Organizing Committee
Stefano Cascone • Dario Distefano • Melania Lombardo • Manuela Marino
Giuseppe Margani • Attilio Mondello • Gianluca Rodonò • Vincenzo Sapienza

Scientific Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giuseppe Alaimo</td>
<td>University of Palermo</td>
<td>Italy</td>
</tr>
<tr>
<td>Salvatore Caddemi</td>
<td>University of Catania</td>
<td>Italy</td>
</tr>
<tr>
<td>Carlo Caldera</td>
<td>Politecnico di Torino</td>
<td>Italy</td>
</tr>
<tr>
<td>Ivo Caliò</td>
<td>University of Catania</td>
<td>Italy</td>
</tr>
<tr>
<td>Santi Maria Cascone</td>
<td>University of Catania</td>
<td>Italy</td>
</tr>
<tr>
<td>Amir Causevic</td>
<td>University of Sarajevo</td>
<td>Bosnia-Herzegovina</td>
</tr>
<tr>
<td>Massimo Cuomo</td>
<td>University of Catania</td>
<td>Italy</td>
</tr>
<tr>
<td>Giuliano Dall'Ō</td>
<td>Politecnico di Milano</td>
<td>Italy</td>
</tr>
<tr>
<td>Pietromaria Davoli</td>
<td>University of Ferrara</td>
<td>Italy</td>
</tr>
<tr>
<td>Marco D'Orazio</td>
<td>Università Politecnica delle Marche</td>
<td>Italy</td>
</tr>
<tr>
<td>Valter Fabietti</td>
<td>University of Chieti-Pescara</td>
<td>Italy</td>
</tr>
<tr>
<td>Giovanni Fatta</td>
<td>University of Palermo</td>
<td>Italy</td>
</tr>
<tr>
<td>Corrado Fianchino</td>
<td>University of Catania</td>
<td>Italy</td>
</tr>
<tr>
<td>Alberto Fichera</td>
<td>University of Catania</td>
<td>Italy</td>
</tr>
<tr>
<td>Marco Filippi</td>
<td>Politecnico di Torino</td>
<td>Italy</td>
</tr>
<tr>
<td>Luca Finocchiaro</td>
<td>Norwegian University of Science and Technology</td>
<td>Norway</td>
</tr>
<tr>
<td>Emil-Sever Georgescu</td>
<td>Nîrd Urban-Incerc</td>
<td>Romania</td>
</tr>
<tr>
<td>Aurelio Ghersi</td>
<td>University of Catania</td>
<td>Italy</td>
</tr>
<tr>
<td>Riccardo Gulli</td>
<td>University of Bologna</td>
<td>Italy</td>
</tr>
<tr>
<td>Paolo La Greca</td>
<td>University of Catania</td>
<td>Italy</td>
</tr>
<tr>
<td>Rosario Lanzafame</td>
<td>University of Catania</td>
<td>Italy</td>
</tr>
<tr>
<td>Raffaella Lione</td>
<td>University of Messina</td>
<td>Italy</td>
</tr>
<tr>
<td>Paulo B. Lourenço</td>
<td>University of Minho</td>
<td>Portugal</td>
</tr>
<tr>
<td>Giuseppe Margani</td>
<td>University of Catania</td>
<td>Italy</td>
</tr>
<tr>
<td>Luigi Marletta</td>
<td>University of Catania</td>
<td>Italy</td>
</tr>
<tr>
<td>Emanuele Naboni</td>
<td>The Royal Danish Academy of Fine Arts</td>
<td>Denmark</td>
</tr>
<tr>
<td>Maurizio Nicolella</td>
<td>University of Naples Federico II</td>
<td>Italy</td>
</tr>
<tr>
<td>Masa Naguchi</td>
<td>University of Melbourne</td>
<td>Australia</td>
</tr>
<tr>
<td>Francisco Hipólito Ojalvo</td>
<td>University of Extremadura</td>
<td>Spain</td>
</tr>
<tr>
<td>Luis Palmero Iglesias</td>
<td>Universitat Politècnica de València</td>
<td>Spain</td>
</tr>
<tr>
<td>Emilio Pizzi</td>
<td>Politecnico di Milano</td>
<td>Italy</td>
</tr>
<tr>
<td>José Ignacio Sánchez Rivera</td>
<td>University of Valladolid</td>
<td>Spain</td>
</tr>
<tr>
<td>Antonello Sanna</td>
<td>University of Cagliari</td>
<td>Italy</td>
</tr>
<tr>
<td>Angelo Salemi</td>
<td>University of Catania</td>
<td>Italy</td>
</tr>
<tr>
<td>Adolfo Santini</td>
<td>Mediterranea University of Reggio Calabria</td>
<td>Italy</td>
</tr>
<tr>
<td>Vincenzo Sapienza</td>
<td>University of Catania</td>
<td>Italy</td>
</tr>
<tr>
<td>Enrico Spacone</td>
<td>University of Chieti-Pescara</td>
<td>Italy</td>
</tr>
<tr>
<td>Marius Voica</td>
<td>Ion Mincu University</td>
<td>Romania</td>
</tr>
</tbody>
</table>
Introduction to the Conference Proceedings
1-3 February 2018, University of Catania, Catania, Italy

One of the main challenges of the twenty-first century is to increase the sustainability level of our cities. This requirement is mostly associated to environmental issues, and a great effort has been made in the past years to build a low-carbon society. However, a town, to be considered sustainable, must, above all, be safe, particularly against natural hazards, which in Europe are mostly related to climate changes (e.g., hurricanes, floods, storms, and landslides) and seismic events (earthquakes). Unfortunately, sustainability is still not a prerogative of most European cities, especially those placed in seismic countries such as Italy, where at least 50% of the residential stock is earthquake-prone, while over 80% of the same stock is highly energy-consuming and carbon dioxide-emitting, thus contributing to trigger hazards related to climate changes. In this context, renovation actions, which combine both energy and seismic issues, are strongly needed. This assumption has to be promoted for the following main reasons: energy renovation alone will be worthless if an earthquake destroys the building; to prevent life losses and damages; to avoid several costs otherwise duplicated (costs for building-site setup and scaffolds, claddings, plasters and other finishings, etc.). Nevertheless, several barriers considerably limit the real possibility to extensively undertake combined retrofit actions, especially for multi-owner housing and high-rise buildings. These barriers are of different kinds: (i) technical (e.g., unfeasibility and/or ineffectiveness of conventional retrofit solutions, and need of regulatory simplification); (ii) financial (e.g., high renovation costs, “split-incentive”/“landlord–tenant dilemma”, and insufficient incentives and subsidies); (iii) organizational (e.g., temporary alternate accommodation for occupants, consensus to the retrofit expenditure by condominium ownerships, and excessive time to obtain building permits); and (iv) cultural/social (insufficient information and skills, and lack of adequate policy measures to promote renovation actions).

The Seismic and Energy Renovation for Sustainable Cities - SER4SC 2018 Conference, held in Catania, 1st to 3rd February, aims to overcome these barriers and to bridge the gap between sustainability and safety, with a link that may conserve both human and environmental resources.

This edition contains 56 papers arranged by theme into 6 thematic sessions. Each submission received reviews from at least two different Scientific Committee members and we would like to express our thanks to all the reviewers that provided detailed comments and feedback on all the submitted papers.

The selected papers were organized into sessions for the oral presentation, according to the key topics of the conference.

1st Session

Urban vulnerability and sustainable cities
Sustainability and safety of cities. Description of the vulnerability and/or energy performance scenario of any region or town. Tools and methods for assessing the urban vulnerability to natural hazards and for determining the scale of intervention to adequately reduce this vulnerability. Cost evaluation for the improvement of the urban resilience to natural hazards. Scenarios of possible financial incentives.

Resolution of organizational and practical problems
Strategies to overcome different organizational and practical problems, which considerably limit the real possibility to undertake retrofit actions, especially for multi-owner housing and high-rise buildings: consensus to the retrofit expenditure by condominium ownerships, excessive duration of renovation works and temporary alternate accommodation for occupants, split-incentive/landlord-
tenant dilemma, excessive time for getting construction permits, need of regulatory simplification, etc.

Economic and financial policies to promote renovation measures
Economic and financial tools, measures and policies to promote renovation activities.

Strategies for promoting the social sensitivity to prevention actions
Development of new policies to promote the awareness of the disastrous consequences of inadequate or insufficient prevention actions. Strategies to disseminate, among interested stakeholders, technical skills and competences on retrofitting measures, as well as to highlight the economic convenience of undertaking combined seismic and energy renovations. Training activities.

2nd Session
Construction techniques of historic and recent buildings
Description of construction techniques adopted for historic buildings (i.e. built before 1950) and recent buildings (i.e. built from the 1950s to the 1980s). Relationships between construction techniques and seismic or energy performance of buildings.

3rd Session
Seismic and energy regeneration strategies at district and urban scale
Urban regeneration strategies for the reduction of seismic vulnerability and/or energy dependence. Integrated land use and transport planning to reduce energy consumption due to private means of transportation.

4th Session
Design, monitoring and management tools
Novel tools for design, monitoring and management of existing buildings (e.g. BIM, parametric design, form finding, sensor grids, building management systems, etc.), with particular reference to renovation and post-renovation activities.

Retrofit optimization through prefabricated systems
Development of prefabricated systems to accelerate seismic and/or energy renovation activities, in order to reduce costs and inconvenience to the occupants.

5th Session
Technical solutions, materials and methods for seismic and energy renovation
Technical solutions, materials and methods for the seismic and/or energy renovation of historic and/or recent buildings.

6th Session
Decision support tools for the selection of the optimal retrofitting scenario
Development of user-friendly decision support tools to select the best seismic and/or energy renovation scenario, in terms of effectiveness, efficiency, costs, available incentives and subsidies, safety, inconvenience to the occupants, etc.10. Resolution of organizational and practical problems.

Diagnostic techniques and numerical models to assess seismic vulnerability and energy performance
Development of novel diagnostic techniques and numerical models to determine the seismic vulnerability and/or the energy performance of historic and/or recent buildings.
Despite the different disciplines and viewpoints represented at the conference, all participants agreed that the challenge of combining energy renovation actions and seismic upgrades are urgent and represents today a prevention action that is becoming more and more necessary to increase the sustainability level of our towns. Seismic and energy renovation of buildings will allow reaching very relevant benefits, at environmental, social and economic levels.

Consequently, wide engagement actions, at both local and European level, are fundamental to raise awareness of the social, environmental and cultural relevance of prevention actions, and to achieve consensus and behavioural change towards decisional strategies for both energy efficiency and seismic safety.

Prevention is essentially a matter of mindset and culture. Since European countries have a great tradition and culture, the basic premises for developing a prevention attitude are all there.

In this context, schools, universities and research institutes play a crucial role, stimulating institutions and political forces to strongly promote the upgrade of the building stock.

This virtuous circle is possible, as well shown by the movement for the restoration of historic cities that has originated in Europe and afterwards has reached brilliant results of urban rebirth, which are clearly evident in Italy as well as in many other countries.

This conference has engaged expertise and experiences of scientists, scholars, professionals and decision-makers from different countries, in order to find new effective, affordable and holistic solutions, which may positively contribute to enhance the sustainability level of our towns. In other words, this conference has aimed to become a hub, where people can discuss and start developing new robust renovation strategies for sustainable cities.

Acknowledgements:

We would like to thank our sponsors for their invaluable help for the success of the conference. We especially thank the Department of Civil Engineering and Architecture of the University of Catania (DICAR), the Order of the Engineer of Catania, the Foundation of the Engineer of Catania, the National Association of Building Constructors of Catania (ANCE Catania) for their attention to the issue of sustainable urban renovation, and their action of spreading the culture of risk mitigation.

Giuseppe Margani
Vincenzo Sapienza
Gianluca Rodonò
Contents

Introduction

1st Session

14 TOPIC: Urban vulnerability and sustainable cities

15 ASSESSING AND MANAGING SEISMIC RISK IN OLD URBAN CENTRES
José L.P. Aguado, Tiago Miguel Ferreira and Paulo B. Lourenço

24 ASSESSING URBAN AND BUILDING VULNERABILITIES CONNECTED TO THE EMERGENCY MANAGEMENT: AN INTEGRATED METHODOLOGY
Martina Zorzoli, Giovanni Metelli, Michèle Pezzagno, Giovanni Plizzari and Roberto Busi

35 COLLECTIVE SOCIALIST HOUSING IN ROMANIA – COMPLEX SOLUTIONS FOR SUSTAINABLE UPGRADE, BETWEEN/BESIDES ENERGY IMPROVEMENT AND STRUCTURAL SAFETY
Zina Macri

44 SUSTAINABLE ENERGY ACTION PLANS: MONITORING THE IMPLEMENTATION OF STRATEGIES FOR SUSTAINABILITY FOR MUNICIPALITIES IN NORTHERN ITALY
Giuliano Dall'O', Luca Sarto, Alberto Pizzi and Sandro Cristina Reggiani

57 A SIMPLIFIED MODEL BASED ON SELF-ORGANIZED CRITICALITY FRAMEWORK FOR THE SEISMIC ASSESSMENT OF URBAN AREAS
Annalisa Greco, Alessandro Pluchino, Luca Barbarossa, Ivo Caliò, Francesco Martinico and Andrea Rapisarda

69 A SIMPLIFIED METHODOLOGY TO ASSESS SEISMIC RISK AT DISTRICT AND BUILDING LEVEL
Ivo Caliò, Rosa Caponetto, Chiara Ciatto and Daniele La Rosa

82 HOSPITAL SAFETY IN SPATIAL AND URBAN PLANNING AND DESIGN–SEISMIC ZONE IN THE KOLUBARA REGION IN SERBIA
Borjan Brankov, Marina Nenković-Riznić, Mila Pucar and Snežana Petrović

92 TOPIC: Resolution of organizational and practical problems

Economic and financial policies to promote renovation measures
Strategies for promoting the social sensitivity to prevention actions

93 SEISMIC AND ENERGY RENOVATION MEASURES FOR SUSTAINABLE CITIES: A CRITICAL ANALYSIS OF THE ITALIAN SCENARIO
Paolo La Greca and Giuseppe Margani

105 A EUROPEAN PROJECT FOR SAFER AND ENERGY EFFICIENT BUILDINGS: PRO-GET-ONE (PROACTIVE SYNERGY OF INTEGRATED EFFICIENT TECHNOLOGIES ON BUILDINGS' ENVELOPES)
Ammarta Ferrante, Giovanni Mochi, Giorgia Predari, Lorenzo Badini, Anastasia Fotopoulou, Riccardo Gulli and Giovanni Semprini

117 RESILIENCE, PREPAREDNESS AND SCENARIO EXERCISES: POTENTIALITIES AND WEAKNESSES OF DRR EDUCATION STRATEGIES
Mara Beradusi

2nd Session

128 TOPIC: Construction techniques of historic and recent buildings

129 PROJECTS AND CONSTRUCTION TECHNIQUES IN POST-SEISMIC RECONSTRUCTIONS AT THE BEGINNING OF THE TWENTIETH CENTURY
Cesira Paolini and Marina Pugnaletto
THE BUILDING INFORMATION MODELING FOR THE RETROFITTING OF EXISTING BUILDINGS. A CASE STUDY IN THE UNIVERSITY OF CAGLIARI
Giuseppe Desogus, Giuseppe Martino Di Giuda, Giuseppina Monni, Emanuela Quaquero, Antonello Sanna, Lavinia Chiara Tagliabue and Valentina Villa

ROLE OF SKY GARDENS IN IMPROVING ENERGY PERFORMANCE OF TALL BUILDINGS
Humera Mughal and Rossella Corrao

THE RESILIENCE OF TRADITIONAL ARCHITECTURE: THE ANTI-SEISMIC CONSTRUCTIVE SYSTEM OF LEFKADA ISLAND
Emilia Garda, Marika Mangosio and Angeliki Vlachou

OPTIMIZING ENVIRONMENTAL PERFORMANCE OF HISTORICAL BUILDINGS. THE CASE OF HOU JI VILLAGE
Luca Finocchiaro and Fu Xiuzhang

SEISMIC AND ENERGY REFURBISHMENT OF RESIDENTIAL BUILT HERITAGE IN MEDITERRANEAN CLIMATE
Angelo Salemi, Alessandro Lo Faro, Attilio Mondello, Angela Moschella and Giulia Sanfilippo

THERMAL AND ECONOMIC GREEN ROOF PERFORMANCE FOR BUILDING RETROFIT
Stefano Cascone, Federico Catania, Antonio Gagliano and Gaetano Sciuto

SEISMIC AND ENERGY RENOVATION, COMPARISON BETWEEN THE DESIGN APPROACH IN ITALY AND IN ROMANIA
Emil-Sever Georgescu, Mihaela Stela Georgescu, Zina Macri, Edoardo Michele Marino, Giuseppe Margani, Vasile Meita, Radu Pana, Horia Petran, Per Paolo Rossi, Vincenzo Sapienza and Marius Voica

PRE-MODERN ANTISEISMIC PRESIDIA IN L’AQUILA. WOODEN ELEMENTS AND CONSTRUCTION TECHNIQUES IN HISTORIC BUILDING
Alessandra Bellicoso and Alessandra Tosone

THE COLLAPSE OF THE TOWER OF VALLADOLID CATHEDRAL AND ITS CONTROVERSIAL RELATIONSHIP WITH THE 1755 LISBON EARTHQUAKE
Angelo Salemi, José Ignacio Sánchez Rivera, Attilio Mondello and Juan Luis Sáiz Virumbrales

3rd Session

TOPIC: Seismic and energy regeneration strategies at district and urban scale

THE COMPLEX, MULTICRITERIAL RENOVATION OF HOUSING DISTRICTS. INTEGRATED CONCEPT OF PROJECTS FOR HOUSES AND CITY. RESULTS OF “SIR RESEARCH PROJECT” IN ROMANIA
Codruta Iana, Mihaela Stela Georgescu, Cristina Victoria Ochinciu, Carmen Dumitrescu, Cerasella Craciun, Ana Opris

PROCEDURES FOR A QUALITATIVE ASSESSMENT OF THE SEISMIC VULNERABILITY OF HISTORICAL CENTERS. THE CASE STUDY OF ACIREALE (CT)
Chiara Circo and Anna Scudero

A GREEN INFRASTRUCTURE STRATEGY FOR REDUCING SEISMIC VULNERABILITY AND ENHANCING ENERGY EFFICIENCY IN URBAN CONTEXTS
Riccardo Privitera and Daniele La Rosa

RECOVERING THE ANCIENT HAMLET BY AN INTEGRATED ENERGY AND SEISMIC PLAN ACTION: THE CASE OF BAIA AND LATINA
Marina Fumo, Antonella Violano, Antonio Formisano and Giulia Sibilio

SEISMIC ASSESSMENT OF TYPICAL MASONRY HISTORICAL RESIDENTIAL BUILDINGS IN CATANIA
Salvatore Caddemi, Ivo Calìò, Giuseppe Di Gregorio, Andrea Farnà, Annalisa Greco, Grazia Lombardo

CORRECTIVE REMEDIATION PROPOSALS FOR THE INA CASA DISTRICTS IN MESSINA (1949-1963)
Ornella Fiandaca, Raffaella Lione and Fabio Minutoli

EXPOSURE AND RISK REDUCTION STRATEGY: THE ROLE OF FUNCTIONAL CHANGE
Roberto De Lotto, Veronica Gazzola and Elisabetta M. Venco
4th Session

331 **TOPIC: Design, monitoring and management tools**

332 SUSTAINABLE LOW CO2 EMISSION RETROFIT STRATEGIES OF PUBLIC BUILDING IN MEDITERRANEAN AREA: A CASE STUDY
Manfredi Cannata, Maurizio Detommaso, Gianpiero Evola, Antonio Gagliano, Luigi Marletta, Francesco Nocera

341 CRITICAL ISSUES ON INTEGRATED SOLUTIONS FOR SEISMIC AND ENERGY RETROFITTING OF HIGH-RISE BUILDINGS IN REINFORCED CONCRETE WALLS AND PANELS: THE M4 IN TOR BELLA MONACA, ROME
Edoardo Currà, Lorenzo Diana, Emanuele Habib and Salvatore Perno

353 MULTICRITERIA ANALYSIS FOR CHOOSING MAINTENANCE STRATEGIES
Maurizio Nicolella, Claudio Scognamillo and Alessio Pino

365 OPTIMIZATION OF OUTDOOR COMFORT CONDITIONS WITH KINETIC ADAPTIVE SHELTER: THE CASE STUDY OF PIAZZA ARMERINA ARCHAEOLOGICAL SITE
Gianluca Rodonò, Emanuele Naboni, Vincenzo Sapienza, Federico Cucchi and Giacomo Macrelli

377 ANALYSIS OF FAILURE IN URBAN ENERGY DISTRIBUTION NETWORKS
Alberto Fichera, Mattia Frasca and Rosaria Volpe

389 EARTHQUAKE EARLY WARNING AND STRUCTURAL HEALTH MONITORING IN THE HISTORICAL CITY CENTRE OF CATANIA (ITALY)
Salvatore Scudero, Giovanni Vitale, Luca Greco, Domenico Patanè and Antonino D'Alessandro

399 **TOPIC: Retrofit optimization through prefabricated systems**

400 A SMART PREFABRICATION SYSTEM FOR THE INDUSTRIALIZED CONSTRUCTION OF RESILIENT ENERGY-SAVING BUILDINGS
Luis Palmero and Graziella Bernardo

410 THE EIGHTEENTH-CENTURY ARCHITECTURES: ANTISEISMIC FRONT SOLUTIONS
Corrado Fianchino and Eleonora Vinci

420 PREFABRICATED MODULES FOR HEALTH EMERGENCY
Daniela Besana

5th Session

432 **TOPIC: Technical solutions, materials and methods for seismic and energy renovation**

433 TABIÀ RENOVATION FOR ALPINE REGION IN ITALY. TRADITIONAL SOLUTION AND INNOVATIVE TECHNOLOGIES INTEGRATION
Barbara Ghetti, Eva Coisson and Fabio Scola

444 PRE-STRESSED TRANSLUCENT PANELS MADE OF INNOVATIVE 3D GLASS COMPONENTS DSC-INTEGRATED, FOR SAFETY AND ACTIVE BUILDING FAÇADES
Rossella Corrao

453 IMPROVING THE ITALIAN BUILDING STOCK: ENERGY RETROFIT OF A SINGLE-STOREY PUBLIC BUILDING IN SOUTHERN ITALY
Gianpiero Evola, Luigi Marletta, Paolo Girlando and Serena Tamburella

465 “SEISMIC AND ENERGY RETROFITTING” OF THE HISTORICAL CENTRES’ BUILDINGS. A CASE STUDY IN ENNA
Tiziana Basirico and Daniele Enea

477 STRUCTURE - SPACE – ENVELOPE. BUILDING SOLUTIONS TO MITIGATE URBAN HEAT ISLAND (UHI EFFECTS
Cristina Victoria Ochinciuc and Mihaela Stela Georgescu

485 RENOVATION OF SCHOOL BUILDINGS: ENERGY RETROFIT AND SEISMIC UPGRADE, IN A SCHOOL BUILDING IN MOLTA DI LIVENZA
Tiziano Dalla Mora, Maria Pinamonti, Lorenzo Teso, Giosuè Boscato, Fabio Peron and Piercarlo Romagnoni
SEISMIC REHABILITATION OF BUILDING STRUCTURES USING ENERGY DISSIPATION DEVICES
Gabriel Danila and Adrian Iordachescu

MOULD GROWTH RISK EVALUATION OF INTERNAL INSULATION SOLUTIONS IN A HISTORIC BUILDING UNDER TEMPERATE CLIMATES
Andrea Gianangeli, Elisa Di Giuseppe and Marco D'Orazio

SEISMIC AND ENERGY RENOVATION: AN INNOVATIVE APPROACH TO HISTORIC PRESERVATION
Ivo Caliò, Santi Cascone, Dario Distefano, Antonio Gagliano, Giuseppe Perrica, Gianluca Rodonò and Vincenzo Sapienza

TECHNICAL SOLUTIONS FOR SEISMIC IMPROVEMENT OF THE MASONRY BUILDINGS: STEEL GRIDS WITH PASSIVE DAMPERS AND RC PANELS WITH FRC DOWELS
Venera Simonovic, Merima Sahinagic-Isovic and Goran Simonovic

PARTIAL INTERVENTIONS ON THE FACADES IN THE PROCESS OF ENERGY RENOVATION OF RESIDENTIAL BUILDINGS - EXAMPLES FROM THE SERBIAN CONSTRUCTION PRACTICE
Aleksandar Rajčić, Ljiljana Dukanović and Ana Rađivojević

SCHOOL BUILDINGS RECOVERY
Francesca Castagneto

6th Session

TOPIC: Decision support tools for the selection of the optimal retrofitting scenario
Diagnostic techniques and numerical models to assess seismic vulnerability and energy performance
Aliakbar Kamari, Rossella Corrao and Poul Henning Kirkegaard

TOWARDS THE DEVELOPMENT OF A DECISION SUPPORT SYSTEM (DSS FOR BUILDING RENOVATION: DOMAIN MAPPING MATRIX (DMM) FOR SUSTAINABILITY RENOVATION CRITERIA AND RENOVATION APPROACHES
Aliakbar Kamari, Rossella Corrao and Poul Henning Kirkegaard

ENERGY IN TIME. PARAMETERS OF ENERGETIC ACTUALIZATION OF MATERIALS/COMPONENTS
Caterina Claudia Musarella

URBAN RESILIENCE AND DISASTER PREVENTIVE PLANNING. MANAGE THE PREPARATION TO OPTIMIZE THE RESPONSE IN HISTORICAL TOWNS
Alessandro D'Amico and Edoardo Currà

OPTIMAL MEASURES FOR ENERGY RETROFIT ON THE UNIVERSITY BUILDING “EX COTONIFICIO OLCESE” IN VENICE
Davide Balboni, Tiziano Dalla Mora, Alessandro Righi, Fabio Peron and Piercarlo Romagnoni

ITALIAN SCHOOL BUILDING TOWARD NZEB REQUIREMENTS. THE CASE OF “C. ROSSELLI” HIGH SCHOOL IN CASTELFRANCO VENETO
Giusluca Masolo, Tiziano Dalla Mora, Alessandro Righi, Fabio Peron and Piercarlo Romagnoni

MULTI-CRITERIA METHODOLOGY TO SUPPORT DECISION MAKING CONCERNING OPAQUE ENVELOPE COMPONENTS
Alessandra De Angelis, Rosa Francesca De Masi, Maria Rosaria Pecce, Silvia Ruggiero and Giuseppe Peter Vanoli

RADIANT PANELS FOR OUTDOOR HEATING: THEORETICAL AND EXPERIMENTAL ANALYSIS FOR THERMAL COMFORT ASSESSMENT
Giorgio Baldinelli, Antonella Rotili and Francesco Bianchi

TECTONIC SUSTAINABLE BUILDING DESIGN FOR THE DEVELOPMENT OF RENOVATION SCENARIOS – ANALYSIS OF TEN EUROPEAN RENOVATION RESEARCH PROJECTS
Aliakbar Kamari, Rossella Corrao, Steffen Petersen and Poul Henning Kirkegaard
2nd Session

Construction techniques of historic and recent buildings
Role of Sky-gardens in Improving Energy Performance of Tall Buildings

M. Humera*, R. Corrao

Department of Architecture, University of Palermo, Piazza Marina, 61, 90133 Palermo PA, Italy

Abstract

Natural ventilation has been used as a passive strategy for many decades but only now its importance in tall buildings for addressing the issues of high energy usage and reducing carbon footprints is emerging. Sky-gardens can play an important role in successful implementation of natural ventilation through amplification of natural wind speeds. This study presents a state-of-the-art review on optimization of tall buildings energy performance through incorporation of sky-gardens. Pros and cons of use of natural ventilation for multi-story buildings are highlighted. Details of involved technical difficulties and barriers in the construction and operation process of sky-gardens are also given. Relevant case studies of existing tall buildings around the world using this strategy are analysed to critically evaluate its effect. The results of this study will be useful for incorporation of sky-gardens and improving energy performance in similar buildings. In the end recommendations for future research needed with respect to sky-gardens in tall buildings are also provided.

© 2018 The Authors. Published by EdicomEdizioni.

Selection and peer-review under responsibility of SER4SC2018 Scientific Committee.

Keywords: Construction Techniques; Tall Buildings; Energy Performance; Sky-Garden; Natural Ventilation

1. Introduction

“The higher we live from the ground level, the more disconnected we feel from the natural world and even from each other within a community” [1]. Built environment is known to be the major cause of carbon footprint and local and global climate change. Buildings are responsible for 30-40% energy consumption in the world, while 40%-45% of energy consumption and 36% of CO2 emissions in the Europe [2] [3]. On the other hand, building and construction sector provides employment up to 5%-10% at a national level and so it the reason for 5%-15% of a country's GDP [2]. This has become the main reason for the fast urbanization of cities, which together with other reasons such as increasing land prices in city centres, green land preservation movements, global competition, emerging technologies etc. has led to increased construction of both the height and number of n of tall buildings. According to the database of US Department of Energy that covers tall buildings constructed after 1980s in 16 different US cities; the energy use by HVAC system consumes 33% of total building operational energy [4]. As our need to make taller buildings increase so does the issue to making building sector more energy efficient.

* H. Mughal. Tel.: +39-380-122-0951
E-mail address: humera.mughal@unipa.it
1.1. Historical evolution of ventilation systems and energy consumption in tall buildings

P. Oldfield categorized the tall buildings into five generations according to their energy consumption trend. According to him first generation buildings are the tall buildings built from 1885 to 1916. Energy consumption in the buildings of this category were predominantly due the heating spaces and vertical transport. In these buildings the energy saving strategies were thermal mass and compact and bulky shape so that the winter heating can be reduced. buildings of this generation were naturally ventilated through light openings. their renovation resulted into a fully airconditioned system [4] [5].

Second generation buildings are the tall buildings built from 1916 to 1951. In these buildings the energy saving strategies were thermal mass and thermal mass within the envelope, however winter heat loss in these buildings was more due to their slender shapes (Small volume vs large surface area). On the other hand, this slender shape was useful for day light penetration in these structures. Like first generation the buildings of this generation were also naturally ventilated through light openings and later renovated as a fully airconditioned system [4] [5].

Third generation buildings are the tall buildings built from 1951 to 1973. The main feature of these buildings was the use of heavy curtain walls. These buildings consisted of 50%- 75% glazed surface giving rise to the U-values of the surface and hence the extreme heat loss, while in the past two generations this range was 20%-40%. Tall building of this generation was totally dependent on mechanical air conditioning and artificial lighting hence giving rise to the higher amount of energy consumption [4] [5].

Fourth generation buildings are the tall buildings built from 1973 to the present day. Key features of these buildings are incorporation of double glazing and increased technological details in curtain walls, compact shape and mechanical air conditioning. This is the reason that even in the presence of a great glazed surface area, the U-value remains less. Like third generation these buildings were also totally mechanically ventilated [4] [5].

Fifth generation buildings are the tall buildings built from 1997 to the present day. In these buildings the energy saving strategies were onsite energy generation, use of natural ventilation, double or triple glazed high-performance curtain walls, solar transmittance through transparent façade and slender shapes of the buildings. Fifth generation is more environmental sensitive [4] [5].

1.2. Natural ventilation in tall buildings

As the building size increases air flow patterns become more complex due to interaction with different indoor and outdoor environmental factors, so to achieve the desired thermal comfort and indoor air quality standards the ventilation design of multi-storey building is often moved from natural ventilation towards HVAC systems. HVAC systems are not only high consumer of energy but require careful design, installation, operation and maintenance [6]. Benefits of natural ventilation in high-rise and low-rise buildings are equally effective, still there are only few buildings in which ventilation system is based on 100% natural ventilation. Usually in the fifth generation of tall buildings, hybrid system is being used in order to keep avoiding the risks which can be caused by pure naturally ventilated buildings. However, in that case the major benefits of natural ventilation cannot be achieved. The physical mechanism of natural ventilation is same in low-rise buildings and high-rise buildings. The driving force is pressure difference between the inlet and outlet of the airflow. This pressure difference can be caused by wind or buoyancy [7].

D.W Ethridge divided the natural ventilation strategies in tall buildings into two categories:

i) isolated spaces
ii) connected space.

In both strategies of natural ventilation, the flow pattern always remains the same (i.e. fresh air enters occupied space). In first case (i.e. isolated space natural ventilation) the spaces to be ventilated are considered isolated in terms of airflow. Theoretically, building is considered to be divided in different zones and each zone has an independent system for natural ventilation. While zonal design of natural ventilation is very difficult to achieve such system due to the necessity of vertical shafts and lifts etc. In the later case (i.e. connected space natural ventilation) the whole building acts as a unit. This is more practical approach in case of tall buildings utilizing stack effect. However, there arise another problem as in case of connected system as the internal opening sizes should be large in number and size (vice versa to the isolated system) and it leaves the natural ventilation design results less predictable [7].

2. Introducing sky-gardens in segmentation in tall buildings

There are many concerns regarding the issue of high pressure due to wind and stack in tall buildings above the canopy layer, still there are no limitation for height of the building to the use of natural ventilation. However, the total height of the building can be divided into several parts which are isolated from one another by a space [8] called segmentation. This case is less complicated than a connected tall building i.e. without segmentation but is still challenging than a low-rise building due to wind direction that give rise to aerodynamic effect around the outlet on each segment. These open spaces can be designed as “sky-garden” or “sky court” [7].

2.1. Concept of sky courts and sky-garden in tall buildings

As described before, the fifth generation of tall buildings is more sensitive regarding environmental issues and hence demands the transformation of architectural design strategies from active to passive systems. In this regard natural ventilation and daylight has got its importance since these two natural resources can significantly reduce the energy consumption in tall buildings. Today academics and professionals are focusing more in adopting passive design strategies in order to improve indoor air quality, reduce the energy consumption and carbon footprint. In past generations of tall buildings open spaces have been used in the form of atrium and arcades to have daylight and natural ventilation, however there have always been the risk of potential heat gain due the direct exposure to solar radiations. Incorporation of greenery in such spaces can reduce these risks by reducing the UHI effect and heat absorption in building fabric. Furthermore, the green surfaces help in cooling the environment between 3.6-11.3 degrees centigrade, while wall surfaces can be cooled by 12 degrees centigrade [9]. This is the reason that in today’s architecture of Tall buildings sky-gardens have taken significant importance. According to Pomeroy (2009) sky-garden can be defined as an open or enclosed green space that can be incorporated at any level in tall buildings in order to provide adequate light and ventilation as well as recreational space to the inhabitants of the adjacent floors. In literature sky-garden is often termed as sky courts or rooftop gardens. sky-gardens and usually tends to vertically balance “open space to built-up ratio”. Trees in these sky-gardens and sky courts acts as shading devices as well as wind breakers and that’s why help in reducing the load on structural frame. They also play the role of a buffer zone for urban noise, improve air quality by cleaning it i.e. reduces pollutants, dust particles and carbon dioxide in the air. Other ecological benefits of incorporation of sky-gardens in tall buildings include reduction of rainwater discharge and incidence of flash floods during extreme rainy weather [10]. Furthermore, roof top greenery helps in reducing local temperature from 0.6°C to 1.3°C, relative humidity, solar gain and cooling loads. It has also been proved from analysis that sky-gardens improve
the permeability of building to wind and helps in increasing the wind speed in order to support natural ventilation process of buildings. However, there is very great research gap regarding this aspect [11]. Jie et al. (2004) simulated the air field around the high-rise buildings having sky-garden. They analyzed the influence of air flow direction, distance between buildings, building height and sky-garden volume on natural ventilation of buildings. According to them the building sky-garden in upstream buildings helps in enforcing the natural ventilation of downstream buildings [12]. However, this work has been published in Chinese language only that makes a barrier for the other researcher to get data. Wood et. Al (2013) described the efficiency of natural ventilation accelerated by sky-garden in high rise buildings by analyzing various case studies [13]. Table 1 shows different tall buildings with sky-gardens utilizing different ventilation techniques (such as intake of air, air extraction, a combination of both or to induces ventilation in inward facing spaces.

Table 1 Example of tall buildings using natural ventilation and sky-gardens

<table>
<thead>
<tr>
<th>Building name, Place, Year</th>
<th>Use of Sky-garden</th>
<th>Aspect of natural ventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commerzbank Frankfurt, Germany, 1997</td>
<td>Central atrium coupled with radial arrangement of offices</td>
<td>Induced ventilation in inward facing spaces</td>
</tr>
<tr>
<td>Manitoba Hydro Place, Winnipeg, Canada, 2008</td>
<td>South facing winter gardens (2-storey and 6-storey stacked sky-gardens)</td>
<td>Air intake</td>
</tr>
<tr>
<td>Post Tower, Bonn, Germany, 2002</td>
<td>North facing Atria</td>
<td>Exhaust</td>
</tr>
<tr>
<td>30 St Marry Axe, London, 2004</td>
<td>Series of four stacked sky-gardens on the top of each other</td>
<td>Combination of air intake and air exhaust (depending on the atria located on leeward or windward direction)</td>
</tr>
<tr>
<td>Torre Cube, Guadalajara, Mexico, 2005</td>
<td>2-storey and 6-storey stepped, spiraling sky-gardens</td>
<td>Exhaust</td>
</tr>
<tr>
<td></td>
<td>Stepped 4-storey sky-garden</td>
<td>Air intake</td>
</tr>
</tbody>
</table>

2.2. Impact of sky courts and sky-garden on energy performance of tall buildings

According to Tian et al. (2011) in most recent tall building projects; incorporation of horizontal green spaces is usually being done at three levels [14]:

- **rooftop Level**: Which is different from green roof in terms of accessibility, exposure to the sun and wind. While rooftop garden and sky bridges are not directly connected to the building envelope so not providing same thermal benefits as a green roof or green wall.
- **macro-scale Level**: Sky-gardens provide the more benefits at macro scale i.e. reduction in urban heat island effect, mitigation of air pollutants and storm water management etc. If these systems are incorporated in the building at a larger scale, they can reduce the energy consumption by cooling the ambient air and reducing the use of mechanical air-conditioning for cooling.
- **intermediate Level**: Another type of horizontal green space at intermediate level is podium garden that brings the same benefits for reduction of energy consumption as green roof. However, lack of awareness social and economic factors, less budget and incentive both from government and private
sectors and technical risks and issues lead to the less propagation of incorporation sky-gardens in the tall building systems [14].

2.3. Technical difficulties and barriers in the construction and operation process of sky-gardens

The irrigation systems of sky-gardens put a limitation on its incorporation into the tall buildings, that is the reason it is more popular in tropical and subtropical climatic zones where frequency of rain showers helps this system to go on naturally. Furthermore, vegetation needs a specific condition of climate round the year for growth that is another limitation of this system. That’s why the cities like California and Florida are feasible places for the sky-gardens and farming in sky-gardens [15]. The incorporation of sky courts in tall buildings is constrained in terms of future adaptability due to the tall building’s footprint and the authorities that regulate the functions and use of this space which makes this place private or semi-public while having the characteristic of public place [16]. Other difficulties include the high cost and maintenance e.g. In normal practices consultants plan sky-gardens and sky courts for building aesthetics and performance purposes however they do not provide proper maintenance plan for this system. Ultimately the responsibility is taken by the developers or inhabitants. Urban rooftop farming, on the other hand itself is a big issue since it leads to labour cost together with the other challenges i.e. Insufficient knowledge of landscape, Corps are usually for the occupants and are insufficient for neighbourhood leading towards the reliance on the industrial farms, growth of some bacteria can cause spreading disease to urban consumer due to the quicker distribution, water proofing and drainage need special care and maintenance plan, farms can be over reaped in the absence of special care. A successful operation process of sky-gardens needs a careful consideration of urban context, building type, social context of residence and physical environment around the building otherwise the provision can be a failure at any stage of operation [11]. The location of a roof garden or sky garden is very important in terms of accessibility [19]. Since the sky garden is located in such a way that it is accessible to the users of same floor or immediate floors, so they are more easily acceptable by the developers and occupants. On the other hand, rooftop gardens are more prone to the intense winds which together with the inappropriate techniques of planting becomes the major factor for failure of such element in building. There are some other social and economic factors which makes the shortage of sky-garden in urban districts i.e. ignorance of occupants towards the benefits of urban greenery and developers choose to have maximum economic benefits and choose to not pay for sky gardens once it is sold [20].

3. Incorporation of sky-gardens in existing tall buildings (Renovation Approach)

Lack of green spaces in urban cities should be compensated by the incorporation of greenery and plantation into the existing tall buildings [20]

Though number of detailed studies illustrate the benefits associated with horizontal and vertical vegetation systems there is limited literature available regarding the use of sky-gardens as retrofitting technique [22]. Some studies have explored retrofit through vegetation such as those by Nadia et. al (2013) [23] and Mazzali et al. (2013) [24] for walls as well as study Perini et al. (2013) [22] on design process in greenery retrofit of naturally ventilated building. Study by Mithraratne et al (2014) explored the long-term costs associated with renovating existing buildings through construction of greenery systems. Their isolated study concluded that in the amount of maintenance cost needed far exceeded the possible environmental benefits [25]. Future studies are hence needed to evaluate the actual energy and cost savings associated with sky-gardens in tall buildings.
Two types of retrofits are possible on roofs of tall buildings: extensive and intensive green roofs. However, each retrofitted green roof system comes with its own set of pros and cons. Extensive green roofs are light in weight, economical, natural and does not need expertise in planting techniques. This system can be adjusted in any kind of structure. These qualities make this system more suitable to be incorporated into the old tall buildings in congested areas. However, it has also got some limitations as it doesn’t have biodiversity and provides limited recreational value. This kind of sky-gardens are featured with flower beds and turfs [20] [21]. Intensive green roofs (also termed as podium roofs) have deep soil, a good irrigation system. This system is more favorable for incorporation in buildings during construction. This system has high maintenance and management cost [20] [21].

4. Case studies

For this research detail case studies are done on two tall buildings that are described below and the specifications are shown in Table 2:

4.1. Liberty Tower of Meiji University, Japan

The Liberty Tower of Meiji University is located in temperate climate. The concept of this building is “life cycle energy saving” and the shape of the building was defined to accelerate the phenomenon of natural ventilation together with the other strategies to reduce energy consumption. It has wind floor which together with the central core brings air from the floors below and exhaust outside causing stack effect. The wind floor has the opening on four side and it is located on the eighth floor while building in total consists of 23 floors. Its CO$_2$ emissions per usable area is 40% less compared to average emissions of educational tall building of Japan. Use of water recycling system makes it more ecological. Windows control the natural ventilation automatically. Automatic outdoor air intake control system based on CO$_2$ sensor increase its significance [18]. Overall the driving forces are wind and stack for the air intake and air exhaust. The classes are arranged along the perimeter of the building having windows with automatically controlled opening at the bottom for air intake. The exhaust of used air is done in natural as well as mechanical mode [7].

4.2. Commerzbank, Germany

According to the location of building it lies in temperate climate which make it more feasible to use the natural ventilation and sky-gardens. It is located in densely built-up financial district of the city. The building has triangular plan and atrium in the centre which is running the full height of the building while divided into four segments. Around this central atrium sky-gardens and offices are arranged in spiralling configuration. The sky-gardens are arranged around the atrium in a way that there is always a windward garden and a leeward garden for each segment of atrium to manage the intake and exhaust of air [7]. Characterized by 3000 motorized office windows, 100 atrium garden windows and huge area devoted for atrium airflow, this building uses natural ventilation for enhancing cooling strategy and reducing energy consumption by reducing the cooling load. Its main design strategies are double skin façade and stepping sky-garden connected with the central atrium. The atrium space can be seen from each office space and provides fresh air and natural ventilation to these spaces. Natural ventilation can be used throughout the year in the building while mechanical ventilation is used to moderate the local climate of atrium. The fresh air enters through the large windows located the top of each atrium exterior. The windows intake the air directly from the external climate, that passes through the atrium
and get supplied to the office spaces. These window open and close 10-20 times a day, depending on the weather condition [17].

4.3. Comparison of Case Study Buildings

Even though the climatic conditions are feasible for natural ventilation for both the buildings but Commerzbank can utilize natural ventilation as cooling strategy for longer time in the year and can save significant amount of energy without the incorporation of many technologies that has been used in Liberty Tower of Meiji University building. There is significant difference of height in two buildings still the taller building is using natural ventilation in more efficient way, that lead us to conclude that there is not much problem in using this passive strategy, due to height of the building. However, in the design of Commerzbank a careful consideration was given towards segmentation of height of building and incorporation of sky-garden. Sky-gardens are not only helping to create better airflow paths but also provide good indoor air quality [8] [13].

Table 2 Data of case studies [7].

<table>
<thead>
<tr>
<th>Building Name</th>
<th>Liberty Tower of Meiji University</th>
<th>Commerzbank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Location</td>
<td>Tokyo</td>
<td>Frankfurt</td>
</tr>
<tr>
<td>Completion year</td>
<td>1998</td>
<td>1997</td>
</tr>
<tr>
<td>Climate</td>
<td>Temperate</td>
<td>Temperate</td>
</tr>
<tr>
<td>Building Type</td>
<td>Educational</td>
<td>office</td>
</tr>
<tr>
<td>Building Height (ft, m)</td>
<td>119m</td>
<td>295m</td>
</tr>
<tr>
<td>No. of Floors</td>
<td>23</td>
<td>56</td>
</tr>
<tr>
<td>Building Architect/Project Team</td>
<td>Nikken Sekkei</td>
<td>Norman Foster</td>
</tr>
<tr>
<td>Ventilation systems</td>
<td>Mixed-mode: Contemporary</td>
<td>Mixed-mode: Contemporary</td>
</tr>
<tr>
<td>Natural Ventilation strategy</td>
<td>Cross & Stack</td>
<td>Changeover</td>
</tr>
<tr>
<td>Vegetation</td>
<td>N/A</td>
<td>Sky-garden</td>
</tr>
<tr>
<td>Design Strategies</td>
<td>Ventilation "wind core" (central</td>
<td>Double skin façade, stepping sky-garden</td>
</tr>
<tr>
<td></td>
<td>escalator void), "Wind Floor"</td>
<td>connected with the central atrium,</td>
</tr>
<tr>
<td></td>
<td>over central void, innovative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>window openings in lecture rooms</td>
<td></td>
</tr>
<tr>
<td>Energy Consumption</td>
<td>166Wh/m2</td>
<td>117kWh/m2</td>
</tr>
<tr>
<td>Approximate %age of the year natural ventilation can be utilized</td>
<td>29%</td>
<td>80%</td>
</tr>
<tr>
<td>Percentage of Annual Energy saving for heating and cooling</td>
<td>55% compared to a fully air-conditioned Office building in Japan</td>
<td>63% compared to a fully air-conditioned German Office building</td>
</tr>
</tbody>
</table>

5. Conclusion and future recommendations

Tall buildings are the result of fast urbanization of cities and the pressure of overpopulation. High-rise structures result in huge carbon footprint and increase in the local and global temperatures. To avoid
this situation there is great need to move towards passive strategies and make the buildings energy efficient. Among different passive strategies, use of natural ventilation stands prominent as it brings significant reduction in energy consumption of tall buildings. Segmentation and incorporation of sky-gardens brings a lot environmental benefits together with the acceleration of the process of natural ventilation and improvement in the energy performance of tall buildings. There are great initiatives taken towards the development of policies and incentives by the government of many countries i.e. Joint Practice Note (JPN), issued by the Hong Kong SAR Government in February 2001 [11]. However, importance of sky-gardens in tall buildings is still not acknowledged by the developers because of high investment cost required. Limited literature is available on the renovation of tall buildings for sky-gardens that acts as barrier on its wide application.

There is a great need to emphasise on the importance of this passive strategy and greening system and make more policies towards the maintenance plan of communal sky-gardens. In order to compensate the insufficiency of greenery in dense urban cities, detailed plans, specific legislations and appropriate planting techniques should be developed. The existing sky-gardens should be improved by developing biodiversity and new sky-garden should be incorporated in the existing building. More research involving detailed simulations and measurements is needed to assess the advantages and controlling factors to obtain sky-gardens best suited for different categories of tall buildings.

Acknowledgements

This study is based on the PhD research going on by the author at department of Architecture in University of Palermo, Italy. Author wants to thank University of Palermo for the provision of funds to carry out this research.

References

Role of Sky-gardens in Improving Energy Performance of Tall Buildings

