Patrons

Friends

Segreteria
S.S.D. I CAR09
Tecnica delle Costruzioni

UNESCO

uniTwin
Organizing Committee

Stefano Cascone • Dario Distefano • Melania Lombardo • Manuela Marino
Giuseppe Margani • Attilio Mondello • Gianluca Rodonò • Vincenzo Sapienza

Scientific Committee

Giuseppe Alaimo
University of Palermo
Italy

Salvatore Caddemi
University of Catania
Italy

Carlo Caldera
Politecnico di Torino
Italy

Ivo Caliò
University of Catania
Italy

Santi Maria Cascone
University of Catania
Italy

Amir Causevic
University of Sarajevo
Bosnia-Herzegovina

Massimo Cuomo
University of Catania
Italy

Giuliano Dall’Ö
Politecnico di Milano
Italy

Pietromaria Davoli
University of Ferrara
Italy

Marco D’Orazio
Università Politecnica delle Marche
Italy

Valter Fabietti
University of Chieti-Pescara
Italy

Giovanni Fatta
University of Palermo
Italy

Corrado Fianchino
University of Catania
Italy

Alberto Fichera
University of Catania
Italy

Marco Filippi
Politecnico di Torino
Italy

Luca Finocchiaro
Norwegian University of Science and Technology
Norway

Emil-Sever Georgescu
Nird Urban-Incerc
Romania

Aurelio Ghersi
University of Catania
Italy

Riccardo Gulli
University of Bologna
Italy

Paolo La Greca
University of Catania
Italy

Rosario Lanzafame
University of Catania
Italy

Raffaella Lione
University of Messina
Italy

Paulo B. Lourenço
University of Minho
Portugal

Giuseppe Margani
University of Catania
Italy

Luigi Marletta
University of Catania
Italy

Emanuele Naboni
The Royal Danish Academy of Fine Arts
Denmark

Maurizio Nicolella
University of Naples Federico II
Italy

Masa Noguchi
University of Melbourne
Australia

Francisco Hipólito Ojalvo
University of Extremadura
Spain

Luis Palmero Iglesias
Universitat Politècnica de València
Spain

Emilio Pizzi
Politecnico di Milano
Italy

José Ignacio Sánchez Rivera
University of Valladolid
Spain

Antonello Sanna
University of Cagliari
Italy

Angelo Salemi
University of Catania
Italy

Adolfo Santini
Mediterranea University of Reggio Calabria
Italy

Vincenzo Sapienza
University of Catania
Italy

Enrico Spacone
University of Chieti-Pescara
Italy

Marius Voica
Ion Mincu University
Romania
Introduction to the Conference Proceedings
1-3 February 2018, University of Catania, Catania, Italy

One of the main challenges of the twenty-first century is to increase the sustainability level of our cities. This requirement is mostly associated to environmental issues, and a great effort has been made in the past years to build a low-carbon society. However, a town, to be considered sustainable, must, above all, be safe, particularly against natural hazards, which in Europe are mostly related to climate changes (e.g., hurricanes, floods, storms, and landslides) and seismic events (earthquakes). Unfortunately, sustainability is still not a prerogative of most European cities, especially those placed in seismic countries such as Italy, where at least 50% of the residential stock is earthquake-prone, while over 80% of the same stock is highly energy-consuming and carbon dioxide-emitting, thus contributing to trigger hazards related to climate changes. In this context, renovation actions, which combine both energy and seismic issues, are strongly needed. This assumption has to be promoted for the following main reasons: energy renovation alone will be worthless if an earthquake destroys the building; to prevent life losses and damages; to avoid several costs otherwise duplicated (costs for building-site setup and scaffolds, claddings, plasters and other finishings, etc.). Nevertheless, several barriers considerably limit the real possibility to extensively undertake combined retrofit actions, especially for multi-owner housing and high-rise buildings. These barriers are of different kinds: (i) technical (e.g., unfeasibility and/or ineffectiveness of conventional retrofit solutions, and need of regulatory simplification); (ii) financial (e.g., high renovation costs, “split-incentive”/“landlord–tenant dilemma”, and insufficient incentives and subsidies); (iii) organizational (e.g., temporary alternate accommodation for occupants, consensus to the retrofit expenditure by condominium ownerships, and excessive time to obtain building permits); and (iv) cultural/social (insufficient information and skills, and lack of adequate policy measures to promote renovation actions).

The Seismic and Energy Renovation for Sustainable Cities - SER4SC 2018 Conference, held in Catania, 1st to 3rd February, aims to overcome these barriers and to bridge the gap between sustainability and safety, with a link that may conserve both human and environmental resources.

This edition contains 56 papers arranged by theme into 6 thematic sessions.
Each submission received reviews from at least two different Scientific Committee members and we would like to express our thanks to all the reviewers that provided detailed comments and feedback on all the submitted papers.
The selected papers were organized into sessions for the oral presentation, according to the key topics of the conference.

1st Session

Urban vulnerability and sustainable cities
Sustainability and safety of cities. Description of the vulnerability and/or energy performance scenario of any region or town. Tools and methods for assessing the urban vulnerability to natural hazards and for determining the scale of intervention to adequately reduce this vulnerability. Cost evaluation for the improvement of the urban resilience to natural hazards. Scenarios of possible financial incentives.

Resolution of organizational and practical problems
Strategies to overcome different organizational and practical problems, which considerably limit the real possibility to undertake retrofit actions, especially for multi-owner housing and high-rise buildings: consensus to the retrofit expenditure by condominium ownerships, excessive duration of renovation works and temporary alternate accommodation for occupants, split-incentive/landlord-
tenant dilemma, excessive time for getting construction permits, need of regulatory simplification, etc.

Economic and financial policies to promote renovation measures
Economic and financial tools, measures and policies to promote renovation activities.

Strategies for promoting the social sensitivity to prevention actions
Development of new policies to promote the awareness of the disastrous consequences of inadequate or insufficient prevention actions. Strategies to disseminate, among interested stakeholders, technical skills and competences on retrofitting measures, as well as to highlight the economic convenience of undertaking combined seismic and energy renovations. Training activities.

2nd Session

Construction techniques of historic and recent buildings
Description of construction techniques adopted for historic buildings (i.e. built before 1950) and recent buildings (i.e. built from the 1950s to the 1980s). Relationships between construction techniques and seismic or energy performance of buildings.

3rd Session

Seismic and energy regeneration strategies at district and urban scale
Urban regeneration strategies for the reduction of seismic vulnerability and/or energy dependence. Integrated land use and transport planning to reduce energy consumption due to private means of transportation.

4th Session

Design, monitoring and management tools
Novel tools for design, monitoring and management of existing buildings (e.g. BIM, parametric design, form finding, sensor grids, building management systems, etc.), with particular reference to renovation and post-renovation activities.

Retrofit optimization through prefabricated systems
Development of prefabricated systems to accelerate seismic and/or energy renovation activities, in order to reduce costs and inconvenience to the occupants.

5th Session

Technical solutions, materials and methods for seismic and energy renovation
Technical solutions, materials and methods for the seismic and/or energy renovation of historic and/or recent buildings.

6th Session

Decision support tools for the selection of the optimal retrofitting scenario
Development of user-friendly decision support tools to select the best seismic and/or energy renovation scenario, in terms of effectiveness, efficiency, costs, available incentives and subsidies, safety, inconvenience to the occupants, etc.10. Resolution of organizational and practical problems.

Diagnostic techniques and numerical models to assess seismic vulnerability and energy performance
Development of novel diagnostic techniques and numerical models to determine the seismic vulnerability and/or the energy performance of historic and/or recent buildings.
Despite the different disciplines and viewpoints represented at the conference, all participants agreed that the challenge of combining energy renovation actions and seismic upgrades are urgent and represents today a prevention action that is becoming more and more necessary to increase the sustainability level of our towns. Seismic and energy renovation of buildings will allow reaching very relevant benefits, at environmental, social and economic levels.

Consequently, wide engagement actions, at both local and European level, are fundamental to raise awareness of the social, environmental and cultural relevance of prevention actions, and to achieve consensus and behavioural change towards decisional strategies for both energy efficiency and seismic safety.

Prevention is essentially a matter of mindset and culture. Since European countries have a great tradition and culture, the basic premises for developing a prevention attitude are all there. In this context, schools, universities and research institutes play a crucial role, stimulating institutions and political forces to strongly promote the upgrade of the building stock.

This virtuous circle is possible, as well shown by the movement for the restoration of historic cities that has originated in Europe and afterwards has reached brilliant results of urban rebirth, which are clearly evident in Italy as well as in many other countries.

This conference has engaged expertise and experiences of scientists, scholars, professionals and decision-makers from different countries, in order to find new effective, affordable and holistic solutions, which may positively contribute to enhance the sustainability level of our towns. In other words, this conference has aimed to become a hub, where people can discuss and start developing new robust renovation strategies for sustainable cites.

Acknowledgements:

We would like to thank our sponsors for their invaluable help for the success of the conference. We especially thank the Department of Civil Engineering and Architecture of the University of Catania (DICAR), the Order of the Engineer of Catania, the Foundation of the Engineer of Catania, the National Association of Building Constructors of Catania (ANCE Catania) for their attention to the issue of sustainable urban renovation, and their action of spreading the culture of risk mitigation.

Giuseppe Margani
Vincenzo Sapienza
Gianluca Rodonò
Contents

Introduction

1st Session

14 \textbf{TOPIC: Urban vulnerability and sustainable cities}

15 ASSESSING AND MANAGING SEISMIC RISK IN OLD URBAN CENTRES
José L.P. Aguado, Tiago Miguel Ferreira and Paulo B. Lourenço

24 ASSESSING URBAN AND BUILDING VULNERABILITIES CONNECTED TO THE EMERGENCY MANAGEMENT: AN INTEGRATED METHODOLOGY
Martina Zorzoli, Giovanni Metelli, Michèle Pezzagno, Giovanni Plizzari and Roberto Busi

35 COLLECTIVE SOCIALIST HOUSING IN ROMANIA – COMPLEX SOLUTIONS FOR SUSTAINABLE UPGRADE, BETWEEN/BESIDES ENERGY IMPROVEMENT AND STRUCTURAL SAFETY
Zina Macri

44 SUSTAINABLE ENERGY ACTION PLANS: MONITORING THE IMPLEMENTATION OF STRATEGIES FOR SUSTAINABILITY FOR MUNICIPALITIES IN NORTHERN ITALY
Giuliano Dall’O’, Luca Sarto, Alberto Pizzi and Sandro Cristina Reggiani

57 A SIMPLIFIED MODEL BASED ON SELF-ORGANIZED CRITICALITY FRAMEWORK FOR THE SEISMIC ASSESSMENT OF URBAN AREAS
Annalisa Greco, Alessandro Pluchino, Luca Barbarossa, Ivo Caliò, Francesco Martinico and Andrea Rapisarda

69 A SIMPLIFIED METHODOLOGY TO ASSESS SEISMIC RISK AT DISTRICT AND BUILDING LEVEL
Ivo Caliò, Rosa Caponetto, Chiara Ciatto and Daniele La Rosa

82 HOSPITAL SAFETY IN SPATIAL AND URBAN PLANNING AND DESIGN–SEISMIC ZONE IN THE KOLUBARA REGION IN SERBIA
Borjan Brankov, Marina Nenković-Riznić, Mila Pucar and Snežana Petrović

92 \textbf{TOPIC: Resolution of organizational and practical problems}

\hspace{1cm} \textbf{Economic and financial policies to promote renovation measures}
\hspace{1cm} \textbf{Strategies for promoting the social sensitivity to prevention actions}

93 SEISMIC AND ENERGY RENOVATION MEASURES FOR SUSTAINABLE CITIES: A CRITICAL ANALYSIS OF THE ITALIAN SCENARIO
Paolo La Greca and Giuseppe Margani

105 A EUROPEAN PROJECT FOR SAFER AND ENERGY EFFICIENT BUILDINGS: PRO-GET-ONE (PROACTIVE SYNERGY OF INTEGRATED EFFICIENT TECHNOLOGIES ON BUILDINGS’ ENVELOPES)
Annarita Ferrante, Giovanni Mochi, Giorgia Predari, Lorenzo Badini, Anastasias Fotopoulou, Riccardo Gulli and Giovanni Semprini

117 RESILIENCE, PREPAREDNESS AND SCENARIO EXERCISES: POTENTIALITIES AND WEAKNESSES OF DRR EDUCATION STRATEGIES
Mara Beradusi

2nd Session

128 \textbf{TOPIC: Construction techniques of historic and recent buildings}

129 PROJECTS AND CONSTRUCTION TECHNIQUES IN POST-SEISMIC RECONSTRUCTIONS AT THE BEGINNING OF THE TWENTIETH CENTURY
Cesira Paolini and Marina Pugnaletto
141 THE BUILDING INFORMATION MODELING FOR THE RETROFITTING OF EXISTING BUILDINGS. A CASE STUDY IN THE UNIVERSITY OF CAGLIARI
Giuseppe Desogus, Giuseppe Martino Di Giuda, Giuseppina Monni, Emanuela Quaquero, Antonello Sanna, Lavinia Chiara Tagliabue and Valentina Villa

151 ROLE OF SKY GARDENS IN IMPROVING ENERGY PERFORMANCE OF TALL BUILDINGS
Humera Mughal and Rossella Corrao

160 THE RESILIENCE OF TRADITIONAL ARCHITECTURE: THE ANTI-SEISMIC CONSTRUCTIVE SYSTEM OF LEFKADA ISLAND
Emilia Garda, Marika Mangosio and Angeliki Vlachou

169 OPTIMIZING ENVIRONMENTAL PERFORMANCE OF HISTORICAL BUILDINGS. THE CASE OF HOU JI VILLAGE
Luca Finocchiaro and Fu Xiu Zhang

181 SEISMIC AND ENERGY REFURBISHMENT OF RESIDENTIAL BUILT HERITAGE IN MEDITERRANEAN CLIMATE
Angelo Salemi, Alessandro Lo Faro, Attilio Mondello, Angela Moschella and Giulia Sanfilippo

193 THERMAL AND ECONOMIC GREEN ROOF PERFORMANCE FOR BUILDING RETROFIT
Stefano Cascone, Federico Catania, Antonio Gagliano and Gaetano Sciuto

205 SEISMIC AND ENERGY RENOVATION, COMPARISON BETWEEN THE DESIGN APPROACH IN ITALY AND IN ROMANIA
Emil-Sever Georgescu, Mihaela Stela Georgescu, Zina Macri, Edoardo Michele Marino, Giuseppe Margani, Vasile Meita, Radu Pana, Horia Petran, Per Paolo Rossi, Vincenzo Sapienza and Marius Voica

221 PRE-MODERN ANTISEISMIC PRESIDIA IN L’AQUILA. WOODEN ELEMENTS AND CONSTRUCTION TECHNIQUES IN HISTORIC BUILDING
Alessandra Bellicoso and Alessandra Tosone

233 THE COLLAPSE OF THE TOWER OF VALLADOLID CATHEDRAL AND ITS CONTROVERSIAL RELATIONSHIP WITH THE 1755 LISBON EARTHQUAKE
Angelo Salemi, José Ignacio Sánchez Rivera, Attilio Mondello and Juan Luis Sáiz Virumbrales

3rd Session

246 TOPIC: Seismic and energy regeneration strategies at district and urban scale

247 THE COMPLEX, MULTICRITERIAL RENOVATION OF HOUSING DISTRICTS. INTEGRATED CONCEPT OF PROJECTS FOR HOUSES AND CITY. RESULTS OF “SIR RESEARCH PROJECT” IN ROMANIA
Codruta Iana, Mihaela Stela Georgescu, Cristina Victoria Ochinciu, Carmen Dumitrescu, Cerasella Craciun, Ana Opris

260 PROCEDURES FOR A QUALITATIVE ASSESSMENT OF THE SEISMIC VULNERABILITY OF HISTORICAL CENTERS. THE CASE STUDY OF ACIREALE (CT)
Chiara Circo and Anna Scudero

270 A GREEN INFRASTRUCTURE STRATEGY FOR REDUCING SEISMIC VULNERABILITY AND ENHANCING ENERGY EFFICIENCY IN URBAN CONTEXTS
Riccardo Privitera and Daniele La Rosa

282 RECOVERING THE ANCIENT HAMLET BY AN INTEGRATED ENERGY AND SEISMIC PLAN ACTION: THE CASE OF BAIA AND LATINA
Marina Fumo, Antonella Violano, Antonio Formisano and Giulia Sibilio

294 SEISMIC ASSESSMENT OF TYPICAL MASONRY HISTORICAL RESIDENTIAL BUILDINGS IN CATANIA
Salvatore Caddemi, Ivo Calìò, Giuseppe Di Gregorio, Andrea Fanà, Annalisa Greco, Grazia Lombardo

306 CORRECTIVE REMEDIATION PROPOSALS FOR THE INA CASA DISTRICTS IN MESSINA (1949-1963)
Ornella Fiandaca, Raffaela Lione and Fabio Minutoli

319 EXPOSURE AND RISK REDUCTION STRATEGY: THE ROLE OF FUNCTIONAL CHANGE
Roberto De Lotto, Veronica Gazzola and Elisabetta M. Venco
4th Session

331 **TOPIC: Design, monitoring and management tools**

332 SUSTAINABLE LOW CO2 EMISSION RETROFIT STRATEGIES OF PUBLIC BUILDING IN MEDITERRANEAN AREA: A CASE STUDY
Manfredi Cannata, Maurizio Detommaso, Gianpiero Evola, Antonio Gagliano, Luigi Marletta, Francesco Nocera

341 CRITICAL ISSUES ON INTEGRATED SOLUTIONS FOR SEISMIC AND ENERGY RETROFITTING OF HIGH-RISE BUILDINGS IN REINFORCED CONCRETE WALLS AND PANELS: THE M4 IN TOR BELLA MONACA, ROME
Edoardo Currà, Lorenzo Diana, Emanuele Habib and Salvatore Perno

353 MULTICRITERIA ANALYSIS FOR CHOOSING MAINTENANCE STRATEGIES
Maurizio Nicollella, Claudio Scognamillo and Alessio Pino

365 OPTIMIZATION OF OUTDOOR COMFORT CONDITIONS WITH KINETIC ADAPTIVE SHELTER: THE CASE STUDY OF PIAZZA ARMERINA ARCHAEOLOGICAL SITE
Gianluca Rodonò, Emanuele Naboni, Vincenzo Sapienza, Federico Cucchi and Giacomo Macrelli

377 ANALYSIS OF FAILURE IN URBAN ENERGY DISTRIBUTION NETWORKS
Alberto Ficher, Mattia Frasca and Rosaria Volpe

389 EARTHQUAKE EARLY WARNING AND STRUCTURAL HEALTH MONITORING IN THE HISTORICAL CITY CENTRE OF CATANIA (ITALY)
Salvatore Scudero, Giovanni Vitale, Luca Greco, Domenico Patanè and Antonino D'Alessandro

399 **TOPIC: Retrofit optimization through prefabricated systems**

400 A SMART PREFABRICATION SYSTEM FOR THE INDUSTRIALIZED CONSTRUCTION OF RESILIENT ENERGY-SAVING BUILDINGS
Luis Palmero and Graziella Bernardo

410 THE EIGHTEENTH-CENTURY ARCHITECTURES: ANTISEISMIC FRONT SOLUTIONS
Corrado Fianchino and Eleonora Vinci

420 PREFABRICATED MODULES FOR HEALTH EMERGENCY
Daniela Besana

5th Session

432 **TOPIC: Technical solutions, materials and methods for seismic and energy renovation**

433 TABIÀ RENOVATION FOR ALPINE REGION IN ITALY. TRADITIONAL SOLUTION AND INNOVATIVE TECHNOLOGIES INTEGRATION
Barbara Ghetti, Eva Coisson and Fabio Scola

444 PRE-STRESSED TRANSLUCENT PANELS MADE OF INNOVATIVE 3D GLASS COMPONENTS DSC-INTEGRATED, FOR SAFETY AND ACTIVE BUILDING FAÇADES
Rossella Corrao

453 IMPROVING THE ITALIAN BUILDING STOCK: ENERGY RETROFIT OF A SINGLE-STOREY PUBLIC BUILDING IN SOUTHERN ITALY
Gianpiero Evola, Luigi Marletta, Paolo Girlando and Serena Tamburella

465 “SEISMIC AND ENERGY RETROFITTING” OF THE HISTORICAL CENTRES’ BUILDINGS. A CASE STUDY IN ENNA
Tiziana Basirico and Daniele Enea

477 STRUCTURE - SPACE – ENVELOPE. BUILDING SOLUTIONS TO MITIGATE URBAN HEAT ISLAND (UHI EFFECTS
Cristina Victoria Ochinciuc and Mihaela Stela Georgescu

485 RENOVATION OF SCHOOL BUILDINGS: ENERGY RETROFIT AND SEISMIC UPGRADE, IN A SCHOOL BUILDING IN MOTTA DI LIVENZA
Tiziano Dalla Mora, Maria Pinamonti, Lorenzo Teso, Giosuè Boscato, Fabio Peron and Piercarlo Romagnoni
6th Session

563 TOPIC: Decision support tools for the selection of the optimal retrofitting scenario
Diagnostic techniques and numerical models to assess seismic vulnerability and energy performance
Aliakbar Kamari, Rossella Corrao and Poul Henning Kirkegaard

564 TOWARDS THE DEVELOPMENT OF A DECISION SUPPORT SYSTEM (DSS FOR BUILDING RENOVATION: DOMAIN MAPPING MATRIX (DMM) FOR SUSTAINABILITY RENOVATION CRITERIA AND RENOVATION APPROACHES
Aliakbar Kamari, Rossella Corrao and Poul Henning Kirkegaard

577 ENERGY IN TIME. PARAMETERS OF ENERGETIC ACTUALIZATION OF MATERIALS/COMPONENTS
Caterina Claudia Musarella

589 URBAN RESILIENCE AND DISASTER PREVENTIVE PLANNING. MANAGE THE PREPARATION TO OPTIMIZE THE RESPONSE IN HISTORICAL TOWNS
Alessandro D'Amico and Edoardo Currà

600 OPTIMAL MEASURES FOR ENERGY RETROFIT ON THE UNIVERSITY BUILDING “EX COTONIFICIO OLCESE” IN VENICE
Davide Balboni, Tiziano Dalla Mora, Alessandro Righi, Fabio Peron and Piercarlo Romagnoni

610 ITALIAN SCHOOL BUILDING TOWARD NZEB REQUIREMENTS. THE CASE OF “C. ROSSELLI” HIGH SCHOOL IN CASTELFRANCO VENETO
Giulia Masolo, Tiziano Dalla Mora, Alessandro Righi, Fabio Peron and Piercarlo Romagnoni

622 MULTI-CRITERIA METHODOLOGY TO SUPPORT DECISION MAKING CONCERNING OPAQUE ENVELOPE COMPONENTS
Alessandra De Angelis, Rosa Francesca De Masi, Maria Rosaria Pecce, Silvia Ruggiero and Giuseppe Peter Vanoli

634 RADIANT PANELS FOR OUTDOOR HEATING: THEORETICAL AND EXPERIMENTAL ANALYSIS FOR THERMAL COMFORT ASSESSMENT
Giorgio Baldinelli, Antonella Rotili and Francesco Bianchi

645 TECTONIC SUSTAINABLE BUILDING DESIGN FOR THE DEVELOPMENT OF RENOVATION SCENARIOS – ANALYSIS OF TEN EUROPEAN RENOVATION RESEARCH PROJECTS
Aliakbar Kamari, Rossella Corrao, Steffen Petersen and Poul Henning Kirkegaard
6th Session

Decision support tools for the selection of the optimal retrofitting scenario

Diagnostic techniques and numerical models to assess seismic vulnerability and energy performance
Tectonic Sustainable Building Design for the Development of Renovation Scenarios – Analysis of ten European renovation research projects

Aliakbar Kamaria,b* , Rossella Corraoa, Steffen Petersenb, Poul Henning Kirkegaardb

aDepartment of Architecture, University of Palermo, Palermo 90128, Italy
bDepartment of Engineering, Aarhus University, Aarhus 8000, Denmark

Abstract

The investigation of 10 European building renovation research projects presented in this paper demonstrates that recent research in this field is currently centralized around quantifiable objectives i.e. development of energy efficient renovation scenarios, whereas the more qualitative objectives in renovation projects such as aesthetics, identity and/or social dimensions are rarely addressed. Furthermore, the result of this investigation together with the recent researches about the current practice of building renovation indicates that many of renovated buildings, which now are claimed to be sustainable are not addressing all aspects of a conventional definition of sustainability. Lastly, through the lens of tectonic architectural theory, there seems to be little use of design methodologies that includes all project stakeholders (i.e. architects, engineers, clients) in identifying truly sustainable solutions in a holistic perspective. To address these identified shortcomings in current approaches to sustainable building renovation, we propose the use of a design framework called ‘Tectonic Sustainable Building Design’, which draws upon the concepts Tectonics (an architectural articulation theory), Sustainability (the use of holistic design objectives) and a Holistic Multi-Methodology for Sustainable Renovation (an integrated design methodology). ‘Tectonic Sustainable Building Design’ deals with renovation projects as an architectural transformation, and intents to enable designers to form a strategy that establishes a link between the intentions of an architectural transformation and the way it is perceived by the user/owner of buildings. Once this is established, the framework is intended to serve as a platform for refining and improving the contemporary building industry seen in the light of sustainability, by supporting the decision-making in the development of holistic renovation scenarios.

© 2018 The Authors. Published by EdicomEdizioni. Selection and peer-review under responsibility of SER4SC2018 Scientific Committee.

Keywords: Tectonics; Sustainability; Design methodology; Building renovation; Renovation scenarios, Tectonic Sustainable Building Design (TSBD)

1. Introduction

Today buildings are responsible for 40% of energy consumption and 36% of CO\textsubscript{2} emissions in the EU [1]. Most of these buildings will still be in use by the year 2050; reducing their consumption and
emissions through renovations is therefore a key objective to meet the European Union’s long term energy and climate goals [2]. Recent investigations into the practice of building renovation reveal different types of challenges and barriers [3] where economic, technical, and behavioural barriers seem to be dominating [4]. There are several reasons for these barriers including variety of stakeholders involved in the process (clients, tenants, contractors, municipalities, consultancies etc. – see [5]) and their interests, a massive range of available renovation solutions (insulation approaches, window replacement, HVAC systems etc. - see [6]), and broad number of objectives/criteria [or sub-criteria] (e.g. regarding energy efficiency, spatial quality, investment cost etc.) that needs to be addressed. Acre et al [7] state that the evidence of a holistic renovation influence of an energy renovation (use of pure technically designed renovation scenarios†) is that many of the measures taken in energy renovation, which affect architectural quality and social aspects, are not necessarily related to energy concerns (or pure technically designed renovation scenarios). In particular the substantiation of the objectives/criteria itself is a highly complicated task due to the variety of stakeholder expectations. Some objectives are considered engineering issues such as improvement of energy efficiency, and others are architectural issues such as increasing of spatial quality or liveability of buildings [7]. In a broader perspective, the challenges for building renovation can basically be categorized as socio-technical, socio-economical and socio-environmental issues just as the three pillars of the ‘sustainability development paradigm’; society, economy, and ecology [8] and their interfaces. That, in fact, emerges the importance of sustainability objectives, and how effectively the complexity mentioned above can be reduced if the essential sustainability objectives/criteria for building renovation are identified and targeted early in the design stage ahead of further investigation and fulfilment.

The significant components to perform the design process of a holistic renovation can rationally be addressed throughout the following questions and their relevant descriptions:

- **Why to do a renovation?** (key focus: elaboration on sustainability objectives)
 Buildings are renovated to make changes. There are a wide array of advantages that can be obtained as an outcome of a holistic and sustainable retrofitting. The motivation for making these changes should embark on sustainability objectives/criteria in its full sense.

- **What to do for renovation?** (key focus: elaboration on renovation approaches)
 There are a broad range of renovation approaches that together create a renovation scenario and can be applied for the renovation of existing buildings.

- **How to develop a comprehensive renovation scenario?** (key focus: elaboration on design methodologies)
 The renovation design process and selection of the renovation approaches needs to use of an equipped methodology, which is able to deal with the complexity of “soft” and “hard” criteria that are involved in the renovation projects as well as to cope with different decision makers and their different priorities in the design process. Decision-making in building renovation is influenced by a number of non-technical stakeholders.

Nevertheless, by exploring and accessing a comprehensive descriptions and answers to above questions, the fundamental and in our understanding finest potential of architecture to invite us to be

† The term “renovation scenario” used in this study means a selection and combination of different renovation technologies/actions (i.e. insulation of the external walls or replacement of the windows are each a renovation action) that together build alternative renovation scenarios/packages and subsequently is applied in a renovation project.
Tectonic Sustainable Building Design for the Development of Renovation Scenarios

together or to contemplate in solitude by addressing the human scale, what we have chosen to describe as the ability of architecture to ‘gesture’ us, is oppressed [9]. Handling the “hard” objectives/criteria (measurable criteria such as energy consumption or energy generation) often relies on the use of rational quantitative methods whereas the handling of the “soft” objectives/criteria (i.e. identity, spatial, sociality, aesthetic etc.) often requires different methods. To cope with these “soft” criteria there must be an extra layer of evaluation principles that investigates how improvements of the “hard” objectives/criteria affect the “soft” objectives/criteria. It is the question of how a renovation also influence the experience of the built environment (or how to blow a soul into the buildings). Consequently, existing buildings cannot simply be renovated, but must undergo a transformation to comply with all objectives/criteria in a holistic approach. Conceiving a holistic renovation scenario is thus not only a technical ‘principle’ but also a spatial ‘gesture’ revealing various architectural potential through this transformation, which inevitably makes building renovation a question of tectonics [9].

The Danish research project RE-VALUE‡ (Value Creation by Energy Renovation, Refurbishment and Transformation of the Built Environment, Modelling and Validating of Utility and Architectural Value) has been initiated to develop a more holistic approach to the assessment of value creation in building renovation projects. The aim of this paper is to contribute to the part of the RE-VALUE project which focuses on the development of a conceptual framework for methods that supports decision making on various levels of the renovation process. The conceptual framework is entitled ‘Tectonic Sustainable Building Design’ (hereafter referred to as TSBD). The potential of this framework is demonstrated through the evaluation of 10 European renovation research projects. According to [10], European building sector has become decomposed and not yet able to offer efficient solutions for holistic renovation. Developing and promoting TSBD influences the current practice of building renovation significantly. To this end, section 2 provides brief descriptions of sustainability, tectonics, and holistic multi-methodology as concepts. Section 3 presents the analysis of 10 European renovation research projects. The results from this analysis and the descriptions in section 2 inform section 4 where the proposed TSBD framework is described. Finally, section 5 provides a short conclusion and further research work.

2. ‘Sustainability’, ‘Tectonics’, and ‘Holistic design methodology’

2.1. Sustainability

The term sustainability is an autotelic term, which means it is hailed as a priori goal in itself. It can be described as incontestable development of society and economy on a long-term basis within the framework of the carrying inclusion of the earth’s ecosystems [11]. Nevertheless, sustainable development refers to a dynamic process from one state towards another that means there is no exact definition about it – nor is this necessary [12]. Sustainable development is to meet the needs of the present without compromising the ability of future generations to meet their own needs [8]. Sustainability is based on the modern information and communication systems [13]. As such, it is of special interest to verify the need for the deep understanding of sustainability as the pattern with the agglomerated set of indicators defined by the respective criteria [14]. Today, there is a significant range of methods accessible for appraisement of sustainability and its relevant criteria in this sector[15]. Many of the existing assessment methods and methodologies have been developed for the design of the new buildings, but can be applied to renovation projects as well, and some are particularly intended or adapted for building renovation

‡ Participated by Brabrand Housing Association – with energy renovation in the Aarhus suburb of Gellerup – as well as DEAS, an administration company on the private rental housing market (for more info: http://www.revalue.dk)
context [16], BREEAM§ (by British Research Establishment), LEED** (by US Green Building Council), ATHENA (by ATHENA Sustainable Material Institute in Canada)††, DGNB‡‡ (by German Sustainable Building Council), DGNB-DK§§ (by Green Building Council Denmark), BEAM Plus*** (by Hong Kong Green Building Council), and EcoEffect††† (by Royal Institute of Technology in Sweden) are some examples of these methods. However, Jensen et al [16] argue that most of the methods and tools that mentioned above have a narrow environmental or energy focus, whereas the most recent tools attempted to evaluate environment, economy and social relations in an equal circumstances, i.e. DGNB-DK.

2.2. Tectonics

The term tectonic derives from the Greek word ‘tekton’, which signifies a carpenter or builder, and has gradually come to denote construction in general [17]. The poetic connotation of the term first appears in Sappho (in the seventh century BC) where the ‘tekton’ [the carpenter] assumes the role of the poet. This meaning undergoes further evolution as the term passes from being something specific and physical, such as carpentry, to a more generic notion of making, in the poetic sense. Sekler [18] describes it as “the noble gesture which makes visible a play of forces, of load and support in column and entablature, calling forth our own empathetic participation in the experience” [18]. In this description, the author has established a link between a ‘structural concept’ and how it influences the experiencing subject through spatial ‘gestures’ once the structural principle is manifested, or realized, through concrete ‘construction’. Hvejsel et al [9] propose that Sekler’s terms can be used as a vocabulary to articulate not ‘only’ the “visible play of forces”, but the implications of technical interventions on the perceived spatial quality in a broader sense. In this explanation, tectonics can be referred as the art of construction. According to Beim [19], Tectonic Visions in Architecture is discussed as “visionary investigations into new materials, technologies, structures, and practices of construction, as means to construct (new) meaning in architecture”. In connection to this, Nilsson [20] argues that the full tectonics potential in every building comes, according to Frampton [17], from its capacity to articulate both the poetic and the cognitive aspects of its substance. Frampton [17] makes, with reference to Semper’s [21] distinction between symbolic and technical aspects of building, an interesting distinction between the representational and ontological aspects of tectonics form. Nilsson [20] states that, this dichotomy is something in constant need of reformulation in the creation of architectural form, since every building type, technology, topography and temporal circumstances give different cultural situations and conditions. Concentrating on “poetry” characteristic of architecture, Christiansen [22] defines tectonics as a fusion between the expression of form and the way it is created. The author states that when materials are processed with adequate technical awareness and insight, it is possible to create a specific form that communicates something that cannot possibly be communicated in any other way – whatsoever [22].

2.3. Holistic Multi-Methodology

The word ‘methodology’ was originally used to describe ‘the science of method’, which technically makes the concept of ‘a methodology’ meaningless. However, Checkland [23] distinguished this

§ http://www.breeam.org
** http://www.usgbc.org
†† http://www.athenasmi.org/
‡‡ http://www.dgnb.de/en/
§§ http://www.dk-gbc.dk/
††† https://www.ecoeffekt.se
traditional meaning of ‘a methodology’ towards a new one including different sets of principles. He addressed ‘methodology’ as “a body of methods used in a particular activity” [23], i.e. making a crucial distinction between ‘methodology’ and ‘method’. As the structure of the word indicates, ‘methodology’ in this situation leads to selection of some certain ‘methods’, in the form of the specific approach or process adopted for the specific situation. Currently, there is a huge diversity of methodologies for dealing with “objective” or “subjective”, “soft” or “hard”, and “quantitative” or “qualitative” problems. They have been categorized in two types including Soft Systems Methodologies - SSM and Hard Systems Methodologies - HSM [23]. Cross [24] addressed them and their differences between design and science contexts. Cross [25] distinguished between Scientific Design concept (attached to HSM) and Design Science concept (attached to SSM) and considers use of the two concepts (SSM beside HSM) in analysing design activity and link it to the works of Simon [26], Schön [27,28], and Dorst [29]. This leads to the appreciation of the complementary strengths of the two different paradigms for gaining an overview of the whole range of activities within the design domain [25]. Mingers et al [30] contributed to the discussion by stating that to deal with the richness of the real world, it is desirable to go beyond using a single (or, on occasions, more than one) methodology. They argue that it is possible to combine several methodologies - in whole or in part – which stem from different paradigms. In this paper, the term holistic multi-methodology has been used to present the concept. As such, a holistic multi-methodology is developed and equipped by mix of SSM and HSM approaches [31] to cope with complexity of the problems to include both “soft” and “hard” objectives in parallel.

Building renovation can be regarded as a problem-solving activity terminated by a solution deemed satisfactory. In doing so, there are various stakeholders who are involved in the process, the sustainability objectives/criteria (including “soft” and “hard” criteria) are considered, targeted and evaluated, and ultimately an appropriate renovation scenario is developed. To succeed in this field, an efficient integrated design methodology is required that can cope with complexity of the mentioned components.

3. Analysis of 10 European building renovation research projects

The building renovation process usually involves multiple separated disciplines, which leads to additional costs and risk of failure. Many customers see high operating costs and poor environment as an acceptable alternative to the time-consuming, disruptive and risky renovation process. Despite remarkable number of recently finished or yet ongoing renovation research projects, Moseley [10] argued that the European building sector has become fragmented and not yet able to offer holistic solutions for deep renovation at acceptable cost and quality. For this reason, a list of 10 recent European building renovation research projects have been analysed (see Table 1). The aim is to evaluate what and why the recent researches have been established and targeted. It leads to realize about possible gaps regarding their outcomes for the future of the renovation field in practice.

The research projects listed in table 1 have been selected due to their scale, history, the involved countries, and their funding that underlines their importance (see Appendix 1). The analysis have classified them in three levels including moderate or ordinary, deep renovation, and Near Zero Energy Building (NZEB). The mentioned terms have been extracted from the projects themselves. In this classification, moderate is attached to features expected about recently retrofitted buildings and solutions; NZEB refers to application of exceedingly advanced solutions which lead to develop renovation scenarios with very high energy performance; and lastly deep renovation that refers to implementation of wider range of sustainability criteria for renovation purpose. We have also considered them for details level which they have provided for renovation actions thorough 1) low numbers of identified renovation actions + low amount of provided technical properties (referred as low); 2) Low numbers of identified renovation actions + high amount of provided technical properties (referred as moderate); 3) High numbers of
identified renovation actions + low amount of provided technical properties (referred as high); and 4) High numbers of identified renovation actions + high amount of provided technical properties (referred as very high). The analysis demonstrates that the first priorities in almost all of the projects are related to energy efficiency and cost. The amount of projects dealing with the variety of renovation approaches is promising. However, only one project has included the validation and verification of the selected scenarios after construction process. There are no “soft” criteria such as spatial quality in any of the projects. None of the projects consider the design process for generating renovation scenarios, and consequently do not describe how to cope with the various stakeholders involved throughout the process. Overall, it can be concluded that none of the projects deals with the sustainability (see section 2.1) in its full sense. This calls for new actions including research about converging and combining the outcomes out of the analysed projects in Table 1 while broadening their scope to encompass the full definition of sustainability, hereafter, demonstrate the new definition under a unified and simplified platform.

Table 1. Analysis of 10 European building renovation research projects

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Renovation level</th>
<th>Renovation project phase</th>
<th>Building function</th>
<th>Case study evaluation (renovation)</th>
<th>Focus on specific climate zone</th>
<th>Validation and Verification</th>
<th>Site implementation</th>
<th>Monitoring</th>
<th>Case study evaluation (renovation)</th>
<th>Focus on building elements for renovation purpose</th>
<th>Major considered criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>iNSPiRe</td>
<td>Moderate</td>
<td>Low</td>
<td>Residential buildings</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>EcoShoppin g</td>
<td>+</td>
</tr>
<tr>
<td>HERB</td>
<td>+</td>
</tr>
<tr>
<td>REFURB</td>
<td>+</td>
</tr>
<tr>
<td>READY</td>
<td>+</td>
</tr>
<tr>
<td>3ENCULT</td>
<td>+</td>
</tr>
<tr>
<td>MORE-CONNECT</td>
<td>+</td>
</tr>
<tr>
<td>BuildHeat</td>
<td>+</td>
</tr>
<tr>
<td>NeZeR</td>
<td>+</td>
</tr>
<tr>
<td>RePublic Z</td>
<td>+</td>
</tr>
</tbody>
</table>

Note: Further information about the selected research projects have been provided in Appendix 1.
4. Tectonic Sustainable Building Design - TSBD for building renovation

TSBD relies on the idea from the goal-directed integrated design process (International Energy Agency-IEA task 23). Identifying and targeting the sustainability objectives/criteria and renovation approaches is therefore a key point to that. In addition, it is paramount to TSBD to also evaluate how a renovation scenario may influence the experience of the built environment. As such, the TSBD framework relies on the following:

- **Sustainability** is considered as the most desired value for renovation of the existing building stock. For expanding of the holistic sustainability objectives/criteria in building renovation, the recent research by Kamari et al [32] about development of a new holistic sustainability decision-making support framework, has been used. The study was inspired by a number of sustainability assessment methodologies [33] using Soft Systems Methodologies - SSM [23] and Value Focused Thinking [34]. The product was a sustainability Value Map for building renovation consisting of three categories – Functionality, Accountability, and Feasibility – with a total of 18 sustainable value-oriented criteria (see Table 2) and 118 sub-criteria. The procedure for development of the Value Map has been a consensus-based process. The major part of the criteria in the Functionality category are quantifiable while the qualitative criteria have been listed in other category named Accountability. From other side, Feasibility category contains a mix of quantitative (i.e. cost criteria) and qualitative criteria such as advantages in using an efficient renovation process where it influence the key stakeholders.

Table 2. List of sustainable value oriented criteria for building renovation (adapted from [32])

<table>
<thead>
<tr>
<th>FUNCTIONALITY</th>
<th>ACCOUNTABILITY</th>
<th>FEASIBILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor comfort</td>
<td>Aesthetic</td>
<td>Investment cost</td>
</tr>
<tr>
<td>Energy efficiency</td>
<td>Integrity</td>
<td>Operation & maintenance cost</td>
</tr>
<tr>
<td>Material & waste</td>
<td>Identity</td>
<td>Financial structures</td>
</tr>
<tr>
<td>Water efficiency</td>
<td>Security</td>
<td>Flexibility & Management</td>
</tr>
<tr>
<td>Pollution</td>
<td>Sociality</td>
<td>Innovation</td>
</tr>
<tr>
<td>Quality of services</td>
<td>Spatial</td>
<td>Stakeholders engagement & education</td>
</tr>
</tbody>
</table>

- **Tectonics** theory of architecture is used to articulate a linkage between technically motivated alterations and the spatial experience of a building for renovation purpose. In order to expand the tectonics principles for this reason, the recent studies by Jensen et al [35] about development of a vocabulary between ‘technical concept’, ‘construction’, and ‘spatial gestures’, together with study by Hvejsel et al [9] about development of a tectonic approach to energy renovation in a Danish context, have been used. Both the studies have re-read the tectonics theory throughout the spatial and methodological conceptions of the term that is specific to, and link, the works of Semper [21], Sekler [18], and Frascari [36]. They conclude that tectonics holds the potential to equip us with a detailed spatial view and in depth structural understanding of buildings, which considers significantly fitted for building renovation projects.

- **Holistic Multi-methodology for Sustainable Renovation** - HMSR is used in TSBD as a holistic multi-design methodology for development of the renovation scenarios according to the recent studies by [4,5,37]. The authors identify the retrofitting as a highly complex and socio-technical
system and subsequently investigate and address the concept of Holism (including cultural and technological changes) in this field. Ultimately, the study is wrapped up by producing a multi-methodology based on a mix of SSM and Multiple Criteria Decision Making – MCDM [38] methods, which includes 23 steps/actions. The part of HMSR also proposes application of a Decision Support Systems – DSS [6,39] for generation of the renovation scenarios concerning “hard” criteria towards addressing “soft” criteria in the next steps. As such, HMSR can serve as a mean to structure retrofitting problems in accordance with the sustainability in its totality, support the decision-making, and help to develop and select the most appropriate retrofitting alternatives. It has been structured in three levels (see Figure 1) and the decision-making on third level is considered as the integrated design process implementation and evaluation for sustainable renovation and entitled scientific decision-making.

![Figure 1. Three levels of decision-making for building renovation (adapted from [37])](image)

It may be difficult to recognize the correlation between sustainability and tectonics in building renovation. For more clarification on synthesizing the concept of sustainability with tectonics, the research “Towards a Tectonic Sustainable Architecture” by Danielsen et al [40] which explores “Can tectonic thinking form a basis for new strategies for contemporary sustainable building practices?”, is propounded and unfolded. Danielsen et al [40] considered in what manner the paradigm of sustainability influences the realm of the tectonics. They started to unpack architecture using an ancient theory by Marcus Vitruvius Pollio (in the first century AD) including firmitas (durability), utilitas (utility), and venustas (delight). In this framework, the authors defined two principles of tectonics with reference to Semper [41] as a result of conscious artistic work, and the material properties and the design of constructions, whereas the functional dimensions of architecture are paid less attention (according to [19]). However, they stated that Semper’s downsizing of functional aspects is important to be aware of when approaching the research-question stated above, which concerns how tectonics may affect sustainable solutions (also being functional). Consequently, tectonics thinking was defined as “a central attention towards the nature of the making, and the application of building materials (construction) and how this attention forms a creative force in building constructions, structural features and architectural design (construing) – can be used to identify and refine strategies for improving a contemporary sustainable building industry” [40]. This demonstrates the value of using tectonics for articulation of architectural principles to perform a building renovation alongside with sustainability objectives/criteria. In our understanding, however, the authors’ view about sustainability in the research by Danielsen et al [40] is not comprehensive enough. For TSBD framework presented in this paper (see Figure 2), as stated earlier, sustainability is referred to the studies by Kamari et al [32], Butters [12], International Living Future Institute [42], or SPeAR by Arup Group Limited Arup [43] including more holistic
objectives/criteria. That makes the sustainability in TSBD framework as the most desired and ultimate value, for issuing out the objectives/criteria in the design process towards application of certain renovation approaches to achieve them. Subsequently tectonics theory principles tailors them into each other. The result enhances both “hard” and “soft” objectives/criteria of renovation in parallel. Finally yet importantly, it is use of an efficient design methodology (here refers to use of HMSR) that eventually makes it all possible.
5. Conclusion and Further studies

5.1. Conclusion

This paper set out the findings regarding to the evaluation of 10 European renovation research projects into development of a conceptual framework under the topic of TSBD - Tectonic Sustainable Building Design. TSBD seeks for interaction between architecture, sustainability objectives and an equipped design process. It is therefore attached to the *tectonics* (refers to architectural articulation theory), the *sustainability* (refers to the holistic objectives), and a holistic multi-methodology - HMSR (refers to the integrated design methodology). By focusing on TSBD thinking in the field of building renovation, one forms a strategy of establishing a link between the intentions embedded in the architectural transformation and the way these are perceived by the user/owner of the building, what refers as articulation of architecture theory using *tectonics* principles. It hence influences the experience of the built environment in human scale. Furthermore, it can serve as a means to unify the platform for renovation strategies for refining and improving the contemporary building sector seen in the light of sustainability, and supporting the decision-making ahead of developing renovation scenarios as holistically as possible. Above all, it provides a clear focus in the design process and a common language among the stakeholders who are involved in the process, which leads to improve the current practice of renovation.

5.2. Further studies

Rise of new paradigms such as *sustainability* and its development during the last two decades has led to increase the level complexity consisting of broad range of objectives/criteria and expectation in AEC sector. To cope with the increased level of complexity, new approaches to building design, and the methods and tools that support them must be preceded by new ways of imagining and thinking. The complexity of issues within the domain should be explored through broader perspectives and hence the traditional design approaches should be re-considered and equipped to become enable to deal with its level of complexity and multifaceted nature. The study in future concerns expanding of the TSBD framework for Building Design in general. That means move from building renovation to design of new buildings. For this reason application of digital tools through framework of BIM (Building Information Modelling) is proposed and structured as an integrated design methodology (following the concept: BIM is a Methodology neither tool nor method). It hence is replaced with the HMSR in this paper. In this regard, BIM’s notion needs to be addressed as a methodology and then it should get processed and equipped by use of both Soft Systems Methodologies - SSM (where a design problem is able to be formulated) and Hard Systems Methodologies - HSM (use of decision support systems and simulation tools) through an effective design process (from conceptual design to detail design stages) for developing a holistic sustainable building design. Further research can also explore the notion of *tectonics* through *sustainability* and vice versa; as well as the effects of recent technologies and digital tools on *tectonics* expression (known as algorithmic *tectonics*).

Acknowledgements

The authors of the paper would like to show their gratitude to the Danish Innovation Foundation for financial support through the RE-VALUE research project.
References

[32] Kamari A, Corrao R, Kirkegaard PH. Sustainability focused Decision-making in Building Renovation. *International Journal of Sustainable Built Environment* 2017; Manuscript has been accepted ahead of publication. doi:10.1016/j.ijsbe.2017.05.001
Appendix 1 – Further information about analysed renovation research projects

<table>
<thead>
<tr>
<th>Project name</th>
<th>Year</th>
<th>Countries involve</th>
<th>Total cost</th>
<th>EU program</th>
</tr>
</thead>
<tbody>
<tr>
<td>iNSPiRe Development of Systemic Packages for Deep Energy Renovation of Residential and Tertiary Buildings including Envelope and Systems</td>
<td>2012 - 2016</td>
<td>Spain, Germany, Sweden, Austria, Italy, France, United Kingdom, Belgium</td>
<td>EUR 10 841 678,29</td>
<td>FP7</td>
</tr>
<tr>
<td>http://cordis.europa.eu/project/rcn/104743_en.html</td>
<td></td>
<td>Links to Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EcoShopping Energy efficient & Cost competitive retrofitting solutions for Shopping buildings</td>
<td>2013 - 2017</td>
<td>Germany, Spain, Austria, Portugal, Croatia, Poland, Italy, Spain, United Kingdom, Turkey, Taiwan, Hungary</td>
<td>EUR 5 929 338,01</td>
<td>FP7</td>
</tr>
<tr>
<td>http://cordis.europa.eu/project/rcn/109127_en.html</td>
<td></td>
<td>Links to Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HERB Holistic Energy-efficient Retrofitting of residential Buildings</td>
<td>2012 - 2016</td>
<td>Greece, United Kingdom, Italy, Portugal, Germany, Switzerland, Spain, Turkey, Poland, Netherlands</td>
<td>EUR 8 606 892,87</td>
<td>FP7</td>
</tr>
<tr>
<td>http://cordis.europa.eu/project/rcn/105487_en.html</td>
<td></td>
<td>Links to Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REFURB REmotional process innovations FOR Building renovation packages opening markets to zero energy renovations</td>
<td>2015 - 2018</td>
<td>Belgium, Netherlands, Denmark, Slovenia, Estonia, Germany</td>
<td>EUR 2 074 875</td>
<td>FP7</td>
</tr>
<tr>
<td>http://cordis.europa.eu/project/rcn/194628_en.html</td>
<td></td>
<td>Links to Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>READY Resource Efficient cities implementing ADvanced smart city solutions</td>
<td>2014 - 2019</td>
<td>Denmark, Sweden, Lithuania, Austria, France</td>
<td>EUR 33 340 202,60</td>
<td>FP7</td>
</tr>
<tr>
<td>http://cordis.europa.eu/project/rcn/197826_en.html</td>
<td></td>
<td>Links to Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3ENCULT Efficient ENergy for EU Cultural Heritage</td>
<td>2010 - 2014</td>
<td>Denmark, Germany, Austria, UK, Spain, Italy, France, Netherlands, Czech Republic, Belgium</td>
<td>EUR 6 704 955,74</td>
<td>FP7</td>
</tr>
<tr>
<td>http://cordis.europa.eu/project/rcn/97086_en.html</td>
<td></td>
<td>Links to Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MORE-CONNECT Development and advanced prefabrication of innovative, multifunctional building envelope elements for MODular RETrofitting and CONNECTions</td>
<td>2014 - 2018</td>
<td>Netherlands, Latvia, Estonia, Portugal, Denmark, Czech Republic, Switzerland</td>
<td>EUR 5 557 263</td>
<td>H2020</td>
</tr>
<tr>
<td>http://cordis.europa.eu/project/rcn/193236_en.html</td>
<td></td>
<td>Links to Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BuildHeat Standardized approaches and products for the systemic retrofit of residential Buildings, focusing on HEATing and cooling consumptions attenuation.</td>
<td>2015 - 2019</td>
<td>Italy, Belgium, Germany, Austria, Spain, United Kingdom</td>
<td>EUR 9 136 072,50</td>
<td>H2020</td>
</tr>
<tr>
<td>http://cordis.europa.eu/project/rcn/198377_en.html</td>
<td></td>
<td>Links to Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NeZER Promotion of smart and integrated NZEB renovation measures in the European renovation market.</td>
<td>2014 - 2017</td>
<td>Finland, Netherlands, Sweden, Romania, Spain</td>
<td>Co-funded</td>
<td>H2020</td>
</tr>
<tr>
<td>RePublic_ZEB Refurbishment of the Public building stock towards nZEB</td>
<td>2014 - 2016</td>
<td>Greece, Romania, United Kingdom, Croatia, Hungary, Slovenia, Portugal, Italy, Bulgaria, Spain, Macedonia</td>
<td>Co-funded</td>
<td>H2020</td>
</tr>
</tbody>
</table>