IJAE
Italian Journal of Anatomy and Embryology

Official Organ of the Italian Society of Anatomy and Histology

72° Congresso
della Società Italiana di Anatomia e Istologia
72th Meeting
of the Italian Society of Anatomy and Histology

Parma 20-22 September 2018
Effects of Pleurotus eryngii var. eryngii in “in vitro” and “in vivo” cancerogenetic models

Francesca Rappa1, Rosario Barone1, Maria Letizia Gargano1, Celeste Caruso Bavisotto1, Felicia Farina1, Filippo Macaluso2, Claudia Campanella1, Daniela D’Amico1, Eleonora Trovato1, Valentina Di Felice1, Francesco Cappello1, Giuseppe Venturella1, Antonella Marino Gammazza1
1Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Università degli Studi di Palermo, Palermo, Italia
2SMART Engineering Solutions & Technologies (SMAREST) research center, eCampus University, Novedrate (CO), Italia

Heat shock proteins (Hsps) are highly expressed in a variety of cancer types contributing to tumor cell propagation and protection against apoptosis [1]. The current anti-cancer therapy is not always target specific and often is associated with complications for patients. Therefore, new effective, specific and less toxic therapeutic approaches are needed. Medicinal mushrooms have emerged as a wonderful source of nutraceuticals, anti-oxidants, antitumor, anti-inflammatory, cardiovascular, anti-microbial, and anti-diabetic. The ongoing research projects aim to promote mushrooms as new generation “biotherapeutics” [2]. The aim of this study was to evaluate whether the cold-water extracts of Pleurotus eryngii var. eryngii can affect Hsp90, 70, 60 and 27 levels in an in vitro model of colon cancer (C26 cells). Cell viability was evaluated using MTT assay after treating the cells with different concentrations of extracts (0-1.9 μg/μl) in the culture medium for 24 and 48 hours. Hsp90, 70, 60 and 27 levels were measured using western blotting and immunofluorescence analysis. Moreover, we evaluated the anticancer effect of the P. eryngii var. eryngii extract in an animal model of coloectally-implanted C26 colon carcinoma, widely used as an experimental model of cancer cachexia. We prepared a mixture of lyophilized P. eryngii var. eryngii with the mice standard diet and the animals were daily fed with 4g of the mix until they died to draw a survival curve. We sampled the neomorphs grown after implantation on these mice and performed an immunohistochemistry for Hsp60. Our results showed that Hsp60 levels decreased after treatments and increased after treatments. Western blotting, analysis and immunofluorescence showed that Hsp60 protein levels were down-regulated at 24h of treatment but increased after 48h. On the contrary, Hsp70 and 27 protein levels did not change. In the in vivo model, P. eryngii var. eryngii in the diet significantly extended the median survival compared to untreated mice. The immunohistochemical experiments suggested that Pleurotus significantly affected the increase of Hsp60 protein levels. These preliminary results are promising for further studies to better understand the potential effects of P. eryngii var. eryngii on cancer progression especially regarding Hsp60 role.

References


Key words

Hsp60, Pleurotus eryngii, cancer.