The Joint International Symposium on EPR dosimetry and dating (EPR) and the International Conference on Biological Dosimetry (BioDose)

11 – 15 June 2018 | Munich | Germany
Neuherberg Campus of the Helmholtz Centre Munich

Abstracts

EPR BioDose 2018 Munich

Under the auspices of
EPR/alanine dosimetry for verification in Helical Tomotherapy Stereotactic Radiosurgery (HT SRS) treatments

Salvatore Panzeca¹, Giuseppina Iacoviello², Salvatore Gallo¹,³, Giorgio Collura¹,⁴, Teresa Cucchiara⁵, Maurizio Marrale¹,⁶,⁷
¹University of Palermo, Department of Physics and Chemistry, Palermo, Italy
²Civic Hospital of Palermo, Health Physics Unit, Palermo, Italy
³University of Milan, Department of Physics, Milan, Italy
⁴University of Palermo, Department of Biopathology and Medical Biotechnologies, Palermo, Italy
⁵Civic Hospital of Palermo, Radiation Therapy Unit, Palermo, Italy
⁶Istituto Nazionale di Fisica Nucleare, Section of Catania, Catania, Italy
⁷University of Palermo, ATeN Center, Palermo, Italy

Introduction
Intracranial stereotactic radiosurgery (SRS) is a technique to deliver an ablative radiation dose with an extremely sharp dose gradient to small brain tumors. In this study the accuracy of the dose delivered in SRS by a non conventional radiotherapy machine, the TomoTherapy Hi-Art System, was investigated using an "end-to-end" test using alanine pellets and gafchromic films.

Methods
Dose verifications were made using alanine dosimeters placed in an anthropomorphic head phantom (Alderson Rando Phantom) under different treatment conditions in case of both single and multiple brain tumors. 1.25mm slice kVCT scan of the phantom was used to generate SRS plans on the TomoTherapy Planning Station platform. Commercial alanine dosimeters (Synergy Health, Germany) were irradiated in various positions of the phantom. EPR measurements were carried out through Bruker spectrometer at room temperature.

Results
The dose values for 6 different possible clinical scenarios characterized by the presence of one, two or three tumor lesions were reconstructed by means of alanine dosimeters and gafchromic films. The dose values measured through both experimental techniques show a good agreement with the dose values calculated by the TomoTherapy Treatment Planning System, for both tumors and organs at risk (such as optical chiasma and brain stem).

Conclusion
Alanine absolute dose measurements showed to be useful for the dosimetric validation of HT SRS treatments.

References