Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool

Kallin R. Mesa1, Panteleimon Rompolas1, Giovanni Zito2, Peggy Myung1,3, Thomas Y. Sun1, Samantha Brown1, David G. Gonzalez4, Krastan B. Blagoev5,6, Ant M. Haberman4 & Valentina Greco1,3,7,8

Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression)4-6. In contrast to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration1. Here we show by intravital microscopy in live mice6-7 that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbours. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through transforming growth factor (TGF)-β activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool, as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviours and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis.

Tissue regression in the hair follicle is thought to be mediated through programmed cell death7. However, it is unclear which cells within the follicle are removed and whether this process is a result of intrinsic cellular exhaustion or active elimination by extrinsic factors. We used our established intravital microscopy technique8 to visualize cell behaviours non-invasively in live mice during hair follicle regression (Fig. 1a, Extended Data Fig. 1 and Supplementary Video 1). Unexpectedly, time-lapse recordings of epithelial nuclei (made visible using H2B-green fluorescent protein (GFP)) driven by the keratin 14 promoter (K14-H2B-GFP) revealed a lack of cell death by nuclear fragmentation in the suprabasal (inner) layers. Furthermore, time-lapse recordings and genetic lineage-tracing approaches showed that inner layers were eliminated through upward terminal differentiation9 (Fig. 1b, c, Extended Data Fig. 2 and Supplementary Video 2). In contrast, using live imaging we captured cell death in the basal epithelial layer. Furthermore, we found that apoptotic debris was retained within the basal epithelium and relocated around neighbouring nuclei, suggesting that basal epithelial cells may act as phagocytes to remove epithelial cellular debris during hair follicle regression (Fig. 1d and Supplementary Video 3). To test this, we induced mosaic expression of a cytoplasmic tdTomato fluorescent reporter in the basal layer. This showed internalization of tdTomato epithelial debris into neighbouring tdTomato basal epithelial cells (Fig. 1e). Ultrastructure analysis confirmed phagocytosis of apoptotic bodies by basal epithelial cells (Fig. 1f and Extended Data Fig. 3). Tracking this process in real time with cytoskeletal and nuclear labelling demonstrated that in real time from the single cell was dispersed within the surrounding epithelium and collectively internalized by neighbouring basal epithelial cells (Fig. 1g and Supplementary Videos 4-6). Consistent with these findings, professional phagocytes10 were neither present inside the regressing hair follicles nor did they colocalize with epithelial cell debris (Extended Data Fig. 4 and Supplementary Videos 7, 8). Taken together, these data reveal two modes of epithelial cell elimination during hair follicle regression. While suprabasal cells undergo terminal differentiation, basal epithelial cells undergo apoptosis and are collectively removed by their basal epithelial neighbours. These findings, along with work done on the mammary gland10,11, support a new paradigm of physiological epithelial self-clearance.

Thus, we have demonstrated that the basal epithelium adopts new cellular behaviours from growth to regression12. During growth, highly mitotic cells fuel downwards extension of the basal epithelium. These basal cells, located in the lower follicle, are also more likely to be eliminated during regression, suggesting a model in which mitotic exhaustion primes cells for death12. An alternative model could be that cell death is driven by extrinsic cues based on spatial location in the basal epithelium. To test these models, we promoted survival intrinsically in the basal epithelium using the Wnt/β-catenin signalling pathway, which is expressed in the suprabasal layers and has been implicated in survival of these cells12 (Fig. 2a and Extended Data Fig. 5). We used a Cre-inducible genetic model to activate β-catenin signalling ectopically in single cells of the basal epithelium and track survival during regression in vivo (Fig. 2b). Control experiments confirmed a spatial bias of cell survival in the upper basal layer, as suggested by previous work12. Although β-catenin activation was observed to enhance cell survival throughout the follicle, the spatial bias of cell survival seen in controls was retained in the β-catenin-activated follicles (Fig. 2c, d). These data suggest that inductive factors such as Wnt/β-catenin signalling alone do not explain the pattern of cell survival observed and implicate extrinsic factors to induce cell death in the basal epithelium.

These results prompted us to ask whether the observed pattern of basal cell survival was the result of spatially regulated induction of cell death. Quantifications of cell death events in time-lapse recordings of various stages of regression revealed an initial localized induction of cell death at the bottom of the follicle, which is in direct contact with the hair follicle mesenchymal dermal papilla niche (Fig. 3a and Supplementary Video 9). Therefore, we hypothesized that interaction with the dermal papilla promotes cell death along the basal epithelium of the hair follicle. To test this, we used two-photon laser ablation13 specifically to remove the dermal papilla at the onset of regression and revisited the same hair follicles over time (Fig. 3b). Dermal papilla ablation resulted in significantly reduced death of basal epithelial cells as measured by hair follicle length when compared to neighbouring unaltered hair follicles (Fig. 3c and Extended Data Fig. 6). Significant differences in ablated and unaltered hair follicle lengths are seen as early as 2 days after ablation, suggesting that the dermal papilla directly promotes regression (Fig. 3d). The difference in length of ablated and unaltered hair follicles could be
Figure 1 | Basal epithelial cells collectively act as phagocytes to clear neighbouring epithelial cell debris. a. Schematic of hair follicle in regression, indicating the basal and suprabasal (inner) epithelial layers, using K14-H2BGFp mice. b. Single optical sections showing upward collective movement of inner layers in relation to surrounding basal epithelial cells at successive time points, 2.5 h apart (compare position of yellow and white dashed lines). c. Single-cell lineage tracing of inner layer cells during regression (n = 30 cells, in 4 mice). Labelled cells were revisited daily. Asterisk indicates mesenchymal dermal papilla. d. Single optical sections showing cell death (nucleus fragmentation) at successive time points. Note that fragments (green) relocate (white arrow) around neighbouring epithelial nuclei (yellow, red and blue). e. Whole-mount staining showing engulfment of neighbouring basal epithelial cellular content by phalloidin staining (blue) in with mosaic Cre induction in a basal layer. Nucleus is indicated in green and cytoplasm in red. f. Electron micrograph illustrating multiple apoptotic bodies (red arrowhead) present in basal epithelial cells. Basal, basal epithelial cld; Der, dermis. Inset shows high-magnification electron micrograph depicting desmosomal junctions (arrowhead) of phagocytic epithelial cells. Scale bar, 500 nm. g. Single optical sections of both coronal and transverse planes (x,y and x,z) at successive time points 4 min apart showing internalization of an apoptotic body (yellow border) by a neighbouring basal epithelial cell. Nucleus is indicated in red and cell cortex in green. h. Scheme of the two modes of elimination of epithelial cells and collective phagocytic uptake of basal epithelial apoptotic bodies by neighbouring basal epithelial cells during regression. Scale bars, 20 μm unless otherwise indicated.

was significantly reduced compared to control follicles at this initial time point. The debris generated from these follicles by day 2 was cleared by day 4, similar to control follicles, suggesting that cell clearance is relatively unaffected by dermal papilla removal (Fig. 3e). Collectively, this establishes a functional role for the mesenchymal niche to promote basal epithelial cell death.

To understand the molecular signalling that facilitates basal epithelial cell death, we investigated the TGF-β signalling pathway, as exogenous administration of TGF-β ligand has been shown to induce precocious hair follicle regression. We found that TGF-β ligands are expressed by the mesenchymal dermal papilla, whereas TGF-β signalling is active in the basal epithelium during the regression phase (Fig. 3f–h and Extended Data Figs 7, 8a). To test the functional role of TGF-β signalling in basal epithelial cell death during regression, we conditionally eliminated TGF-β receptor 1 (TGF-βR1) in the basal layer (Extended Data Fig. 8c, d). Removal of TGF-βR1 at the onset of regression resulted in aberrant accumulation of basal cells by the end of regression when compared to control littermates (Fig. 3i–k). Together, these data demonstrate that extrinsic regulation through TGF-β signalling and epithelial–mesenchymal crosstalk induces cell death along the basal epithelium while sparing a restricted pool of stem cells.

This work raises the question of whether hair follicle regression serves to eliminate either exhausted basal cells or functional cells from an expanded stem cell pool. To address this question, we used as approach to remove the dermal papilla transiently during regression (Fig. 4a). Strikingly, as neighbouring unablative follicles began a new round of growth, dermal-papilla-ablated follicles that had failed to complete
regression also initiated hair growth from the bottom of their aberrantly long basal epithelium. Furthermore, ablated hair follicles appeared grossly normal, with proper generation of differentiated suprabasal layers, similar to neighbouring unabluted hair follicles (Fig. 4b). These findings demonstrate that basal epithelial cells of the hair follicle are not intrinsically committed for cell death, but rather retain a capacity to regenerate a tissue. This suggests that regression functions to reduce an expanded stem cell pool following tissue growth.

We show that physiological regression is an extrinsically regulated process that reduces the size of the hair follicle stem cell compartment committed for cell death, but rather retain a capacity to regenerate a tissue. This suggests that regression functions to reduce an expanded stem cell pool following tissue growth.

Figure 3 | Mesenchymal dermal papilla crosstalk and TGF-β signalling are required for cell death in the basal epithelium. a, Graphical representation and quantification of spatial distribution of cell death in the basal layer at three stages of regression using time-lapse recordings (n = 9 follicles, in 5 mice). DP, dermal papilla. b, Scheme of laser ablation experiment. c, Sequential revisits of hair follicles after dermal papilla ablation during regression. Yellow arrowhead indicates laser ablation site. Asterisk indicates auto-fluorescence from the two photon laser. d, e, Dot plot quantification of the hair follicle length at Day 0, 2 and 4 after dermal papilla ablation (d) and of the number of apoptotic fragmentation sites at day 2 and 4 after dermal papilla ablation (e) (n = 36 follicles, in 6 mice; mean ± standard deviation (s.d.)). f, g, Messenger RNA levels of Tgfbr1 ligand expression in the mesenchymal dermal papilla (f) and Smad7 expression in hair follicle basal layer throughout the hair cycle (g) (mean ± s.d.; n = 3 technical replicates). Hair follicle phases indicated as: Gro, growth; Reg, regression; Rest, h. Localized TGF-β activation by immunofluorescent staining of phosphorylated (p)Smad2 at the onset of hair follicle regression. k, l, Dotted plots of quantification of the hair follicle length (j) and of the number of apoptotic fragmentation sites at the end of regression (k) (n = 31 follicles, in 4 mice; mean ± s.d.), NS, not significant. *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001 indicate a significant difference. Scale bars, 25 μm.

Figure 4 | Basal epithelial cells targeted for cell death retain regenerative potential. a, Scheme of laser ablation experiment. b, Sequential revisits of hair follicles after dermal papilla (DP) ablation during the next round of growth.

(postnatal day (P)22–P35). White arrowhead indicates differentiated inner layers. Observations shown represent n = 3 mice. Scale bars, 25 μm.
while leaving terminal differentiation programs unaffected. Regression is regulated through TGF-β signalling initiated by the mesenchymal niche to induce spatially restricted cell death in the basal epithelium. Clearance of apoptotic cells is a self-contained process driven by epithelial phagocytosis within the regressing basal epithelium. Finally, inhibition of regression through transient loss of the mesenchymal niche demonstrates that cells throughout the hair follicle basal epithelium maintain regenerative competency when in proximity to the mesenchymal niche (Extended Data Fig. 9). All together, we demonstrate that tissue regression relies on spatially coordinated cellular behaviours, and establish a new understanding of the extrinsic regulation that counterbalances tissue growth over the lifespan of an organism.

Online Content Methods, along with any additional Extended Data display items, and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 19 July 2014; accepted 9 February 2015.

Published online 6 April 2015.

Supplementary Information is available in the online version of the paper.

Acknowledgements. We thank E. Fuchs for the K14-H2BGFp (Lei) RFP and K14-GFPActin mice; M. Taketo for the Ctnnb1CreERT2 mice; A. Horwich and K. Mesa for critical feedback; M. Rendíl for technical advice; M. Graham and X. Liu for technical support with electron microscopy; D. Eglí for the H2BmCherry construct; and T. Nottoli for generating the K14-H2BmCherry mouse line. K.R.M. and S.B. were supported by the National Institutes of Health (NIH) Predoctoral Program in Cellular and Molecular Biology, grant no. 5T32 GM007223. K.R.M. is currently a National Science Foundation (NSF) Graduate Research Fellow. This work is supported by the American Cancer Society, grant no. RSG-12-059-02: Yale Spore Grant National Cancer Institute, NIH, grant no.2PDCA121974; the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, grant no. R01AR03663-01; and by The New York Stem Cell Foundation. V.G. is a New York Stem Cell Foundation–Robertson Investigator. P.R. is a New York Stem Cell Foundation–Druckenmiller Fellow. A.M.H. is supported by NIAMS Rheumatic Diseases Research Core Centers grant no. S F30 AR051495-07. K.B.B. was supported by the NSF. The NSF had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The views presented here are not those of the NSF and represent solely the views of the authors.

Author Contributions. K.R.M. and V.G. designed experiments and wrote the manuscript; K.R.M. performed the experiments and analysed the data. P.R. generated the K14-H2BmCherry mouse line and assisted with two-photon time-lapse imaging. G.Z. and P.M. performed immunofluorescence. S.B. performed skin whole-mount staining. T.Y.S. assisted with technical aspects. K.R.M., D.G.G. and A.M.H. performed three-dimensional imaging analysis. K.B.B. helped with data analysis.

Author Information. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to V.G. (valentina.greco@yale.edu).

©2015 Macmillan Publishers Limited. All rights reserved
METHODS
Mice. K14-H2B GFP, Lef1- RFP and K14-GFP Actin were obtained from the Fuchs Laboratory. Tg5/5 mice were obtained from Dr. S. Kato (Yale). Tg5/5 mice were used for immunohistochemistry. Clevers (Clevers Laboratory), Shh-CreER (Clevers Laboratory). Lgt5-CreERT2 (Clevers Laboratory), Clevers Laboratory and Rosa-stop-tdTomato (Zeng Laboratory) were obtained from Jackson Laboratory (JAX)14,15. The Yale Transgenic Facility generated the K14-H2B Brn4Cherry mice. All studies and procedures involving animal subjects were approved by the Institutional Animal Care and Use Committee at Yale School of Medicine and conducted in accordance with the approved animal handling protocol. Lgs-CreERT2 and Shh-CreER were used to recombine alleles and label cells conditionally within specific hair follicle populations and temporally during the regression phase. Cre induction for the lineage-tracing experiments was induced with a single intraperitoneal injection of tamoxifen (100 μg -1 in corn oil) at postnatal day 14. Tg5/5 recombinant was induced with three intraperitoneal injections of tamoxifen (100 μg -1 in corn oil) at postnatal day 10, 12 and 14. Intravital microscopy and laser ablation procedures were carried out as described previously14. For lineage-tracing experiments, only cells that were unambiguously separated from neighbouring cells were sampled to ensure the identity of individual lineages. Mice from experimental and control groups were randomly selected of either gender for live imaging experiments. No blinding was done. All lineage-tracing and ablation experiments were repeated in at least three different mice.
Generation of K14IhhBmCherry mice. Transgenic mice expressing H2BmCherry under the control of the keratin 14 promoter (K14-H2BmCherry) were generated using the following procedure. The H2BmCherry insert (provided by D. Eglit) was amplified by PCR from the TopoTA vector (Life Technologies) using primers 5'-GGCGGATCCTGAGCCGACACGGACG-3' and 5'-GGCTCTAGATATCTTGTA CGACGCTTGC-3', which introduced cleavage sites for BamHI and XhoI restriction enzymes immediately upstream and downstream, respectively, of the open reading frame. The 1.1 kb PCR product was inserted between the BamHI and XhoI sites in the pGZK1.1cassette vector (provided by E. Fuchs). The resulting transgene was digested with SacI and SphI, and the 4.5 kb fragment was injected into blastocysts at the Yale Transgenic Facility (T. Notollo). Chimeric mice were screened initially by PCR and founder mice were selected to establish transgenic mouse lines. These initial lines were subsequently screened by histological analysis, and the line displaying the highest expression levels of the K14IhhCherry reporter was selected to establish the founder strain.
In vivo imaging and laser ablation. Mice between postnatal day 17 and 35 were anaesthetized with intraperitoneal injection of 10 μl g -1 of ketamine/xylazine cocktail mix (15 mg ml -1 and 1 mg ml -1, respectively, in PBS). Anaesthesia was maintained throughout the course of the experiment with vaporized isoflurane delivered by a nose cone as previously described16. Image stacks were acquired with a LaVision帝sM Scope II (LaVision Biotec) microscope equipped with a tunable Chameleon Ultra (Coherent) Ti:Sapphire laser. To acquire serial optical sections, a laser beam (740 nm for Alexa488, 590 nm for H2B GFP, 1040 nm for RDF and tdTomato; 990 nm for simultaneous excitation of GFP and tdTomato) used for confocal imaging of the Tg5/5 and H2BmCherry was focused through a 30 x or 40 x water immersion lens (NA 1.0 and 1.1, respectively; Zeiss) and scanned with a field of view of 0.5 or 0.25 mm 2, respectively, at 600 Hz. Z-stacks were acquired in 1–3 μm steps to image a total depth of 150 μm of tissue. We revisited the same hair follicles in separate experiments as previously described16. For time-lapse recordings, serial optical sections were obtained between 1 and 3 μm intervals, depending on the experimental setup. Laser ablation was carried out with the same optics as used for acquisition. An 800 nm laser beam was used to scan the target area (10–50 μm 2) and ablation was achieved using 36–50 laser power for ~1 s. Ablation parameters were adjusted according to the depth of the target (50–100 μm).
Image analysis. Raw image stacks were imported into Fiji (NIH) or Imaris software (Bitplane/Perkin Elmer) for further analysis. Provided images and Supplementary Videos are typically presented as a maximal projection of 3–6 μm optical sections. Randomly individual labelled cells expressing the tdTomato Cre reporter, the brightness and contrast were adjusted according for the green (GFP) and red (RFP/tdTomato) channels and composite serial image sequences were assembled as previously described. Hair follicle length and labelled cell position values were measured from the top of the stem cell compartment. Apoptotic cell tracking analysis was performed in Imaris software (Bitplane).
Electron microscopy. Trismot skin samples were fixed (2% glutaraldehyde and 2% paraformaldehyde in 0.1 M sodium cacodylate buffer pH 7.4) for 1 h. The samples were rinsed in sodium cacodylate buffer and were post-fixed in 1% osmium tetroxide for 1 h. The samples were rinsed and en bloc stained in aqueous 2% uranyl acetate for an hour further, followed by rinsing, dehydrating in an ethanol series to 100%, and rinsing several times in 100% propy- lene. Then samples were infiltrated with Embed 812 (Electron Microscopy Sciences) resin and baked overnight at 60 °C. Hardened blocks were cut using a Leica UltraCUT UC 77. Sixty-nanometre sections were collected and stained using 2% uranyl acetate and lead citrate for transmission microscopy, and 250-nm-thick sections were stained with either Richardson's stain or 1% Toluidine Blue for light microscopy. For immunolabelled electron microscopy, dissected skin samples were fixed in 4% paraformaldehyde/0.1% glutaraldehyde in phosphate buffer for 30 min and then in 4% paraformaldehyde/phosphate buffer overnight at 4 °C. The samples were rinsed in 0.1M HEPES. To quench, aldehydes were placed in 50 mM NH4Cl plus 100 mM glycine plus 2% sodium ascorbate for 1 h, then rinsed in HEPES buffer and placed in 1% tannic acid/0.1M HEPES for 1 h, then rinsed in 50 mM Tris/50 mM maleate and placed in 2% uric acid/50 mM Tris/50 mM maleate for 1 h. After rinsing, they were dehydrated through a graded series 50% to 95% of ethanol at 4 °C, then infiltrated with LR White resin and cured at 4 °C for 1 h followed by several changes of pure 100% LR White overnight on a rotator at 4 °C. Samples were polymerized at 60 °C for 18 h. Fifty-nanometre resin sections were cut on a Leica UC7 ultra-microtome and collected on nickel formvar/carbon grids, and immunolabelled using a primary chicken anti-GFP (Abcam) diluted to 1:50 for 1 h, rinsed 3x on protein A gold secondary 1:50 (University of Utrecht). The sections were counterstained with 2% uranyl acetate and lead citrate. Grids were viewed in FEI Tecnai Bioptem TEM at 80 kV. Images were taken using Morada CCD and IEMT (Olympus) software.
Immunostaining on paraffin sections and whole-mount skin. Skin was fixed in 4% PFA for whole mount or in 10% formalin for paraffin embedding and used for histological analysis as previously described17. Immunohistochemistry was performed by incubating sections at 4 °C overnight with primary antibodies as follows: mouse anti-β-catenin (1:100, BD #610133; 14/Beta-Catenin, rat anti-CD11b (1:250, e Bioscience #41-0112; M1/70), goat anti-β-cadherin (1:100, R&D #AF3761), rabbit anti-mespp2 (Ser864/407) (1:10000, Cell Signalling #3108; 138D4), and rabbit anti-Lef1 (1:100, Cell Signalling #2286; C18A5). Phasms immunostaining required TSA Plus kit (PerkinElmer). For bright-field immunohistochemistry, biotinylated species-specific secondary antibodies, followed by detection using the ABC kit (Vector Laboratories) and DAB kit (Vector Laboratories), were used according to the manufacturer's instructions. MOM kit was used for mouse antibodies (Vector Laboratories). Secondary antibodies conjugated with FITC, RRX and Cy5 (Jackson ImmunoResearch Laboratories) were used at a concentration of 1:100 for 1 h at room temperature. Alexafluor 550 phallolidin (Life Technologies) was used according to the manufacturer's instructions. FACS. Each skin of K14-H2B GFP, Lef1- RFP and Lgs-CreERT2, Tg5/5 and Tg5/5 tdTomato, K14-H2B GFP mice were harvested at P12, P16 or P20 and were placed on derm cown on 0.2% collagenase (Sigma) at 37 °C for 20 min, and then placed on 0.25% trypsin (Gibco) at 37 °C for 10 min to obtain epithelial cells as previously described18. Cells were stained for 10 min with biotinylated rat anti-CD45 (1:50, e Bioscience #14-3341; RAM34), biotinylated rat anti-CD45 (1:50, BD #553677; 30-F11), biotinylated rat anti-CD117 (1:50, BD #553353; 2B8) and goat anti- integrin-99 (1:50, R&D #AF3827). Cells were washed for 5 min and then incubated with streptavidin–indium–Pacific Blue (2:000, Invitrogen) and Alexafluor 647 donkey anti-rabbit (Jackson ImmunoResearch Laboratories). Cells were isolated on DAPI exclusion and by the following criteria: dermal papilla = RFP +, CD34 +, CD45 +, CD117 +, integrin-99 +; and enriched outer root sheath = RFP +, GFP +, using a FACS Aria II Cell Sorter (BioScience), as previously described18. Cells were sorted into RNAse free DNA isolation (RNase Mini Kit, Qiagen). FACS profiles were analysed through Flowjo software.
RT-qPCR. cDNA was made using Superscript III First-Strand Synthesis Kit (Invitrogen). RT-q-PCR was performed in triplicate with SYBER Green reagents (Invitrogen) using 5 μg cDNA per reaction on the Vii and 7 Real-Time PCR system (Innogen, Life Technologies). Data were analysed by ViATM software, Microsoft Excel and PRISM Gene-specific primers were designed and are listed in Supplementary Table 1.
Statistical analysis. Data are expressed as percentages, box and whisker plots (error bars represent maximum and minimum), or mean ± s.d. An unpaired Student’s t-test was used to analyse datasets with two groups and p < 0.05 to p < 0.0001 indicated a significant difference. Statistical calculations were performed using the Prism software package (GraphPad). No statistical method was used to predetermine sample size.