 + uVnu2

unlknu s22d

with vn=ÎuLnu2+ uVnu2. The operator is diagonal in the Fock
basis.

In the dynamical regime characterized byL@V, p=0, if
we assume thatfq

12sn−qdÞ0 for all Fock states and that the
functions f0

g, fq
12 are of the same order, an inequalityuLnu

@ uVnu holds ∀ n. If the measurement intervalt is not fine
tuned, i.e.,tÞt0

skd ,t1
skd ,… ,tq−1

skd , ∀ integerk, wheret j
skd sat-

isfiesVf0
g1s jdt j

skd=kp, all Fock states with an excitation num-
ber less thanq are eliminated in the course of repeated mea-

surements, hence realizing the projector 1ˆ −on=0
q−1unlknu, that

is, a high-pass filter:

fV̂LstdgN →
large N

1̂ − o
n=0

q−1

unlknu. s23d

We mention that in principle also a bandpass filter is re-
alizable by considering a four-level system as the master. In
fact, the Hamiltonian

ĤL,G = Vffp
g1sâ†âdâpue1lkgu + H.c.g + Lffq

12sâ†âdâque2lke1u

+ H.c.g + Gff r
23sâ†âdârue3lke2u + H.c.g, s24d

with p=0 and positiveq andr, yields, foruGu@ uLu@ uVu, the
nonunitary operator

V̂L,Gstd < o
n=0

q−1

cosfVf0
g1sndtgunlknu

+ o
n=q

q+r−1uLnu2 + uVnu2cossvntd
uLnu2 + uVnu2

unlknu

+ o
n=q+r

`

cosfVf0
g1sndtgunlknu. s25d

The third sum in Eq.s25d involves just cosfVf0
g1sndtg be-

cause in the subspace generated byhunl ,n=q+r ,… ,`j the
unperturbed dynamics is restored due to the action of the
third couplingGn suGnu@ uLnu@ uVnud. Such a condition holds
only in the subspaces wherein the third coupling iseffective,
that is, fornùq+r; indeed otherwiseGn=0.

Under the assumption

t Þ t0
skd,t1

skd,…,tq−1
skd ,tq+r

skd ,…,t`
skd, s26d

we obtain a bandpass filter

fV̂L,GstdgN →
large N

o
n=q

q+r−1

unlknu. s27d

Although the condition in Eq.s26d may seem too strong,
it actually is not. In fact, taking account of the fact that
in practical situations, for instance in trapped ions and in
cavity QED, one deals with bosonic states with a finite
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number of excitations, it would be sufficient to consider
the condition up to a large but finite number
n: tÞt0

skd ,t1
skd ,… ,tq−1

skd ,tq+r
skd ,… ,tn

skd.

IV. APPLICATIONS IN TRAPPED IONS
AND CONCLUDING REMARKS

Some of the applications reported in the previous sections
may be realized in the context of trapped ions. As is well
known, a time-dependent quadrupolar electric field is able to
confine a charged particle, providing an effective quadratic
potential that induces a harmonic motionf19,20g. When the
confined particle is an ion, the complete result is a compound
system possessing both fermionic and bosonic degrees of
freedom, the first ones describing the internal motion of the
electrons with respect to the atomic nucleus, the second ones
describing the ion center-of-mass motion. In most of the ex-
periments, only a few atomic states are really involved in the
dynamics and a single vibrational mode is considered. Fol-
lowing Ref. f21g, it is possible to realize an experimental
setup which involves, in the dynamics, only the following
three atomic levels of9Be+: uglªu2S1/2,F=1,mF=1l, ue1l
ªu2S1/2,F=2,mF=2l, ue2lªu2S1/2,F=2,mF=1l, using a
magnetic field of 1 mT to obtain the useful level splittings
fvse2d−vse1d<100 MHz, vse1d−vsgd<1 GHzg, and ex-
ploiting the auxiliary levelu2P1/2,F=2,mF=2l to realize Ra-
man coupling schemes.

Consider now the action of two effectivesi.e., imple-
mented via Raman schemesd lasers, one tuned to thepth red
sideband of the atomic transitionugl→ ue1l, and the other to
the qth red sideband of the atomic transitionue1l→ ue2l. The
relevant interaction-picture Hamiltonian in the rotating wave
approximation is given byf15,21g

ĤL = Vffpsâ†â,h1dâpue1lkgu + H.c.g + Lffqsâ†â,h2dâque2lke1u

+ H.c.g, s28d

where integersp and q are related to the specific choice of
the laser frequenciesssidebandsd, the coupling constantsV
and L are proportional to the laser intensities, the relevant
Lamb-Dicke parametersh j s j =1,2d express the ratio be-
tween the vibrational ground state oscillation amplitudes and
the laser wavelengths, andâ is the harmonic-oscillator anni-
hilation operatorshere the notation is the same as befored.
The functionsfp and fq express nonlinear vibrational energy
dependence of vibronic couplingsf15g,

fssâ†â,hd ; e−h2/2o
l=0

`
sihd2l

l!sl + sd!
â†lâl

= e−h2/2o
n=0

`
n!

sn + sd!
Ln

ssdsh2dunlknu, s29d

whereLn
ssdsh2d are Laguerre polynomials and are such that

for very small Lamb-Dicke parametersfthe so-called Lamb-
Dicke limit sLDL dg, they almost approach unity, while for
larger values ofh they exhibit a strong nonlinearity in the
variable â†â, and possess some zeros. In the LDL, the con-

dition uLu@ uVu yields the inequalityuLnu@ uVnu, making pos-
sible the realization of the high-pass filter.

In conclusion, in this paper we have addressed the general
problem of how to project a quantum system in a prefixed
subspace, or, in other words, we have described a way to
realize the action of a projection operator. We have utilized
the distillation approach based upon repeated measurements
on a part of a bipartite systemf3g. Moreover we have taken
account of the possibility of exploiting the generalized quan-
tum Zeno effect, or quantum Zeno dynamics, as a control
mechanism of the two-subsystem-interaction determining the
target subspace. Our main result is therefore that the pres-
ence of such a control mechanism transforms the original
distillation process into adriven distillation. This allows the
realization of what we have called high-, low-, and bandpass
bosonic filters, that is, the realization of projection operators
on subspaces whose states possess excitation numbers higher
or lower than a quantity, or in a range, respectively.

Concerning the efficiency of the process, we stress the
fact that the distillation here reported through all the appli-
cations consideredssatisfying the conditiong=1d practically
realizesssimulatesd a measurement on the slave projecting
the slave system onto a subspace with a probability, given by
Eq. s7d, which is just the probability of finding the target
slave subspace in the initial slave state. Therefore, the effi-
ciency of the procedure is not improved since it is intrinsi-
cally related to the initial condition of the system. Our analy-
sis has indeed the merit of providing a more transparent
understanding of the process, clarifying the relation with the
survival probabilities, and hence the possibility of governing
it.

We conclude by emphasizing that the method and the idea
presented in this paper are general and exploitable in differ-
ent physical contexts for both fundamental and technological
research.
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APPENDIX: EFFICIENCY

In this appendix we prove the limit expressed by Eq.s7d.
Assume that the system is prepared, for simplicity, in the
pure stateuc0l= uwluf0l, uwl being the initial slave state.
The probability of finding the master system inuf0l after

the unitary M -S interaction is `1
sMd= i kf0ue−iĤtuc0li2
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= i V̂stduwli2, wherei ·i2;uk·u ·lu2 denotes the relevant Hilbert
space norm. The collapsed state isuc1l=s1/Î`1d
3fV̂stduwlguf0l. After the next unitary interaction

and measurement one obtains̀ 2
sMd= i kf0ue−iĤtuc1li2

=s1/`1
sMdd i fV̂2stduflgi2, and uc2l=s1Î`1

sMd`2
sMdd

3fV̂2stduwlguf0l.
In general the probabilitỳ n

sMd is given by

`n
sMd =

1

`0
sMd`1

sMd
¯`n−1

sMd i V̂nstduwli2 sA1d

and the stateucnl reads as

ucnl =
1

Î`0
sMd`1

sMd
¯`n

sMd
V̂nuwluf0l. sA2d

From Eq.sA1d it follows that

p
k=1

N

`k
sMd = `N

sMdp
k=1

N−1

`k
sMd = i V̂Nstduwli2. sA3d

Considering large enoughN, corresponding to whichV̂Nstd
→gNR̂NP̂dist fcompare with Eq.s5dg, we easily obtain

p
k=1

N

`k
sMd < gN i P̂distuwli2 sA4d

which in the caseg=1 expresses the same content as that of
Eq. s7d.

The result is of course the same as Eq.s7d even if we start
with a nonpure state.
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