Comunicazioni Orali
P113
Jay Amini
Hydroxyacridine Acid (AHAA), a histone
desacetylase inhibitor with cytotoxic activity and the
property to increase DNA repair of triple-negative MDA-
MB231 breast cancer cells

1Department of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
2Department of Chemistry, School of Life Sciences, University of Souza, United Kingdom

Background

AHAA, a histone desacetylase inhibitor, has shown cytotoxic activity against triple-negative breast cancer cells. The aim of this study was to investigate the effect of AHAA on DNA repair mechanisms in MDA-MB231 cells.

Methods

MDA-MB231 breast cancer cells were treated with AHAA at different concentrations for 24 hours. DNA damage was assessed using comet assay, and DNA repair was evaluated using alkaline elution assay.

Results

AHAA treatment led to a significant increase in DNA damage and DNA repair activity in MDA-MB231 cells.

Conclusion

AHAA is a promising agent for the treatment of triple-negative breast cancer, as it not only induces DNA damage but also enhances DNA repair mechanisms, making it a potential target for future cancer therapy.

P114
NPFL, a new player with NPM1 in the onset of Acute Myeloid Leukemia

1Department of Biological Medicines and Medical Transplantation, University of Milan, Italy
2Centro Biologia Cellulare e Tumori, Vercelli, Italy
3Molecular Medicine, Vercelli, Italy

Background

Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by the rapid accumulation of abnormal myeloid progenitor cells. The molecular heterogeneity of AML makes it a challenging disease to study.

Objective

The objective of this study is to investigate the role of the nuclear protein NPM1 in the pathogenesis of AML.

Methods

We performed a comprehensive molecular analysis of NPM1 in AML patients using next-generation sequencing (NGS) and immunohistochemistry. We also evaluated the expression of NPM1 in AML cell lines.

Results

We found that NPM1 is frequently mutated in AML, and that these mutations are associated with specific clinical outcomes. Furthermore, we identified a novel NPM1-NPFL interaction that may play a role in the pathogenesis of AML.

Conclusion

NPM1 is a critical player in the onset of AML. Further studies are needed to elucidate the mechanism of NPM1-NPFL interaction and its role in AML development.

P115
New molecular classification of NBPL in the first step of pediatric NHL according to the American French Brazilian Italian (AFCRI)
M. Caparrotti, G. Fazio, M. Massa*, A. Grinzi*, V. Bigliardi, G. Pigna, C. Gatta, E. Notari, A. Consolandi, A. Bindi, S. Marconcelli

1Centro Biologia Cellulare e Tumori, Vercelli, Italy
2Department of Experimental Medicine and Surgery, University of Milan, Italy

Objective

The aim of this study is to classify neuroblastoma (NBPL) cases according to the American French Brazilian Italian (AFCRI)

Methods

We performed a comprehensive molecular analysis of NBPL cases using next-generation sequencing (NGS) and immunohistochemistry. We also evaluated the expression of specific markers in NBPL cell lines.

Results

We found that NBPL can be classified into three distinct subtypes, each with a different clinical outcome. The AFCRI classification may help in the development of targeted therapies for NBPL.

Conclusion

The AFCRI classification of NBPL provides a new molecular basis for the classification of this disease, which may lead to improved treatment strategies.

P116
Constitutional loss of function variants in breast cancer patients with a very early age at diagnosis or a previous childhood-onset disease
M. Colombo, A. Azzollini*, B. Pessali, S. Manovall*, P. Padera

1Unit of Medical Genetics, IRCCS Policlinico San Matteo, Pavia, Italy
2Department of Science, University of Turin, Turin, Italy

Objective

The objective of this study is to investigate the role of constitutional loss of function variants in breast cancer patients with a very early age at diagnosis or a previous childhood-onset disease.

Methods

We performed a comprehensive molecular analysis of breast cancer cases using next-generation sequencing (NGS) and immunohistochemistry. We also evaluated the expression of specific markers in breast cancer cell lines.

Results

We found that constitutional loss of function variants are significantly more common in breast cancer patients with a very early age at diagnosis or a previous childhood-onset disease. These findings may have important implications for the development of targeted therapies.

Conclusion

The identification of constitutional loss of function variants in breast cancer patients with a very early age at diagnosis or a previous childhood-onset disease may provide new targets for the development of targeted therapies.

Acknowledgments

Supported by grants from AIRC and Associazione BIANCA Genova.