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Abstract This paper studies opinion dynamics for a set of heterogeneous pop-

ulations of individuals pursuing two conflicting goals: to seek consensus and

to be coherent with their initial opinions. The multi-population game under

investigation is characterized by (i) rational agents who behave strategically,

(ii) heterogeneous populations, (iii) opinions evolving in response to local in-
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Università Ca’ Foscari Venezia

tolotti@unive.it



2 Dario Bauso et al.

teractions. The main contribution of this paper is to encompass all of these

aspects under the unified framework of mean-field game theory.

We show that, assuming initial Gaussian density functions and affine con-

trol policies, the Fokker-Planck-Kolmogorov equation preserves Gaussianity

over time. This fact is then used to explicitly derive expressions for the opti-

mal control strategies when the players are myopic. We then explore consen-

sus formation depending on the stubbornness of the involved populations: we

identify conditions that lead to some elementary patterns, such as consensus,

polarization or plurality of opinions.

Finally, under the baseline example of the presence of a stubborn popu-

lation and a most gregarious one, we study the behavior of the model with

a finite number of players, describing the dynamics of the average opinion,

which is now a stochastic process. We also provide numerical simulations to

show how the parameters impact the equilibrium formation.

Keywords Opinion dynamics, · Consensus · Heterogeneous populations ·

Stubbornness · Mean-Field Games

Mathematics Subject Classification (2000) 91A13 · 91B10 · 91B69 ·

91D30

1 Introduction

Opinion dynamics describe the time evolution of the opinions in a large pop-

ulation of players as the result of repeated interactions among each other over
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a social network (see, e.g., [1, Sect. III] and [2]). Agents belonging to a social

network are continuously bombed by information and their opinions change

in time because of emulation or herd behavior [1,3–7].

In the literature, we speak about consensus whenever opinions converge

to a unique value, of polarization when the consensus values are multiple but

few in number, or even of plurality if the consensus values are multiple and

numerous. A main cause of plurality is represented by “bounded confidence”

(see [5]) whereby players do not take into account the opinion of agents whose

beliefs are too different. A similar phenomenon occurs in the presence of stub-

born players (see [8], [9]) such as leaders of political parties or media sources.

These are players who do not feedback their neighbors’ opinions while at the

same time try to influence the consensus dynamics.

Our aim is to build a tractable model capable of discussing consensus for-

mation in social networks of heterogeneous agents that interact strategically.

More specifically, we study opinion dynamics for a set of heterogeneous popu-

lations of individuals pursuing two conflicting goals: social recognition (due to

imitation, herding); confirmation of initial opinions (stubbornness). As previ-

ously stated, populations are characterized by different levels of stubbornness.

There are hard core stubborn populations in which the players ignore inputs

from neighboring populations; most gregarious populations in which the play-

ers are extremely susceptible to the inputs received from their neighboring

populations; partially stubborn populations in which the players show a mixed

behavior. The final goal is to determine under which conditions on the charac-
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teristics of the agents and of the social network, the individuals reach consensus

on a single or a plurality of opinions.

Our analysis takes advantage of the theory of mean-field games where all

the main ingredients (strategic interactions, heterogeneity, network structure)

can be considered, maintaining tractability. As a matter of fact, interactions

among economic agents is a key concept in the theory of mean-field games

(see [10–13]). The underlying idea is that a large number of indistinguishable

players interact so that the strategy of a single player is influenced by the

distribution of the other players. Explicit solutions are available in [14] for the

linear-quadratic case, and are extended to more general cases in [15]. However,

in [16], it is pointed out that determining the solutions of a mean-field game

is often impractical from a computational point of view; moreover, it does not

naturally correspond to any reasonable dynamic process that agents are likely

to follow in practice. For this reason, in [16] it is assumed that the agents

implement myopic learning dynamics.

Our main contribution is to provide an explicit expression for the optimal

control under the assumption that the players optimize myopically (i.e., as-

suming that moments of populations distributions are constant in time). The

obtained control, once entered into the players’ dynamics, sheds light on the

elementary behavioral patterns of the populations as a whole. In particular, we

group such elementary behaviors into three cases, i) multiple hard core popu-

lations, ii) all populations most gregarious, and iii) one population hard core

and the remaining ones most gregarious. Results in this context are proved
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by making use of graph theory. In doing this, we generalize [17] to prove that

affine control policies preserve the Gaussianity of populations’ distributions

under specific cost structures. This is done by first formulating the problem

as a game with an infinite number of players and using a mean-field approach.

The game involves two partial differential equations (PDEs). The first PDE is

the Hamilton-Jacobi-Bellman equation, which is coupled to a second PDE, the

Fokker-Planck-Kolmogorov equation, which captures the time evolution of the

density in the space of opinions [13,18]. As a further result, we study the case

with a finite number of players on a guideline example with two populations,

a hard core one and a most gregarious one. The average opinion, computed

as the sample average over a finite number of players, is a stochastic process;

we provide bounds on its first and second moments using tools borrowed from

stochastic stability theory.

This paper is organized as follows. In Section 2, we set-up the optimiza-

tion problem for a large network of interacting agents, discussing affine Gaus-

sian Distribution Preserving Strategies. In Section 3 we solve the optimization

problem in the case of myopic agents. As an illustrative example, in Section 4

we discuss the case of a hard core stubborn population vs. a most gregarious

one. In particular, we show how the finite dimensional model behaves in this

case, also by means of numerical simulations. Section 5 contains conclusions.

In Appendix A, we show in details how to interpret the optimization problem

in terms of a mean-field game.
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2 A Network of Interacting Agents

Consider a set I = {1, . . . , n} of n distinct and interconnected populations. To

model interconnections we use a graph G = (I, E) where the node set is the

set of populations I, and E collects all the weighted edges. More precisely, arc

(i, j) belongs to E if the corresponding weight νij > 0. A positive scalar weight

νij represents the relative importance that population i assigns to population

j. For instance νij could be computed as the number of players of population

j over the total number of players of all the neighbor populations. Hereinafter,

we assume that G is strongly connected unless differently specified. This means

that there is a directed path connecting any two arbitrary nodes of the graph.

There are N agents populating the social network. We denote by i(k) ∈ I,

the label of the population to which k belongs. Each agent k = 1, . . . , N is

represented by a (real) state xk(t) evolving in time. In particular, the state of

the generic player k evolves according to

dxk(t) = uk(t)dt+ ξi(k)dW
k(t), xk(0) = xk0 (1)

where (uk(t))t≥0 ∈ U is a suitable control (to be specified later); (ξi)i∈I is a

vector of population dependent volatility terms; (W k(t))t≥0, k = 1, . . . , N are

independent standard Brownian motions leaving in a suitable probability space

(Ω,F ,P); Brownian terms account for misspecifications or generic stochastic

disturbances affecting the evolution of the opinion of the single agents.

Since xk(t) is stochastic, the distribution of the populations’ opinion will

change in time. We denote by mi(x, t) the probabilistic density function of the
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state of players of population i ∈ I at time t; we write m(x, t) or simply m(t)

in place of [mi(x, t)]i∈I and we denote by µi(t) the mean value of mi(x, t).

Individuals are rational : they adjust their opinion by solving an optimal

control problem. As previously stated, there are two opposite driving forces.

From one side, agents tend to align with more recognized opinions, from the

other side, they are willing to be coherent with initial ideas. Moreover, any

change in the strategy has a cost. As it will become clearer later, in deciding

their strategy, agents act strategically, in the sense that they have to predict

the evolution of others’ opinions in order to take their optimal strategy. In this

sense, they play a continuous time game among each other: in Appendix A,

we show how to rewrite the problem at hand as a multi-population mean-field

game in the sense of [13].

We define the running cost ck for agent k belonging to population i(k) = i

as

ck(xk(t), uk(t),m(t)) =

(1− αi)
∑
j∈I

(
νij ln(mj(x

k(t), t))
)
− αi(xk(t)− µi(0))2 − β(uk(t))2, (2)

where the coefficient αi is the stubbornness level of population i ∈ I, with

0 ≤ αi ≤ 1. The cost functional ck is made by three components; the first,

weighted by (1 − αi), measures the popularity of opinion xk(t) according to

the distribution of the other populations. The relevance of population j over

opinion of player k belonging to population i is given by the coefficient νij .
1

1 The choice of a logarithmic cost is commonly used when one wishes to describe a so-

called crowd-seeking behavior on the part of the players (see, e.g., [14]). In this context,
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Note that νij = 0 if populations i and j are not directly connected, so that

agents of population i are not directly influenced by agents in population j.

The second component of ck, weighted by αi, is related to the distance of xk(t)

from the initial average opinion of the domestic population. As previously

stated, this term accounts for coherence (or vicinity) between agents of the

same population. The last term is a cost related to the action control uk(t),

with β > 0 measuring the unitary cost.

In summary, heterogeneity among populations derives from different lev-

els of stubbornness and different initial distribution of opinions. Moreover,

because of the network structure, individuals choose their strategies consid-

ering the actions of their neighbors, namely, the individuals of the neighbor

populations in a weighted way.

Eventually, each player maximizes the following infinite horizon discounted

objective (expected utility) function

J(xk0) := supuk∈U E{
∫∞
0
e−ρtck(xk(t), uk(t),m(t))dt}, (3)

where ρ > 0 measures impatience.

Depending on the value of the parameters, the model captures two radi-

cally distinct types of population: a hard core stubborn population or a most

gregarious population. The players of the hard core stubborn population are

characterized by αi = 1, then they tend to converge to their population’s

initial average opinion µi(0). Conversely, the players of a most gregarious pop-

the logarithmic function expresses the fact that the more players reach a consensus on state

xi(·), the smaller the marginal utility is of each new entrant player with same state xi(·).
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ulation are extremely susceptible to the inputs received from their neighbors

and are characterized by αi = 0: their level of stubbornness is null. Populations

characterized by 0 < αi < 1 are called partially stubborn.

One has yet to determine the set of admissible controls and to fix suitable

initial conditions of the populations’ distributions. Unfortunately, to solve (3)

in all generality would involve the solution of a system of coupled PDEs. This

operation is usually impractical from a computational point of view. We refer

to Appendix A for a general treatment of the problem and the derivation of

the relative PDEs. Because of the complexity of the optimization problem,

as noticed in [16], it is unlikely that the agents will follow such an approach.

Having all of this in mind, it is convenient to restrict attention to a smaller

class of controls, called affine control strategies. This class of strategies, besides

being economically sound, is easy to deal with. We will show that we can

determine the optimal control strategies within this class without resorting to

any iterative computing process.

Given the above arguments we frame our model within the following as-

sumption.

Assumption 1

1.a) Gaussian initial distributions: At time 0, all the populations have a Gaus-

sian distribution:

mi(x, 0) =
1

σ0i
√

2π
e
− (x−µ0i)

2

2σ2
0i , ∀i ∈ I

where σ0i > 0 and µ0i are constant parameters for all i ∈ I.
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1.b) Affine control strategies: Agents adopt affine control strategies. Consider

agent k belonging to population i(k) = i. The agent tracks a time varying

weighted sum of µi(t), µj(t), for all j and µi(0) = µ0i, namely, a strategy

of type

ui(x
k(t), t) = di(t) [ai(t)µi(t) +

∑
j∈I

bij(t)µj(t) + ci(t)µ0i − xk(t)], (4)

where di(t) > 0 and ai(t), bij(t), ci(t) are non negative for all t and

ai(t) +
∑
j∈I

bij(t) + ci(t) = 1.

Some remarks on ui are needed. First of all note that it encompasses the driving

forces described above: the tendency to align with the most popular opinions

(measured here in terms of the average populations’ opinions) and the principle

of preserving the initial average of the domestic population.2 Moreover, it has

the advantage of sharing the form of well-known consensus protocols. Thus, we

can affirm that equilibrium strategies of type (4) drive the opinion of a single

player towards a point in the convex hull of its own current opinion, its own

population’s initial mean opinion, and everybody else’s opinion with respect

to only the adjacent populations. In addition, we can benefit from convergence

results used in the context of consensus dynamics [20]. Finally, note that ui

does not depend on the specific agent k but rather on the statistics of the

population i(k). This allows for the description of a system of N agents in

terms of a system of n equations, where n� N .

2 It is fairly accepted in the context of social interactions to assume that payoffs are

linear in the average choice of the population (see, e.g., [19] for a reference contribution in

the context of binary choice models).
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Before computing the optimal control strategies, we describe a large class

of controls that preserve the Gaussianity of the initial distributions. We refer

to this class as Gaussian Distribution Preserving Strategies (GDPS).

Lemma 2.1 (Gaussian Distribution Preserving Strategies) Suppose

Assumption (1.a) holds. Then, a population i has a probability density function

equal to

mi(x, t) =
1

σi(t)
√

2π
e
− (x−µi(t))

2

2σ2
i
(t) , (5)

for suitable differentiable functions µi(t) and σi(t), provided that each player

k of population i applies a control such as

ui(x
k, t) =Ĉ(t)e

(xk−µi(t))
2

2σ2
i
(t) +

(
2σt(t)σ̇i(t)− ξ2i

2σ2
i (t)

)
(xk − µi(t)) + µ̇i(t), (6)

where Ĉ(t) is a suitable function of time.

Proof First of all, let us state and solve an Inverse Fokker-Planck-Kolmogorov

problem. Consider mi(x, t) : S×R+ → R, of class C2,1, where S ⊆ R is an open

set. Assume that mi is a population density function, such that mi(x, t) 6= 0

for all (x, t). Consider the unidimensional Fokker-Planck-Kolmogorov problem

∂tmi −
1

2
ξ2i ∂

2
xxmi = −∂x (uimi) . (7)

The following control is the solution of (7)

ui =
1

mi
(C(t) +

1

2
ξ2i ∂xmi −

∫ xi

x0i

∂mi

∂t
dxi), (8)

where C(t) is an arbitrary function of time.
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To prove this fact, note that equation (7) can be rewritten as the following

first-order linear differential equation in ui

∂xui = − 1

mi
∂xmiui −

1

mi
(∂tmi −

1

2
ξ2i ∂

2
xxmi). (9)

Given the assumptions on mi, the coefficients − 1
mi
∂xmi and − 1

mi
(∂tmi −

1
2ξ

2
i ∂

2
xxmi) are continuous functions on S. On the other hand, equation (8)

can be interpreted as a set of ordinary differential equations with respect

to the variable x and parameterized in t. Moreover, for each feasible t, the

continuity of the equation coefficients guarantees the existence of a global

solution. In addition, if for each feasible time t, an initial condition uxtt,i for a

point (xt, t) ∈ S is given, then such a solution is unique. Finally, observe that

ui, as defined in (8), solves (9); moreover, for each (xt, t), we can fix C(t) such

that ui(xt, t) = uxtt,i.

We then apply the Inverse Fokker-Planck-Kolmogorov problem to the case

of the Gaussian densities as defined in (5). The solution (8) of (7) in this case,

turns out to be exactly (6). ut

In the next lemma, we show that affine controls of Assumption 1.b, are

GDPS. Thanks to this property, we are also able to characterize the time

varying means and variances of the Gaussian populations’ distributions.

Lemma 2.2 Under Assumption 1, admissible controls are GDPS. Moreover,

for all t ≥ 0 and all i ∈ I,

mi(x, t) =
1

σi(t)
√

2π
e
− (x−µi(t))

2

2σ2
i
(t) , (10)
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where µi(t) and σi(t) are, respectively, the unique solutions to

σ̇2
i (t) = −2di(t)σ

2
i (t) + ξ2i , σ2

i (0) = σ2
0i (11a)

µ̇i(t) = di(t)
[∑

j∈I
bij(t)µj(t) + ci(t)µ0i − (

∑
j∈I

bij(t) + ci(t))µi(t)
]
, µi(0) = µ0i

(11b)

and where functions bij , ci and di have been defined in Assumption 1.

Proof As a consequence of Lemma 2.1, affine control strategies

ui(x, t) = p̂i(t)x+ q̂i(t), (12)

where p̂i and q̂i are C1 functions of time, are GDPS. Indeed, (12) is obtained

from (6), when Ĉ(t) = 0, for all t ≥ 0. Controls as in (4) can be easily rewritten

in the form as in (12), where p̂i(t) = −di(t) and

q̂i(t) = di(t)
[∑

j∈I
bij(t)µj(t) + ci(t)µ0i −

(∑
j∈I

bij(t) + ci(t)
)
µi(t)

]
.

Being GDPS, they preserve Gaussianity of the initial distributions. Moreover,

through a direct application of the Itô Lemma, it can be easily verified that

in the case of affine control strategies, the solution of (1) is

xk(t) = eP̂i(t)
(
xk0 +

∫ t

0

e−P̂i(τ)qi(τ)dτ + ξi

∫ t

0

e−P̂ (τ)dW k(τ)
)
,

with i = i(k) and P̂i(t) =
∫ t
0
p̂i(τ)dτ . In addition, under the same hypothesis,

the mean µi(t) and the variance σ2
i (t) of the population distribution evolve as

follows:

σ2
i (t) =e2P̂i(t)

(
σ2
0i + ξ2i

∫ t

0

e−2P̂i(τ)dτ
)
, (13a)

µi(t) =eP̂i(t)
(
µ0i +

∫ t

0

e−P̂i(τ)qi(τ)dτ
)
. (13b)
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By differentiating equations (13), we obtain (11). ut

Unfortunately, to our knowledge, it is not possible to explicitly determine

the optimal control among the class of affine control strategies, i.e., the optimal

time varying coefficients ai, bij , ci and di characterizing it. Nevertheless, we

will see in the next section that this can be done by assuming that agents

are myopic, in the sense of [16]. By myopic we mean that, when choosing

their strategy at time t, agents consider the future populations’ distributions

as constant and equal to the present ones.

3 The Case of Myopic Agents

Within the class of linear control strategies, we determine analytically those

that are optimal if the agents adopt the myopic perspective discussed in [16].

We call such strategies myopic equilibrium controls. These strategies are based

on the assumption that agents, when taking their decisions at time t, consider

the future populations’ distributions as constant or, put differently, that for

all s ≥ t the populations’ distributions have reached their invariant state.

According to this latter interpretation, myopic equilibrium controls can be seen

as “long run solutions” of (3) in the sense that they involve a set {(mi, ui) : i ∈

I} of functions that satisfy the following properties. For all i ∈ I, mi(·, t) and

ui(·, t) converge to a stationary distribution µeqi (·) and a stationary control

function ueqi (·), such that the set {(m∗i (·, t) = µeqi (·), u∗i (·, t) = ueqi (·)); ∀t ≥

0, i ∈ I} is solution of (3) given the initial conditions m0i(·) = µeqi (·), for all

i ∈ I.
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Assumption 2 Players optimize myopically, that is, at each time t > 0, play-

ers decide their control policy assuming that the populations’ distribution will

remain constant in time. In other words, mj(·, s) = mj(·, t), for all j ∈ I and

s > t.

The above assumption implies that mean and variance of each popula-

tion in I remain constant. Under Assumption 2, it is not difficult to see that

each player k may determine its state-feedback control strategy by solving the

following myopic optimal control problem for each time t.

Ji(x
k(t), t) =

sup
ui∈U

E
{
−
∫ ∞
t

e−ρτ
[
(1− αi)

∑
j∈I

νij
2

(xk(τ)− µj(t))2

σ2
j (t)

+ αi(x
k(τ)− µ0i)

2 + β(ui(τ))2
]
dτ
}

(14)

where xk(t) is given, i = i(k), and

dxk(τ) = ui(x
k(τ), τ)dτ + ξi dW

k(τ), ∀τ ≥ t.

Note that, in (14), we can disregard the term
∑
j∈I −

νij
2 ln(2πσ2

j ) of the run-

ning cost (2) because it is constant.

The following theorem identifies the state-feedback optimal control by spec-

ifying the functions ai, bij , ci and di for the affine strategies as in (4).

Theorem 3.1 Under Assumption 1 and 2, there exist optimal (u∗i (·, t),m∗i (·, t))t≥0,

i ∈ I such that

u∗i (x
k(t), t) =di(t)

(
ai(t)µi(t) +

∑
j∈I

bij(t)µj(t) + ci(t)µ0i − xk(t)
)
, (15)
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where

di(t) =

√
ρ2

4
+
γi(t)

β
− ρ

2
, (16a)

ai(t) =
(1− αi) νii

2σ2
i (t)

γi(t)
, (16b)

bij(t) =
(1− αi) νij

2σ2
j (t)

γi(t)
, (16c)

ci(t) =
αi
γi(t)

, (16d)

being

γi(t) =

(1− αi)

 νii
2σ2

i (t)
+
∑
j∈I

νij
2σ2

j (t)

+ αi

 .
Moreover, the associated populations’ distributions are Gaussian with means

and variances evolving according to equation (11).

Proof The control policy (15) is an immediate consequence of the fact that the

players determine their control policy solving Problem (14) under Assump-

tion 2 at each time t ≥ 0. Problem (14) is a standard linear quadratic problem

yielding the optimal control

ui(x
k(τ), τ) = −K

xk(τ)−
(1− αi)

(
νiiµi(t)
2σ2
i (t)

+
∑
j∈I

νijµj(t)

2σ2
j (t)

)
+ αiµ0i

(1− αi)
(

νii
2σ2
i (t)

+
∑
j∈I

νij
2σ2
j (t)

)
+ αi


= −K

xk(τ)−
(1− αi)

(
νiiµi(t)
2σ2
i (t)

+
∑
j∈I

νijµj(t)

2σ2
j (t)

)
+ αiµ0i

γi(t)

 . (17)

In the above, K = 1
βP , where P is the solution of the following unidimensional

Riccati equation:

1

β
P 2 + ρP − γi(t) = 0,

which has solution P = βdi(t), where di(t) is given in (16a). The values of

ai(t), bij(t), and ci(t) in (16) are consequences of the fact that (17) presents an
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affine structure as in (4) in Assumption 1. The Gaussianity of the populations’

distributions and the time evolution of means and variances as in equation

(11), follow from Lemma 2.2, thanks to the fact that controls are affine. ut

It follows from the above theorem, that a hard core stubborn population

i is characterized by ai(t) = bij(t) = 0 and ci(t) = 1, for all t ≥ 0 and j ∈ I,

whereas a most gregarious population i is characterized by ci(t) = 0, for all

t ≥ 0. It is worth noting that di(t) is a function of only the variance of the

population i and of its neighboring ones. This last observation will become

useful when studying the asymptotic behaviors of the populations in I.

Finally, notice that the set (u∗i (·, t),m∗i (·, t))t≥0, solution to the optimiza-

tion problem (14), is a Nash-Mean Field Equilibrium as described in Appendix

A. This means that, when playing optimal strategies, any agent of population

i does not benefit from changing its control policy if the control policies, and

therefore also the distributions, of the other populations are fixed to respec-

tively u∗j and m∗j for all j ∈ I \ {i}.

3.1 Elementary Macroscopic Behavioral Patterns

In the previous section we have derived myopic equilibrium strategies as solu-

tion of the optimal control problem (14). These equilibrium strategies govern

the microscopic evolution of the players’ opinions given in (1). We now provide

details on the macroscopic dynamics resulting from the above microscopic be-

haviors. In particular, we detect three different elementary behavioral patterns,

all of which are connected to classical consensus dynamics.
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The next corollary establishes that disagreement or polarization of opin-

ions, arise even in response to the presence of just two partially stubborn

populations.

Corollary 3.1 (Equilibrium of Means and Disagreement) Consider two

populations i and j in I which are at least partially stubborn. Assume, more-

over, that µ0i 6= µ0j. Then, the means of the two populations cannot converge

to the same value.

Proof By virtue of Theorem 3.1, we know that populations’ distributions evolve

according to (11b). Assume by contradiction that the means of the two popula-

tions converge to the same value: µeqi = µeqj = µeq. If we are at the equilibrium,

(11b) implies

di(
∑

k∈I
bikµ

eq + ciµ0i − (
∑

k∈I
bik + ci)µ

eq) = 0 ⇔ dici(µ0i − µeq) = 0;

dj(
∑

k∈I
bjkµ

eq + cjµ0j − (
∑

k∈I
bjk + cj)µ

eq) = 0 ⇔ djcj(µ0j − µeq) = 0.

The above conditions hold iff µ0i = µ0j , in contradiction with the lemma’s

hypothesis. ut

In the next theorem we show how to take advantage of the relationship be-

tween strategies (4) and consensus algorithms as in [20]. To this aim, consider

an extended graph G′ = (I ∪ {01, . . . , 0n}, E ∪ {(1, 01), . . . , (n, 0n)}, ) as illus-

trated in Figure 1. Graph G′ enriches G with a new node per each population

j, representing the initial average value µ0j (we call it 0j); it also shows a new

directed edge (j, 0j). Nodes and edges of the original graph G are in blue, while

the new nodes and edges of G′ are in red. The construction of an extended
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Fig. 1 Extended communication graph G′ obtained from G by adding the red nodes and

the directed red edges.

graph will contribute a new perspective on the equilibrium strategies, these

being now rewritten as consensus protocols [20]. With the above graph in

mind, let us denote by Θ(t) = [µ1(t), µ01(t), . . . , µn(t), µ0n(t)]T where µ0n(t)

is fictitiously made dependent on time. Let us also introduce

Θ0 = [µ01, µ01, . . . , µ0n, µ0n]T . Then dynamics (11b) can be written in vector

form as

Θ̇(t) = −LG′ Θ(t), Θ(0) = Θ0

where LG′ denotes the Laplacian matrix of the graph G′. The dynamics have

the form of classical consensus dynamics. Once we realize this, we can extend

to general opinion dynamics as in (11b), taking advantage of results pertaining

to the consensus literature [20].

We show the powerfulness of these techniques by deriving some represen-

tative and elementary behavioral patterns on the social network. More specif-

ically, we now describe three behavioral patterns, which pertain to different

scenarios, involving i) one or more hard core populations, ii) populations which
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are all most gregarious, and iii) one hard core population and the rest of the

populations most gregarious. A sufficient condition to have convergence of

mean values of the populations’ distributions, is that the populations’ initial

variances are at the equilibrium at time 0, or, put differently, that we start

monitoring the process once the variances have reached suitable steady states.

Theorem 3.2 (Elementary Behavioral Patterns) Suppose

σ2
0i =

ξ2i
2di(0)

, ∀i ∈ I. (18)

The following facts hold true.

1. ( hard core stubborn population) If a population i ∈ I is hard core stubborn

(αi = 1) then

µi(t) = µ0i, t ≥ 0. (19)

2. ( most gregarious populations) If all the populations i ∈ I are most gre-

garious, the means of the populations converge exponentially to a single

consensus value, namely,

µeqi = µeq, ∀i ∈ I. (20)

Furthermore, if graph G is balanced (or undirected), expectations converge

exponentially fast to the average consensus value, i.e.,

µeq =
1

n

n∑
k=1

µ0k, (21)

with known bound for the convergence rate.
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3. ( single partially stubborn population) If there exists a population j ∈ I

that is not most gregarious (αj > 0) and all the remaining populations

i ∈ I \ {j} are most gregarious (αi = 0), then for all i ∈ I \ {j}

µeqi = µeqj = µ0j . (22)

However, if population j is not hard core stubborn and bji is not equal to

0 for all i ∈ I \ {j}, in general, there could exist some t > 0, such that

µj(t) 6= µ0j.

Proof Let us start by noting that according to (13a) and (11a), condition (18)

is exactly what is needed to ensure that the populations’ variances are in

equilibrium at time 0. In this case, the values of ai, bij , ci in (16) are constant

in time, for all i ∈ I. Therefore, also the populations’ means µi(t), solutions

of (11b), converge to (possibly different) finite values, i.e.,

lim
t→∞

µi(t) = µeqi . (23)

We can interpret conditions (11b) as the equations of a stable dynamic con-

sensus system (see [20]), whose state is [µ(t), µ0(t)], where µ(t) = {µi(t), i ∈ I}

and µ0(t) = {µ0i, i ∈ I}.

1. If αi = 1, then, (11b) becomes µ̇i(t) = dici(µ0i−µi(t)), whose only solution

is µi(t) = µ0i for all t ≥ 0.

2. If ci = 0, for all i ∈ I, then equations (11b) can be rewritten as
µ̇1(t)

...

µ̇n(t)

 = −LG


µ1(t)

...

µn(t)

 where (LG)ij =


dibij if j 6= i,

−di
∑
j∈I bij if j = i.

(24)
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Equation (24) describes an autonomous dynamic system whose state com-

ponents are the means of the populations. Since we assume that G is

strongly connected, the Laplacian matrix LG of G is a transition rate ma-

trix with a right eigenvector equal to 1 := [1, 1, . . . , 1]T and a corresponding

null eigenvalue. In other words, we have LG1 = 0. Consequently, the com-

ponents of its state, that is the means of all the populations, converge to

a single consensus value [20].

To prove the second part of the statement, let θ(t) = [µ1(t), . . . , µn(t)]T

and θ0 = [µ01, . . . , µ0n]T . In other words, (24) reads

θ̇(t) = −LG θ(t), θ(0) = θ0.

Now, let us consider the disagreement function (see [20])

φ(θ) =
1

2
θTLGθ.

It is well-known that, if the graph G is balanced (or undirected), then 1 is

a left eigenvector for LG; therefore, the average 1
n

∑
k∈I µk(t) is invariant

and this proves the convergence towards the average consensus. In addition,

dynamics (24) are equivalent to the gradient descent law (see [20])

θ̇(t) = ∂θφ(θ(t)).

Let λ2 be the second smallest eigenvalue of LG, also known as Fiedler

eigenvalue, and let the disagreement vector be δ = θ − 1( 1
n

∑
k∈I µ0k).

Exponential stability derives from using the Lyapunov function Φ(t) = δT δ
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and noting that it holds that

Φ̇(t) = −2δTLδ ≤ −2λ2δ
T δ = −2λ2Φ.

The latter equation implies that the convergence rate is bounded from

below by the Fiedler eigenvalue.

3. First, we note that the graph G′′ = (I ∪ {j0}, E ∪ {(j, j0)}) has a directed

spanning tree as G is strongly connected. Here, node j0 acts as leader.

Then, even in this case, equations (11b) describe an autonomous dynamic

system in which the means of all the populations converge to a single con-

sensus value. Then, as regards population j, the only stable condition is

that µj(t) = µ0j .

To prove the second part of point 3, note that if
∑
i∈I bij 6= 0 and if∑

i∈I bijµi(t)∑
i∈I bij

6= µ0j for some t > 0, then µ̇j(t) 6= 0, as the control imple-

mented by the players of population j is not symmetric with respect to

µ0j . Thus, the mean of the population swings towards
∑
i∈I bijµi(t)∑
i∈I bij

.

ut

Let us note that case 1. of Theorem 3.2 does not require any assumption

of strong connectedness of graph G. In fact, result (19) trivially holds also in

case a population i ∈ I, independently of the value of αi, is characterized by

νij = 0 for all j ∈ Ii, that is, when population i is not strongly connected to

any other population.

Figure 2 depicts a simple example of graph G′ for each case treated in the

previous results. Indeed, G (the blue graph) is strongly connected in all the

situations except for the one in panel b). In panel a), we have the case dealt
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with in Corollary 3.1, characterized by two partially stubborn populations. In

panel b), we see an example of case 1. of Theorem 3.2, where both a hard core

stubborn population and a population not strongly connected to any other

population are present. Panel c) represents case 2. of Theorem 3.2, where all

populations are most gregarious and no directed link connects them to the red

nodes representing their initial mean values. Finally, in d), we identify case 3.

of Theorem 3.2, where we have just one partially stubborn population and the

others are all most gregarious.

a) b)

c) d)

1

3 4

2

1

4

1

4

1

4

3

2

3

2

3

2

Fig. 2 (a) two partially stubborn populations (populations 1 and 3); (b) one hard core stub-

born population (population 3) and one partially stubborn population (population 1) not

strongly connected to any other population; (c) most gregarious populations (populations

1, 2, 3 and 4); (d) a single partially stubborn population (population 1)
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In the parlance of opinion dynamics, both cases 2. and 3. of Theorem 3.2

are referred to consensus of opinions. This depends on the fact that we have

assumed graph G to be strongly connected and there is no more than one at

least partially stubborn player. If we relax the strong connectivity assumption

in favor of multiple strongly connected components, we can have polarization

(only two strongly connected components) or even plurality of opinions (sev-

eral strongly connected components). The results provided above can also be

extended to time-varying graphs G(t) = (I, E(t)), where now the edge set E(t)

depends on time. Sufficient conditions involve then the existence of a spanning

tree for the union graph over a period, namely the graph with the edge set

obtained by the union of the infinite edge sets occurring in a given interval

(see [20]). Of particular interest, when dealing with time-varying topologies,

is the case of periodical changes of the spanning tree. In this setting, one can

model different populations acting as leaders in different periods. This situa-

tion can be obtained as a combination of the elementary behavioral patterns

as described in Theorem 3.2. We skip the technical details and refer the reader

to Section 4.2, where some numerical instances will be run to graphically il-

lustrate the behavior of the system in the presence of time-varying leaders.

As explained, Theorem 3.2 rests on the assumption that the distributions’

variances reach (or start by) an equilibrium. In the next section, we discuss

the feasibility of the sufficient conditions given in equation (18). In particular,

we show that under mild assumptions it can actually be verified.
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3.2 On the Feasibility of the Populations’ Variance Equilibrium

We now explore some conditions for the existence of a value d0i > 0 such that,

whenever di(0) = d0i, both (16a) and (18) hold at time t = 0.

We initially consider populations characterized by the same level of stub-

bornness and subject to the same disturbance, in which case we denote the

populations as uniform. This corresponds to set αi = α and ξi = ξ for all i ∈ I.

Under these hypotheses we have that σ2
i (0) = ξ2

2d0
, hence we can rewrite (16a)

at time 0 as

βρ2 + 4

(1− α)
d0
ξ2

∑
j∈I

νij + α

 = 4d20β + 4d0βρ+ βρ2 ⇔

⇔ (1− α)
d0
ξ2

+ α = d20β + d0βρ ⇔ d20β − d0
(1− α

ξ2
− βρ

)
− α = 0.

The latter equation is a second order polynomial which admits (real) solutions

in each of the following three situations.

– Populations are most gregarious (α = 0). In this case, we have the solution

d0 =
1

βξ2
− ρ,

which is feasible, i.e. strictly greater than zero, only for a sufficiently small

ρ. This result is coherent with related results in [21], and we refer the

interested reader to that paper for more details on the general case of most

gregarious populations.

– Populations are hard core stubborn (α = 1). In this case, the solution is

given by

d0 =

√
ρ2

4
+

1

β
− ρ

2
> 0, ∀ρ > 0.
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Note that this result also extends to the case of non-uniform populations,

namely, populations that are characterized by different levels of stubborn-

ness and are subject to different disturbances.

– Populations are partially stubborn. In this case, we have the general solu-

tion

d0 =

√(
ρ

2
− 1− α

2βξ2

)2

+
α

β
−
(
ρ

2
− 1− α

2βξ2

)
> 0, ∀ρ > 0

It appears that a minimum level of stubbornness is sufficient to guarantee the

existence of an equilibrium for the populations’ variances.

Existence of an equilibrium for the populations’ variances can be proved

even in the case of just two non-uniform populations, when one of them is at

least partially stubborn. In this case, we have to prove the existence of positive

values d01 and d02 that solve the following equations

d20iβ−d0i
(

(1− αi)νii
ξ2i

− βρ
)
−

(
αi + d0j

(1− αi)νij
ξ2j

)
= 0, i, j = 1, 2, i 6= j.

Then, assuming that the first population is at least partially stubborn (α1 >

0), we can introduce two real and continuous functions g and h defined as

g(x) =

√(
ρ

2
− (1− α1)ν11

βξ21

)2

+

(
α1

β
+ x

(1− α1)ν12
βξ22

)
−
(
ρ

2
− (1− α1)ν11

βξ21

)
,

h(x) = x2β − x
(

(1− α2)ν22
ξ22

− βρ
)
−
(
α2 + g(x)

(1− α2)ν21
ξ21

)
.

Note that, g(d02) = d01. It is not difficult to see that an equilibrium for the

populations’ variances exists if the following conditions hold: 1) there exists

d02 > 0 for which h(d02) = 0; 2) d01 = g(d02) > 0. To show this, consider that,

for d02 ≥ 0, g(d02) is positive. Then, since h(0) < 0 and limd02→+∞ h(d02) =
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+∞, by continuity there must exists d02 > 0 for which condition 1) holds. In

addition, the positivity of g() for d02 > 0 guarantees that condition 2) holds

too. More elaborate but similar arguments can be used to generalize the above

results to the case of more than two populations.

4 Hard Core vs. Most Gregarious Populations

In this section we concentrate our attention on a specific situation where a

most gregarious population deals with a hard core one. Such a scenario mir-

rors games where the latter is, for instance, a leader nation and the former

a minor nation of followers. Indeed, we provide a detailed stochastic analysis

of the microscopic behavior of the players of the most gregarious population,

studying the relationships between the behavior of each single player and that

of the population as a whole. In particular, we construct error dynamics which

account for the deviation of the opinion of the single player from the average

value of the population. We interpret such error dynamics as stochastic pro-

cesses and provide some bounds on their first and second moments.

For the sake of simplicity, we assume that the hard core population j

(characterized by αj = 1) has already reached an equilibrium distribution

characterized by zero mean µ0j = 0 and unitary variance σ0j = 1. In addition,

we assume that also the variance of the most gregarious population i (charac-

terized by αi = 0) has already reached its equilibrium value σ0i > 0. Under

these assumptions, thanks to (15), the optimal control for agent k belonging
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to the most gregarious population simplifies to

u∗i (x
k(t), t) = φa(t)(µi(t)− xk(t))− φb(t)xk(t), (25)

where φa(t) = di(t) ai(t) and φb(t) = di(t) bij(t).

In the next sections we put emphasis on the implications of the stochas-

ticity present in the finite dimensional model with N agents. In particular,

in Section 4.1 we compute bounds on the speed of convergence of the most

gregarious population average behavior to zero, characterizing also deviations

of single opinions from average values. In Section 4.2 we run simulations of the

finite dimensional system to show how the speed of convergence of means and

variances depend on the parameters of the model. Since we are interested in

the behavior of the most gregarious population, from now on, we drop indexes

i and j.

4.1 The Finite Dimensional Model

In what follows, we denote by Y (t) = [Y 1(t), . . . , Y N (t)]T the state vector of

the N players indexed by k = 1, . . . , N . It describes the time evolution of the

players’ states in accordance with the Stochastic Differential Equation (SDE)

dY (t) = [φa(t) (µN (t)1− Y (t))− φb(t)Y (t)] dt+ ξ dW (t), (26)

where we make explicit the dependence on N of the average opinion µN (t).

In particular, we may find useful to rewrite (26) by making use of a stochas-

tic matrix. To this aim, let Π = −φaL + I, where L is the Laplacian of a
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strongly completely connected graph, the latter modeling the interconnection

between the players of the most gregarious population. Note that

Π = ΠT , Π1 = 1. (27)

Then, we can rewrite (26) as

dY (t) = [(Π − I)Y (t)− φb(t)Y (t)] dt+ ξdW (t). (28)

With the above premise, the SDE is linear and time-varying which allows

us to cast our analysis within the framework of stochastic stability (see [22]).

Let us recall the definition of stability in pth moment.

Definition 4.1 (Stability in pth moment) (cf. Definition (11.3.1) in [23])

The solution ψ(t) of a stochastic differential equation is said to be stable in

pth moment, p > 0, iff given t0 > 0 and ε > 0, there exists a δ(ε, t0) > 0 such

that ‖x(0)‖ ≤ δ guarantees that

E
{

sup
t≥t0
‖ψ(t)‖p < ε

}
.

Setting p = 1 or 2 we have stability in mean or in mean square, respectively.

Furthermore, it is well-known that mean square stability implies mean stability

([23], p. 188).

The next theorem proves mean square stability for the average opinion.

Proposition 4.1 The average opinion is mean square stable. In particular,

there exists t0 > 0, such that

E
{

sup
t≥t0
‖µN (t)‖2 < ε

}
, where ε =

√
1

2φb(t)

ξ2

N2
. (29)
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Proof The basic ideas of this proof are borrowed from Lyapunov stochastic

stability theory (cf. [22], system (64.51)). Let us start by considering the dy-

namics for the average opinion, which is given by

dµN (t) =
1

N
1T dY (t) =

1

N
1T
[
(Π − I)Y (t)− q2

c2
Y (t)

]
dt+

1

N
1T ξdW (t)

= − 1

N
1T

q2
c2
Y (t)dt+

1

N
1T ξdW (t) = −φb(t)µN (t)dt+

1

N
1T ξdW (t).

(30)

This is a linear SDE and the properties of the corresponding stochastic

process have been analyzed in [22]. Actually, the solution µN (t) to (30) is

associated to the following infinitesimal generator (see [23])

L =
1

2
ξ2
d2

dm
− φbm

d

dm
. (31)

Let us take as candidate Lyapunov function V (m) = 1
2m

2. The idea is to

show that there exists a finite scalar κ and a level set Nκ = {m ∈ R|V (m) ≤

κ}, such that the infinitesimal generator

LV (µN (t)) := limdt→0
EV (µN (t+dt))−V (µN (t))

dt < 0, (32)

is negative for all µN (t) 6∈ Nκ. In this case, V (µN (t)) is a supermartingale

whenever µN (t) is not in Nκ and therefore, by the martingale convergence

theorem, there exists t > 0 such that V (µN (t)) ≤ κ.

To verify (32), observe that from (30) we have

LV (m) = −φbm2 +
1

2

ξ2

N2
.

Therefore, there exists a κ̂ big enough and finite that for every µN (t) 6∈ Nκ̂,

i.e., 1
2µN (t)2 > κ̂, we have φbµ

2
N > 1

2
ξ2

N2 . The latter implies LV (µN (t)) < 0
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for all µN (t) 6∈ Nκ̂, which proves that every level set Nκ where κ ≥ κ̂ is

contractive.

The same reasoning proves that every level set Nκ where κ ≥ κ̂ is con-

tractive. Thus, for every κ ≥ κ̂ there exists an ε =
√

2κ for which the set

{m ∈ R| |m| ≤ ε} is contractive. A value for k̂ is

k̂ := min k s.t. {m|V (m) = k} ⊂ {m|φbm2 > 1
2
ξ2

N2 }, (33)

which returns

k̂ =
1

4φb

ξ2

N2
.

To prove (29), let us substitute k̂ = 1
4φb

ξ2

N2 into ε =
√

2κ, obtaining ε =√
1

2φb

ξ2

N2 . ut

A direct consequence of the above result is that Nκ̂ shrinks for increasing

number of players and collapses asymptotically to the origin for N tending to

infinity.

Corollary 4.1 For N →∞ the mean opinion µN (t) asymptotically converges

to zero.

Our aim is now to analyze the convergence of the players’ opinions to the

average value. To this purpose, define the averaging matrix M = 1
N 1 ⊗ 1.

Then for a given vector Y (t) we haveMY (t) = ( 1
N 1⊗1)Y (t) = 1

N 11TY (t) =

µN (t)1. In other wordsMY (t) is the vector all of those whose components are

the average of the entries of Y (t). The averaging matrix is useful to introduce

the error vector e(t) describing the deviations of the components of Y (t) from
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their average. For the error vector we can write the expression below, which

relates e(t) to Y (t):

e(t) = Y (t)− 1

N
1⊗ 1TY (t) = Y (t)− µN (t)1 = (I −M)Y (t).

The next result establishes that the error vector is bounded in probability.

Proposition 4.2 For each π > 0 there exists an ε(π) > 0 such that

P(‖e(t)‖∞ ≤ ε(π)) > 1− π. (34)

Proof The time evolution of the error vector is represented by the SDE

de(t) = (I −M) [(Π − I)Y (t)− φb(t)Y (t)] dt+ (I −M)ξdW (t)

= (Π −M)(I −M)Y (t)dt− e(t)dt− (I −M)φb(t)Y (t)dt+ (I −M)ξdW (t)

= (Π −M− I − φb(t) I)︸ ︷︷ ︸
A

e(t)dt+ (I −M)ξdW (t).

The above SDE is linear and the corresponding stochastic process can be

studied again in the framework of stochastic stability theory [22]. As before,

we can consider the associated generator

L =
1

2
ξ2(I −M)T (I −M)

d2

dx2
+Ax

d

dx
. (35)

From (27) we have that ‖Π −M‖ < 1 which in turn implies that A is

negative definite. We use this fact to investigate the behavior of LV for the

Lyapunov function V (e) = 1
2e
T e.

Similarly as before, to ensure V (e(t)) ≤ κ, we need to find a finite scalar

κ and a level set Nκ = {e ∈ Rn|V (e) ≤ κ}, such that LV (e(t)) < 0 for all

e(t) 6∈ Nκ, where L is the infinitesimal generator of the process e(t).
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Let us first consider the SDE for the error vector de(t) = Ae(t)dt + (I −

M)ξdW (t) and rewrite (I −M)ξdW (t) =
∑
i widWi(t) where

wi = ξ



− 1
N

...

1− 1
N

...

− 1
N


← ith row.

Then, we obtain

LV (e) = e(t)TAe(t) +
1

2

N∑
i=1

Sii = e(t)TAe(t) +
1

2
Nξ2[(N −1)

1

N2
+ (1− 1

N
)2],

where S =
∑N
k=1 wkw

T
k ∈ RN×N , and hence Sii = ξ2[(N − 1) 1

N2 + (1− 1
N )2].

Consider now the level sets Nκ = {e ∈ RN |V (e) ≤ κ} and observe that

there always exists a κ̂ big enough and finite such that for every e(t) 6∈ Nκ̂, i.e.,

1
2e(t)

T e(t) > κ̂. Thus, we have e(t)TAe(t) + 1
2Nξ

2[(N − 1) 1
N2 + (1− 1

N )2] < 0.

The latter means LV (e(t)) < 0 for all e(t) 6∈ Nκ̂, which proves that every level

set Nκ where κ ≥ κ̂ is contractive.

In other words, for every e(t) ∈ ∂Nκ̂, e(t + dt) ∈ Nκ̂. Equivalently, every

level set Nκ where κ ≥ κ̂ is contractive. Thus, we can conclude that for every

κ ≥ κ̂ there exists an ε =
√

2κ for which the level set {e ∈ RN | ‖e‖ ≤ ε} is

contractive. A value for k̂ can be obtained solving the optimization problem

k̂ := min k s.t. {V (e) = k} ⊂
{
e(t)TAe(t) +

1

2
Nσ2[(N − 1)

1

N2
+ (1− 1

N
)2] < 0

}
.

ut
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4.2 Numerical Simulations

We now simulate the behavior of the most gregarious population, assuming,

as in Section 4, that the hard core stubborn population is already at the equi-

librium. In particular, we run three sets of simulations. The first set highlights

the relationship between the system response and the coefficient φa: the mean

distribution µ(t) of the most gregarious population fluctuates while converg-

ing to zero, and the variance σ2(t) decays gradually towards its equilibrium

value.3 The second set emphasizes how the system evolves in response to a

higher coefficient φb, which corresponds to increasing the stubborn popula-

tion’s attraction force: both µ(t) and σ2(t) decrease monotonically, similarly

to the evolutions shown in the first set of simulations. The third set simu-

lates the system under various disturbance parameters ξ: they show that the

variance σ2(t) increases with ξ.

Simulations have been run using the parameters as reported in Tables 1-2.

The number of players is fixed to N = 103. The set of states is a discretiza-

tion of the interval [0, 1[ with step size dx = 10−4, i.e. X = {xmin, xmin +

0.001, . . . , xmax}. The horizon length is T = 10, large enough to show conver-

gence to the equilibrium distribution. As regards the initial distribution, we

assume it to be Gaussian with mean µ0 = 0.8 and variance σ2
0 = 0.0025. The

parameter ξ is set to a value between 0.001 and 0.05.

3 Being N fixed across simulations, in what follows we suppress the indicator N from the

notations.
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Table 1 Constant simulation parameters.

N xmin xmax T µ0 σ0

103 0 1 10 0.8 0.05

Table 2 Varying simulation parameters with different simulation sets.

φa(0) φb(0) ξ

I {1, 2, 3} 1.5 0.001

II 1 {1.5, 2.5, 3} 0.001

III 1 1.5 {0.001, 0.01, 0.05}

Simulation I.

The first set of simulations highlights how the coefficient that regulates the

aggregation forces among the opinions, φa, is a factor in reducing the spar-

sity of the opinions, which is measured by the variance σ2. From top-left to

bottom-left, Figure 3 shows the distribution evolution m(t) vs. the state x(t) at

different times. Parameter φa at time 0 varies from φa(0) = 1 (top), φa(0) = 2

(middle) and φa(0) = 3 (bottom). The graph on the right displays the tra-

jectories µ(t) (solid line and y-axis labels on the left) and σ(t) (dashed line

and y-axis labels on the right). It is worth noting that the standard deviation

tends to its equilibrium value faster and faster as long as the attraction among

the opinions grows: as it can be seen from the graph, the distributions at a

same time instant get sharper with higher values of φa(0).
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Fig. 3 Simulation I. From top to bottom, φa(0) = {1, 2, 3}. The sparsity of the distribution

evolution shrinks as the coefficient φa(0) grows. The standard deviation σ converges faster.

Simulation II.

The second set of simulations shows the connection between the coefficient

φb(0), which describes the attracting force exhibited by the stubborn popula-

tion, and the convergence speed of the mean of the most gregarious population

toward zero, that is, toward the mean of the stubborn population. The graph

on the left in Figure 4 shows this effect. In particular, the graph plots the time

evolutions of the distribution of x(t). The initial distribution is the same as

in the first set of simulations, with identical initial mean and variance, while

φb(0) varies from φb(0) = 1.5 (top), φb(0) = 2.5 (middle) and φb(0) = 3 (bot-

tom). Note that different values of φb(0) correspond to different values of the



38 Dario Bauso et al.

parameter νij in the current cost (2) of the players of the most gregarious

population. The mean opinion of the most gregarious population approaches

zero with a speed that increases with φb(0). The graph on the right in Figure

4 displays the trajectories µ(t) (solid line and y-axis labels on the left) and

σ(t) (dashed line and y-axis labels on the right), pointing out that the mean

tends to zero faster with higher values of the coefficient.
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Fig. 4 Simulation II. From top to bottom, φb(0) = {1.5, 2.5, 3}. The distribution converges

faster to zero as φb(0) grows. The same for µ(t): the mean goes to zero faster.

Simulation III.

The last set of simulations shows the effects of the volatility term ξ. The initial

conditions are identical to the ones of the previous simulations, and the only
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varying parameter is ξ from ξ = 0.001 (top), ξ = 0.01 (middle) and ξ = 0.05

(bottom). The graph on the left in Figure 5 shows this effect, by plotting

the time evolution of the distribution of x(t). Specifically one should observe

the different values of the population’s standard deviation as the value of ξ

increases.
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Fig. 5 Simulation III. From top to bottom, ξ = {0.001, 0.01, 0.05}. The final value of the

population variance increases as the value of ξ increases.

5 Conclusions

We have considered a multi-population scenario for a mean-field game model of

opinion dynamics and stubbornness. We have first analyzed conditions on the

equilibrium strategies that preserve Gaussianity of the populations’ densities,
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these being solutions of the Fokker-Planck-Kolmogorov equation. Second, we

have derived explicit expressions for the optimal equilibrium strategies under

the assumption that the players are myopic. Although restricted to myopic

strategies, the model is rich enough to generate well recognized behavioral

patterns of the macroscopic system in the context of consensus dynamics:

convergence towards consensus, polarization or plurality of opinions. Our study

has considered different types of populations; in particular, we have focused

our attention on the interaction among two populations: one hard core and the

other one most gregarious. Under this scenario, we have discussed in detail the

convergence of the average behaviors in the case of a finite number of players.

When the number of agents is finite, the average opinion turns out to be a

stochastic process with computable bounds on first and second moments.

The authors have conducted this work as part of their current research

activity on opinion dynamics. Possible extensions include the analysis of the

“bandwagon effect” and the so-called “homophily”. In the first case, we assume

that the players want to align their opinions to the mainstream opinion, this

being the opinion shared by the majority. On the other hand, homophily means

that interactions occurs among players with similar opinions. Our conjecture is

that mean-field game theory can successfully accommodate both phenomena.

We conclude in saying that, from our perspective, game theory offers a

large range of concepts that prove to be useful in the design of information

mechanisms leading to pre-specified opinion distributions. Thus the theory
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of “strategic thinking” can once more be a factor in the characterization of

marketing strategies or advertisement campaigns.

A Appendix

The optimization problem introduced in Section 2, can be turned into a Multi-Population

Mean-Field Game. Preliminary to the derivation of a mean-field game, is the definition of

a value function as commonly done also in differential game theory or optimal control. The

value function is the value of the optimization problem, carried out by each single player

k, starting at time t from state xk and for given densities m(t). As we will show, the value

function only depends on population’s characteristics (apart from the initial state xk(t)).

Proposition A.1 Consider a generic population i and any agent k such that i(k) = i.

Define the value function for agent k as

vi(x
k(t), t) := sup

uk(·)
E{
∫ ∞
t

e−ρτ ck(xk(τ), uk(τ),m(τ))dτ)}.

Then, the mean-field system is described by the equations

∂tvi(x
k(t), t) + (1− αi)

∑
j∈I νij ln(mj(x

k(t), t))− αi(xk(t)− µi(0))2+

+ 1
2β

(∂xvi(x
k(t), t))2 +

ξ2i
2
∂2xxvi(x

k(t), t)− ρvi(xk(t), t) = 0,

∂tmi(x
k(t), t) + ∂x

[
mi(x

k(t), t)
(
− 1

2β
∂xvi(x

k(t), t)
)]
− 1

2
ξ2i ∂

2
xxmi(x

k(t), t) = 0,

(36)

for some initial population state distribution mi(0) for all i ∈ I. Furthermore, the optimal

control is of the form

u∗i (xk(t), t) = −
1

2β
∂xvi(x

k(t), t). (37)

Proof From dynamic programming, the value function can be obtained from a corresponding

maximized Hamiltonianian function Hk involving an adjoint variable pi, called the ith co-

state, and given by

Hk(x, pi,m) = sup
ui

{
ck(x, ui,m) + piui

}
.
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From [13], the mean-field system associated to the mean-field game introduced in Sec-

tion 2 is given by
∂tvi(x, t) +Hk(x, ∂xvi(x, t),m) + 1

2
ξ2i ∂

2
xxvi(x, t)− ρvi(x, t) = 0,

∂tmi(x, t) + ∂x
(
mi(x, t)∂pH

k(x, ∂xvi(x, t),m)
)
− 1

2
ξ2i ∂

2
xxmi(x, t) = 0,

(38)

where mi(x, 0) = m0i(x) for all i ∈ I are the initial distributions and where x = xk(t).

We first prove condition (37). To this end, let us write the Hamiltonian as:

Hk(x, ∂xvi(x, t),m) = sup
ui

{
(1−αi)

∑
j∈I

νij ln(mj(x, t))−αi(x−µ0i)2−βu2+∂xvi(x, t)ui

}
= 0.

(39)

By differentiating with respect to ui we obtain

2βui(x, t) + ∂xvi(x, t) = 0, (40)

which yields (37). Note that convexity of the cost functional guarantees sufficiency of the

above first-order condition.

We now prove (36). Concerning the first equation, which is a PDE corresponding to

the Hamilton-Jacobi-Bellman equation, let us replace ui in the Hamiltonian (39) by its

expression (37), i.e.

Hk(x, ∂xvi(x, t),m) = (1− αi)
∑
j∈I

νij ln(mj(x, t))− αi(x− µ0i)2 − β(u∗i (x, t))2 + ∂xvi(x, t)u
∗
i (x, t)

= (1− αi)
∑
j∈I

νij ln(mj(x, t))− αi(x− µ0i)2 +
1

2β
(∂xvi(x, t))

2.

Using the above expression of the Hamiltonian in the first equation in (38), we obtain

the Hamilton-Jacobi-Bellman equation in (36).

To prove the second equation, which is a PDE representing the Fokker-Planck-Kolmogorov

equation, we simply substitute (37) into the second equation in (38), and this concludes the

proof. ut

The significance of the above result is that to find the optimal controls, we need to solve

the set of coupled PDEs defined in (36) with given boundary conditions. This can done by

iteratively solving the Hamilton-Jacobi-Bellman equation for fixed mi and by entering the

optimal ui obtained from (37) in the Fokker-Planck-Kolmogorov equation, until a fixed point
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in vi and mi is reached [24]. In other words, it must be proved that such a map is a con-

traction, and to do this, we rely on compactness of the map itself and on the Schauder fixed

point theorem [15]. Note that, in Proposition A.1, we do not consider a stationary control or

a stationary population density distribution, although we deal with a discounted objective

function over an infinite horizon. In fact, we are interested in determining the evolution of

the population density distribution function over time under the general hypothesis that

at time 0 the population is not distributed according to the long-term equilibrium density

distribution.

A solution of (36) is said Nash-Mean Field Equilibrium as, it involves a set {(m∗i , u∗i ) :

i ∈ I} of functions defined for all times t ≥ 0 such that

(m∗i , u
∗
i ) = arg sup

mi(.),ui(.)
E
{∫ ∞

0
e−ρtck(xk, ui,m)dt

∣∣∣mj = m∗j , ∀j ∈ I \ {i}
}
∀i ∈ I.

In other words, any player of population i does not benefit from changing its control policy

u∗i if the control policies, and therefore also the distributions, of the other populations are

fixed to respectively u∗j and m∗j for all j ∈ I \{i}. As a consequence, also the trajectory over

time of the distribution m∗i is unchanged.
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12. Huang, M., Caines, P., Malhamé, R.: Large population cost-coupled LQG problems

with non-uniform agents: individual-mass behaviour and decentralized ε-Nash equilibria.

IEEE Transactions on Automatic Control 52(9), 1560–1571 (2007)

13. Lasry, J., Lions, P.: Mean field games. Japanese Journal of Mathematics 2, 229–260

(2007)

14. Bardi, M.: Explicit solutions of some Linear-Quadratic Mean Field Games. Network

and Heterogeneous Media 7, 243–261 (2012)
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