IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition

Miriam Gaggianesi1, Alice Turdo1, Aurora Chinnici1, Elisa Lipari1, Tiziana Apuzzo1, Antonina Benfante1, Isabella Sperduti2, Simone Di Franco1, Serena Meraviglia3,4, Elena Lo Presti3, Francesco Dieli3,4, Valentina Caputo5, Gabriella Militello6, Salvatore Vieni1, Giorgio Stassi1, and Matilde Todaro3,5

Abstract
The tumor microenvironment supplies proinflammatory cytokines favoring a permissive milieu for cancer cell growth and invasive behavior. Here we show how breast cancer progression is facilitated by IL4 secreted by adipose tissue and estrogen receptor-positive and triple-negative breast cancer cell types. Blocking autocrine and paracrine IL4 signaling with the IL4Rx antagonist IL4DM compromised breast cancer cell proliferation, invasion, and tumor growth by downregulating MAPK pathway activity. IL4DM reduced numbers of CD44+/CD24− cancer stem-like cells and elevated expression of the dual specificity phosphatase DUSP4 by inhibiting NF-κB. Enforced expression of DUSP4 drove conversion of metastatic cells to nonmetastatic cells. Mechanistically, RNAi-mediated attenuation of DUSP4 activated the ERK and p38 MAPK pathways, increased stem-like properties, and spawned metastatic capacity. Targeting IL4 signaling sensitized breast cancer cells to anticancer therapy and strengthened immune responses by enhancing the number of IFN-γ-positive CTLs. Our results showed the role of IL4 in promoting breast cancer aggressiveness and how its targeting may improve the efficacy of current therapies. Cancer Res; 77(12); 3268–79. © 2017 AACR.

Introduction
Despite the advent of efficacious treatment of primary breast cancer lesions, metastatic disease is poorly sensitive to the common therapeutic regimens (1). Adipose tissue is the most abundant constituent of the breast cancer microenvironment and is mainly composed of mature adipocytes, preadipocytes, and adipose-derived stem cells (ADSC; ref. 2). Obesity and overweight have recently been suggested as being meaningful risk factors for the development of breast cancer and its therapy resistance (3). Indeed, compelling evidence shows that paracrine signals, provided by the adipose tissue and surrounding cancer cells, contribute to tumorigenesis and cancer progression (2, 4). Secreted protumorigenic cytokines and hormones feed breast cancer cells regardless of their hormone status and are also responsible for the acquisition of an aggressive cell phenotype (5).

Furthermore, we have identified autocrine and paracrine production of IL4 as a survival signal and tool to protect colorectal cancer cells from anticancer therapy, through the upregulation of antiapoptotic molecules (6, 7). Indeed, IL4 is a pleiotropic cytokine secreted by fibroblasts, immune, adipose, and a wide range of epithelial cells, including breast cancer cells (8). IL4 cognate receptors comprise two types: (i) type I IL4R (IL4RI) and (ii) type II IL4R (IL4RII). The first is mainly present on immune cells and characterized by the heterodimerization of the IL4Rx and the common γ-chain subunits. IL4RII, on the other hand, is present on nonhematopoietic cells and composed of IL4Rx and the IL13Rα1 subunits. IL4RII is expressed on the surface of many cancer cells and lacks intrinsic kinase activity, thus it requires further associated kinases for the initiation of signal transduction (8). Upon binding of IL4, the tyrosine kinases Jak1/2 and Tyk2 are indeed recruited on the transmembrane domain of IL4RII and mediate its phosphorylation, leading to the activation of PI3K/AKT, MAPK, and Jak/STAT6 downstream pathways (8).

In breast cancer, the secretion of the protumorigenic cytokines, IL-6 and IL-8, is controlled by the dual specificity phosphatase 4 (DUSP4; ref. 9). In physiologic conditions, the transcription of DUSP4 is MEK-dependent and its expression in turn suppresses ERK, along with p38, JNK1, NF-κB, and Rb (9–12), ensuring a proper negative feedback control of cellular proliferative stimuli. DUSP4 is differentially expressed among luminal and basal breast cancers. Specifically, the most aggressive tumors hold DUSP4 under-expression, due to methylation events or genomic loss (9, 10).

It has been clearly demonstrated that a subpopulation of cancer cells, named tumor-initiating cells (TIC), is endowed with the capability of self-renewal and tumor initiation (13–16). Indeed, this cell compartment is refractory to the common anticancer drugs and responsible for recurrence (13–16).
An inflammatory microenvironment has been shown to favor the maintenance of the breast TICs and their invasive behavior (17, 18). However, insufficient data are available on the mechanisms regulating this phenomenon. Recently, it has been demonstrated that, in a syngeneic breast cancer mouse model, the IL4/IL4R interaction promotes metastatic spreading by activating the MAPK pathway (19).

Taken together, these findings suggest that IL4 may conceivably play a role in the progression of breast cancer and resistance to standard therapeutic regimens driven by TICs. In this study, we establish for the first time the molecular mechanisms elicited by IL4, which augment proliferation and invasiveness of breast cancer sphere cells (BCSC), notoriously largely composed of TICs (15). Blocking autocrine and paracrine IL4 signaling via the attenuation of the MAPK pathway, counteracts the protumorigenic effect of all the proinflammatory cytokines released by ADSCs. Moreover, we unveil that IL4 acts through NF-κB to lower DUSP4 expression levels.

Here, we emphasize the role of IL4 in the metastatic potential of BCSCs and its neutralization as a useful strategy for therapeutic intervention.

Materials and Methods

Tissue collection

Breast cancer tissues were collected at the Department of Surgical, Oncological and Stomatological Sciences (University of Palermo, Palermo, Italy), in accordance with the ethical standards of the Institutional Committee on Human Experimentation and the last 3 hours in combination with monensin (2 μg/mL; Sigma-Aldrich), for blocking cellular protein transport. Cells were routinely tested for mycoplasma infection with acid (5-ASA, 26 mmol/L; Sigma-Aldrich) were used as NF-κB inhibitors and added 1 hour and 30 minutes before IL4 treatment, respectively.

For the cell viability assay, BCSCs were exposed to fulvestrant (1 μmol/L, Selleckchem), doxetaxel (100 nmol/L; Selleckchem) or BKM120 (5 μmol/L; Selleckchem). BCSCs were exposed to IFNγ (100 ng/mL; Novus Biologicals), as positive control for PD-L1 expression, for 4 and 24 hours.

To evaluate the expression of PD-1 or IFNγ in gated CD8+ T cells, 5 × 10^5 PBMCs/mL were activated (Activated) for 4 days in 24-well plates coated with purified anti-human CD3ε (OKT3, IgG2a; Biolegend), anti-human CD28 (CD28.2, IgG1κ; Biolegend), and in the presence of human IL2 (100 IU/mL; Proleukin; Novartis Pharmaceuticals) in 10% FBS RPMI. Activated cells were then treated, for additional 4 days, with medium (medium), IL4, IL4DM alone, or in combination with IL4 (IL4+IL4DM). Prior flow cytometry analysis, for the intracellular staining of cytokines, untreated and treated activated cells were cultured in presence of PMA (20 ng/mL; BD Biosciences) and ionomycin (1 μmol/L; BD Biosciences) for 4 hours and for the last 3 hours in combination with monensin (2 μmol/L; Sigma-Aldrich), for blocking cellular protein transport.

CM production and Luminescent cytokine quantification

CM from ADSCs (ADSCs-CM), ER-β-BCSCs (ER-β-CM) and TN-BCSCs (TN-CM) were obtained from cells plated at 70% confluence and cultured in SFM for 48 hours. CM was filtered through a 0.22-μm filter to eliminate cell debris.

Table 1. Description of breast cancer clinical features

<table>
<thead>
<tr>
<th>Patient</th>
<th>Grading</th>
<th>ER</th>
<th>PR</th>
<th>HER2 amplification</th>
<th>Ki67</th>
<th>Clinical receptor subtype</th>
<th>Sphere formation</th>
<th>Xenograft formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>#14</td>
<td>G2</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td><10%</td>
<td>Luminar B</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>#10</td>
<td>G2</td>
<td>-</td>
<td>+</td>
<td>Yes</td>
<td>>10%</td>
<td>TNBC</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>#18</td>
<td>G2</td>
<td>+</td>
<td>+</td>
<td>Yes</td>
<td>>10%</td>
<td>Luminar B</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>#30</td>
<td>G3</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td>>10%</td>
<td>TNBC</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Abbreviations: ER, estrogen receptor; PR, progesterone receptor.
Quantification of cytokine production was assessed by using multiplex Bio-Plex Pro Assays (Human Cytokine 21 and 27-plex Assay; Bio-Rad). Raw data (mean fluorescence intensity) were analyzed by Bio-Plex Software (Bio-Rad).

Cell motility and invasion assay

A total of 1 × 10^5 BCSCs were plated into 6-well attachment plates in DMEM with 10% FBS to allow cell attachment. The spreading of cells, which were treated with medium alone, ADSC-CM, or IL4 in presence of 5% FBS, was determined by phase contrast microscopy at 12 hours.

A total of 2 × 10^5 breast cancer cells, treated with IL4DM for 24 hours and subsequently exposed to ADSCs-CM or IL4 for another 48 hours in SFM, were plated onto growth factor–reduced matrigel (BD Biosciences)-coated transwell of 8-μm pore size. SFM in presence of 10% human serum AB was used as a chemoattractant in the bottom part of the chamber (600 μL/well). Cells invading Matrigel were monitored and counted using an optical microscope for up to 48 hours.

Cell viability

Cell viability was performed using the CellTiter-Glo Luminescent Cell Viability Assay Kit (Promega) according to the manufacturer's instruction. Cell proliferation was assessed using CellTiter 96 AQueous One Solution cell proliferation assay (MTS) according to the manufacturer's instruction. Detection of both luminescence and absorbance was measured by using Infinite F500 (Tecan).

Stem cell frequency and colony-forming efficiency

BCSCs were plated at a concentration of a single cell per well. Wells containing more than three cells were excluded. The stem cell frequency was statistically evaluated after 3 weeks by using ELDA analysis program (23). For the colony-forming assay, 500 dissociated BCSCs were mixed with 0.3% agarose (SeaPlaque Agarose Lonza) in SFM and seeded onto a layer of 0.4% agarose. After 20 days, colonies were stained with 0.01% crystal violet in 1% methanol. Colonies were first distinguished on the basis of their size: micro < 30 μm; small 30–60 μm; medium 60–90 μm; and large >90 μm and then counted using ImageJ software.

Animals and tumor models

Mice experiments were performed according to the ARRIVE guidelines and animal care committee guidelines of the University of Palermo. A total of 4 × 10^5 BCSCs, treated with medium alone or IL4 for 24 hours, were suspended in 100 μL of SFM 1:1 Matrigel (BD Biosciences) and injected subcutaneously into 6-week-old female NOD/SCID mice (Charles River Laboratories). After 1 week, mice were intraperitoneally treated with vehicle (PBS) or IL4DM (3 mg/kg) 5 days/week for 10 weeks. Tumor volume was calculated using the formula: largest diameter × (smallest diameter)^2 × π/6. For tail vein experiments, 1.5 × 10^5 luciferase (LUC)-transduced BCSCs (Supplementary Information) were suspended in 30 μL of PBS and injected into 6-week-old female NOD/SCID mice. After injection of VivoGlo Luciferin (150 mg/kg, Promega), in vivo cell spreading was monitored by the detection of bioluminescence intensity using a Photon IMAGER (Biospace Lab), for up to 9 weeks. The photon count (photons/s/sr, photons per second per steradian), emitted by mice metastasis, was calculated by using M3 Vision (Biospace Lab). Mice were sacrificed when lesions reached 4 × 10^3 photons/s/sr, corresponding to a ≤0.5 cm^2 tumor area, and liver and lungs were analyzed ex vivo to detect metastasis formation.

Flow cytometry

ER− and TN-BCSCs were washed twice in PBS and stained at 4°C with purified CD44-PE (G44-26, mouse IgG2b; BD Biosciences), CD24-APC (M15, mouse IgG2a; R&D Systems), CD10-APC (97C5, mouse IgG1; Miltenyi Biotec), MUC1-PE (604804, mouse IgG2b; R&D Systems), CD49F-APC (GoH3, rat IgG2a; Miltenyi Biotec), EPCAM-PerCP (EBA-1, mouse IgG1, BD Biosciences), or CD90-PE-CF594 (5E10, IgG1c; BD Biosciences) antibodies or corresponding IMC CD14-PE (MP9, IgG2b; BD Biosciences), CD4-APC (11830, IgG2a; R&D Systems), CD4-APC (RE623, IgG1; Miltenyi Biotec), CD8-PE (37006, IgG2b; R&D Systems), CD3-APC (BW264/56, IgG2a; Miltenyi Biotec), CD3-APC-PerCPCy5.5 (SP34-2, IgG1; BD Biosciences), CD3-PE-CF594 (UCHT1, IgG1k; BD Biosciences). Dead cells were excluded on the basis of light scatter and the uptake of 7-AAD (0.25 μg/L × 10^5 cells; BD Biosciences) detected in FL3 channel. Single cells were gated in FSC-A versus FSC-H dot plots. Samples were analyzed by FACS Canto II (BD Biosciences) or Accuri C6 (BD Biosciences) flow cytometer and data analyzed using FlowJo software (Tree Star).

PBMCs were incubated on ice with ErbB blocking reagent (Miltenyi Biotec) and stained with CD3-PECy7 (UCHT1, mouse IgG1k; Biolegend), CD8-PE (RPA-T8, mouse IgG1k; BD Biosciences), IFNy-APC (R27, mouse IgG1k; BD Biosciences), PD-1-FITC (EH12.2H7, mouse IgG1x; Biolegend) antibodies or corresponding isotype matched controls (IMC), specifically APC mouse IgG1x (MOPC-21; BD Biosciences) and FITC mouse IgG1x (MOPC-21; Biolegend). For intracellular staining, cells were previously subjected to Cytofix/ Cytoperm protocol following the manufacturer's instructions (BD Biosciences).

Western blot analysis

Cells were washed in ice-cold PBS and suspended in TPER Reagent (Pierce) in presence of NaCl (300 mmol/L; Sigma Aldrich), sodium orthovanadate (1 mmol/L; Sigma Aldrich), pefabloc (2 mmol/L; Roche), and proteinase inhibitor cocktail (5 μg/mL; Sigma Aldrich). Extracted proteins were loaded, separated by SDS-PAGE, and blotted onto nitrocellulose membranes (Hybond-C Extra, nitrocellulose; Amersham Biosciences). Membranes were blocked in 0.1% Tween 20 and 5% non-fat dry milk for 1 hour at room temperature and then exposed to DUSP4 (D9A5, rabbit IgG, Cell Signaling Technology), P-MEK (41C9, rabbit IgG, Cell Signaling Technology), MEK (rabbit polyclonal, Cell Signaling Technology), P-ERK (E-4, mouse IgG2a, Santa Cruz Biotechnology), ERK (rabbit polyclonal, Santa Cruz Biotechnology), RAS (27H5, rabbit IgG, Cell Signaling Technology), P-NF-kB (T209/210, rabbit IgG, Thermo Fisher Scientific), NF-kB (112A0121, mouse IgG1k; Thermo Fisher Scientific), P-STAT3 (D3F9, rabbit IgG; CST), P38 (rabbit polyclonal; Cell Signaling Technology), IL4R (25463.111, mouse IgG2a; R&D Systems), IL13Rat2 (goat polyclonal; R&D Systems), P-STAT6 (rabbit polyclonal; Cell Signaling Technology), STAT6 (rabbit polyclonal; Cell Signaling Technology).
Statistical analysis
Kaplan–Meier curves of relapse-free survival based on the gene expression ratio of IL4/ΔUSP4 in breast cancer patients were obtained by interrogating the PROGgeneV2 - Pan Cancer Prognostics Database-GSE10893-GPL887. Statistical analysis was calculated using ANOVA with Bonferroni post test. Significance was indicated as P values.

Results
ADSC-CM and IL4 promote expansion of BCSCs
The breast cancer microenvironment is abundantly composed of adipose tissue that constitutes a reservoir of protumorigenic molecules (25, 26). In the attempt to identify the main contributor to breast cancer cells expansion, we examined the composition of the CM from ADSCs (ADSCs-CM) as well as from ER-+ and TN-BCSCs (ER-+CM and TN-CM, respectively). Several studies demonstrate that ADSCs promote proliferation and invasive capacity in breast cancer cells (27) and, interestingly, the maintenance of the breast TIC pool (28). Moreover, the use of ADSCs overcomes the difficulties experienced in the isolation and long-term culture of mature adipocytes from adipose tissue (4). ER-+ and TN-BCSCs, enriched with cells having stem-like properties, were obtained from surgical resection of breast cancers. ER-+ BCSCs were derived from patient #4 and #18, whereas TN-BCSCs from patient #10 and #30 (see Materials and Methods and Table 1), as described previously (22). ER-+ cells were positive for MUC1 and EPCAM, and expressed low levels of CD49f, whereas TN cells displayed epithelial-to-mesenchymal transition (EMT) markers such as CD10, CD49f, and VIMENTIN (Supplementary Fig. S1A and S1B).

Exploring the levels of a panel of cytokines across the CMs of ADSCs and ER-+ and TN-BCSCs, we detected a higher secretion of proinflammatory and protumorigenic cytokines in CMs of ADSCs and TN-BCSCs. These data suggest that TN-+, as opposed to ER-+BCSCs, support the generation of an inflammatory microenvironment, linked to enhanced tumorigenic features (Fig. 1A and B).

In the past, we have reported that IL4 is secreted by primary breast cancer cells (29) and constitutes an autocrine and paracrine prosurvival signal. In ADSC-CM, the secreted IL4 constitutes an autocrine and paracrine prosurvival signal for ADSCs and TN-BCSCs. These data suggest that TN-+, as opposed to ER-+BCSCs, support the generation of an inflammatory microenvironment, linked to enhanced tumorigenic features (Fig. 1A and B).

We also assessed the capability of breast cancer cells to expand in response to ADSCs-CM and IL4 stimuli and found a stepwise increase in the proliferation of both ER-+ and TN-BCSCs as well as bulk MCF7 and SUM159 cells (Fig. 1D and Supplementary Fig. S1E). In presence of ADSCs-CM and IL4, stem cell frequency resulted in a 2- to 3-fold increase of in ER-+ and TN-BCSCs (Fig. 1E), and was paralleled by a significant increase in the formation of colonies (Fig. 1F) large in size (>90 μm; Fig. 1G, Supplementary Fig. S1F).

ADSCs boost BCSCs proliferation and invasion in an IL4-dependent manner
To investigate whether IL4 is the main player within ADSCs-secreted cytokines that enhance the aggressiveness of breast cancer cells, we evaluated its receptor expression on ER-+ and TN-BCSCs. Both BCSC subtypes displayed IL4Rα along with IL13Rα2, a receptor inhibitor of IL13 signaling (Supplementary Fig. S2A and S2B; ref. 30). Accordingly, we interfered with IL4 ligand/receptor interaction by using an IL4Rα antagonist, which consists of a double mutant IL4 (IL4DM) generated by the replacement of two amino acids (R121D and Y124D; refs. 24, 31). This molecule binds to IL4Rα and IL13Rα1 with the same affinity as the wild-type IL4 but lacks the agonistic activity (Supplementary Fig. S2C). Because the in vitro exposure to IL4DM for 72 hours impaired the proliferation of ER-+ and TN-BCSCs, MCF7, and SUM159 cells (Fig. 2A; Supplementary Fig. S2D), we sought to explore whether IL4 targeting was necessary and sufficient to limit the effect of the ADSCs-CM.

Both ADSCs-CM and IL4 strongly increased the formation of colonies in the 3D culture (Fig. 2B), which highlights that the effect of other paracrine cytokines, including IL13, is only partial. IL4DM was not only able to affect the ability to form colonies (Fig. 2B), but also to impair the invasive potential of ER-+ and TN-BCSCs and of the established cell lines MCF7 and SUM159, which counteracted the effect of both IL4 and ADSCs-CM (Fig. 2C; Supplementary Fig. S2E).

We found that BCSCs, pretreated with medium or IL4 and subcutaneously injected into mice, delayed the tumor outgrowth when IL4DM was intraperitoneally administered (Fig. 2D; ref. 6). These findings suggest that IL4DM delays the in vivo growth rate of BCSCs.

IL4DM inhibits MAPK pathway activation, upregulates ΔUSP4 expression, and sensitizes to anticancer therapy
We wondered whether the administration of IL4DM could be implicated in the modification of the CD44+/CD24- phenotype of breast TICs with a mesenchymal-like state (16). In TN-BCSCs, CD24 expression increased in response to IL4DM, suggesting that tumor cells with stem-like features may transit between a mesenchymal-like and a less aggressive epithelial-like phenotype (Fig. 3A; Supplementary Fig. S3A; refs. 9, 32). We did not notice any significant change in CD24 expression in the exiguous compartment of CD24- cell fraction present in the ER-+BCSCs, following exposure to IL4DM (data not shown).

It has recently been demonstrated that the depletion of CD44+/CD24- population is determined by the exogenous expression of ΔUSP4 (9). ΔUSP4 is highly expressed in ER-+BCSCs, whereas it was barely detectable in the TNBC subtype. ER-+ and TN-BCSCs, in presence of IL4DM and ADSCs-CM, gradually increased the expression of ΔUSP4 for up to 24 hours (Fig. 3B).
Figure 1. ADSC-CM and IL4 enforce the motility and proliferation of BCSCs.

A, Cytokines production of CMs derived from ADSCs, ER⁺-BCSCs, and TN-BCSCs after 48 hours.

B, Schematic model of paracrine and autocrine signals occurring in breast cancer cells.

C, Representative phase contrast analysis of TN-BCSCs (pt #30) in the indicated treatment and cultured in adherence for 12 hours. Arrows, cells protrusions. Scale bars, 20 μm.

D, Cell proliferation analysis of ER⁺-BCSCs and TN-BCSCs treated with medium, ADSCs-CM, or IL4.

E, Stem cell frequency of ER⁺-BCSCs and TN-BCSCs treated with medium, ADSCs-CM, or IL4.

F, Fold increase of colony number in ER⁺-BCSCs and TN-BCSCs treated as in E.

G, Colony-forming efficiency of cells treated as indicated. Data are expressed as mean ± SD of three independent experiments using two different ER⁺-BCSC (pt #4 and pt #18) and two TN-BCSC (pt #10 and pt #30) lines. *P < 0.05; **P < 0.01; ***P < 0.001.
It was reported that the MAPK pathway activity, including in breast cancer, is partially modulated by DUSP4 (9–12). We hypothesized that the effect of IL4DM in impairing proliferation and invasive potential of BCSCs could be due to the DUSP4-mediated downregulation of MAPK pathway. IL4DM decreased the activity of MEK, ERK, and RAS, at 45 minutes and 24 hours (Fig. 3C), even in presence of ADSCs-CM and IL4 in both ER+- and TN-BCSCs (Fig. 3D and E; Supplementary Fig. S3B–S3D). In ER+-BCSCs, which retain high levels of DUSP4, IL4DM slightly augmented its levels in the absence or presence of ADSCs-CM or IL4 (Fig. 3C–E). Similarly, IL4DM prompted DUSP4 expression in MCF7 and SUM159 cells (Supplementary Fig. S3E). Although IL4DM boosted DUSP4 expression in TN-BCSCs (Fig. 3C), this effect was weaker in presence of IL4 and ADSCs-CM (Fig. 3D and E; Supplementary Fig. S3B–S3D). NF-κB has been reported to be modulated by IL4 treatment in B lymphocytes (33) and to promote the expansion of breast TICs, which contribute to cancer progression (34, 35). To understand how the IL4 signaling blockade is capable of modulating expression levels of DUSP4, we analyzed the activation of NF-κB. The phosphorylation of NF-κB was enhanced by IL4 exposure of both ER+- and TN-BCSCs, whereas its expression levels were barely present in ER+-BCSCs and potently lowered in TN-BCSCs by the addition of IL4DM to the cell culture (Fig. 3F; Supplementary Fig. S3F). Withaferin A (WitA), which selectively inhibits IKKβ (36, 37), overcame the effects of IL4, reducing the NF-κB activation to a greater extent in TN-BCSCs (Fig. 3G; Supplementary Fig. S3G). WitA restored in ER+- and upregulated in TN-BCSCs the DUSP4 expression levels in the presence of IL4 (Fig. 3H). 5-Aminosalicylic acid (5-ASA), another NF-κB inhibitor (38), behaved like WitA in boosting the expression of DUSP4 in both ER+- and TN-BCSCs (Supplementary Fig. S3H).

Because IL4 blockade circumvents the resistance to conventional antitumor treatment (6, 7), we aimed to couple the inhibition of IL4 with conventional therapies used in breast cancer management. In this context, several clinical trials are evaluating the effectiveness of standard therapy in combination with PI3K
Figure 3.
IL4DM prevents the activation of MAPK pathway. **A**, Representative flow cytometry analysis of IMC, CD44, and CD24 on TN-BCSCs (pt #30) treated as indicated for 72 hours. Red dots, double positive cells. **B**, Immunoblot analysis for DUSP4 of ER⁺-BCSCs (pt #18) and TN-BCSCs (pt #30) treated as shown at the indicated time points. Red box, the time point selected for the further experiments. β-Actin was used as loading control. **C–E**, Western blot analysis for P-MEK, MEK, P-ERK, ERK, β-Actin at 45 minutes and for RAS and DUSP4 at 24 hours of ER⁺-BCSCs (pt #18) and TN-BCSCs (pt #30) exposed to the indicated treatment. **F**, Immunoblot analysis for P-NF-κB and NF-κB of ER⁺-BCSCs (pt #18) and TN-BCSCs (pt #30) treated with the indicated agents for 45 minutes. β-Actin was used as loading control. **G**, Western blot analysis for P-NF-κB and NF-κB of cells treated as indicated for 45 minutes. **H**, Immunoblot analysis for DUSP4 of cells as in **G** exposed to the indicated treatment for 24 hours. **I**, Percentage of cell death in cells exposed to ADSCs-CM in combination with IL4DM and Fulvestrant (Fulv) and BKM120 (Fulv + BKM120) for ER⁺-BCSCs or Docetaxel (DTX) and BKM120 (DTX + BKM120) for TN-BCSCs at 48 hours. **J**, Cell death percentage of cells exposed to IL4 in combination with IL4DM and treated with antitumoral drugs as in **I** at the indicated time points. Bars represent mean ± SD of three independent experiments performed with two ER⁺-BCSC (pt #4 and pt #18) and two TN-BCSC (pt #10 and pt #30) lines. **, P < 0.05; **, P < 0.001; NS, nonsignificant.
Inhibitors, such as BKM120, in both ERα-negative and -positive breast cancers (39, 40).

IL4DM in combination with BKM120 and the ERα inhibitor, fulvestrant (Fulv.), for ER−/−BCSCs, or the chemotherapeutic compound docetaxel (DTX), for TNBC subtype, in presence of microenvironmental cytokines present in the ADSCs-CM, significantly potentiated cell death induced by treatment alone in both ER−/− and TN-BCSCs, reaching from 40% to 80% (Fig. 3I).

To determine the specific contribution of IL4 in mediating the refractoriness to therapy, we exposed BCSCs to the combination of IL4DM with the indicated anticancer compounds in presence of IL4. Although ER−/−BCSCs exposed to fulvestrant plus BKM120 (Fulv.+BKM120) did not benefit from the addition to the treatment of IL4DM (Fig. 3J), the latter significantly increased the efficacy of docetaxel plus BKM120 (DTX+BKM120) in TN-BCSCs at both 24 and 48 hours in the presence or absence of IL4 (Fig. 3J).

These data suggest that the inhibition of IL4 achieves only a partial response in ER−/−BCSC model due to their extreme sensitivity to fulvestrant and BKM120, whereas enhances drug efficacy in TNBC model.

DUSP4 reduces proliferation, invasion, and metastatic potential of BCSCs

To assess the role of DUSP4 with regard to tumorigenic and metastatic potential, we stably knocked-down DUSP4 (shDUSP4) in ER−/−BCSCs and MCF7 cells and ectopically expressed it (DUSP4) in TN-BCSCs and SUM159 cells (Fig. 4A; Supplementary Fig. S4A–S4C). shDUSP4 provoked a slight increase in ER−/−BCSC proliferation, which was delayed in TN-BCSCs overexpressing DUSP4 (Fig. 4B). The analysis of the invasion assay revealed a potent capability of ER−/−BCSCs harboring shDUSP4 to invade the Matrigel in response to the chemotactant human serum AB. The ectopic expression of DUSP4 curtailed the invasive potential of TN-BCSCs (Fig. 4C). Moreover, the knockdown of DUSP4 led to an enrichment in cells able to form large colonies, whereas their reduction was dictated by DUSP4 ectopic expression (Fig. 4D).

In accordance with already published data, DUSP4 knockdown, in ER−/−BCSCs, increased the CD44+/CD24−/CD90− compartment, conversely TN-BCSCs, ectopically overexpressing DUSP4, showed a significant decrease of this cell fraction (Fig. 4E; Supplementary Fig. S4D and S4E) by the modulation of MAPK pathway activation (Fig. 4F; Supplementary Fig. S4F; ref. 9). Likewise, shDUSP4 in MCF7 cells and DUSP4 overexpression in SUM159 cells, respectively, enhanced or decreased the activation of MEK, ERK, and P38 MAPKs (Supplementary Fig. S4G).

By modulating EMT effectors and molecules, which control breast cancer invasion, P38 has been implicated in multiple steps of the metastatic process (41). Thus, we reasoned that DUSP4 could be involved in the metastatic dissemination of BCSCs. In vivo imaging analysis of cells transduced with luciferase showed that shDUSP4 rendered ER−/−BCSCs able to colonize the liver and the lung when injected in the tail vein of NOD/SCID mice (Fig. 4G). Conversely, TN-BCSCs overexpressing DUSP4 lost their metastatic potential (Fig. 4H). Collectively, these findings confirm the tumor suppressor role of DUSP4 and unveil a novel role in inhibiting metastasis.

IL4 favors a more permissive microenvironment

We subsequently evaluated the clinical relevance of IL4 and DUSP4 in breast cancer patients by interrogating a publically available database (PROGeneV2—Pan Cancer Prognostics Database-GSE10893-GPL887). High expression of IL4 and low expression levels of DUSP4 resulted to be associated with a decreased relapse-free survival of patients affected by breast cancer (HR 2.36; 95% CI, 1.15–4.85; P = 0.019; Fig. 5A). IL4 biological main function relies on the modulation of immune response (42). We investigated whether adipose tissue, aided by the infiltrating T lymphocytes, could foster a protumorigenic microenvironment. Tumor cells escape from the cytotoxic activity of CD8+ cells through the expression of PD-1, which by binding to its receptor, PD-1, promotes the apoptosis of cytotoxic T cells (43). IL4DM markedly diminished the expression of PD-1 on the surface of activated cytotoxic CD8+ T cells, as compared with its control (medium) and regardless of the presence of IL4 (Fig. 5B; Supplementary Fig. S5A and S5B). We found that the treatment with IL4 reduced the percentage (of about 15% vs. medium) of activated cytotoxic CD8+ T cells expressing IFNγ. Although IL4DM alone did not alter T-cell activation, it was notably able to counteract the effect of IL4, restoring the number of cytotoxic T cells expressing IFNγ (Fig. 5C; Supplementary Fig. S5B). As ER−/− and TN-BCSCs express PD-L1 (Supplementary Fig. S5C), we hypothesize that IL4DM could potentially limit the activation of the PD-1 pathway by reducing the number of cytotoxic PD-1/CD8+ T-cell compartment. These phenomena suggest the existence of a negative DUSP4 feedback loop that inhibits the MAPK pathway, as well as the production of cytokines involved in the priming of microenvironment that fuels cancer progression (Fig. 5D).

Discussion

Here, we provided evidence that BCSCs with a metastatic propensity express high levels of IL4 along with a downregulation of DUSP4. The latter is confirmed by the inverse correlation between relapse-free survival of breast cancer patients and IL4 expression. Targeting inflammatory mediators in breast cancer has pointed out appealing endpoints in vitro and in preclinical models (31, 44). Notwithstanding the ongoing development of innovative therapeutic agents that block inflammatory cytokines released by tumor microenvironment and involved in the progression of breast cancer, nowadays the clinical use of these therapies does not show improvement in patient outcome (45). On the basis of our previous findings in colorectal cancer (6), we here investigated the IL4-mediated mechanism that regulates the tumorigenic and metastatic potential of BCSCs.

Targeting IL4 signaling depleted the tumorigenic and metastatic CD44+/CD24− cell fraction, thus delaying the proliferation and invasion capability of BCSCs through the inhibition of MEK, ERK, and RAS activity. Notably, ER−/−BCSCs expressed elevated levels of IL4Rα and were promoted to produce IL4 following microenvironmental cytokine stimuli, although to a lesser extent than TN-BCSCs. Our data indicated that nonmetastatic ER−/−BCSCs, under tumor microenvironmental influence, acquire an invasive phenotype by strengthening IL4 signaling activity, which is overcome by the blockade of IL4Rα with IL4DM.

We observed that blocking IL4 signaling, by IL4DM, increases the expression of DUSP4 concomitantly with the downregulation of RAS–MAPK pathway. It has recently been demonstrated that in physiologic conditions, the activation of MAPK promotes DUSP4 expression, which in turn suppresses ERK, ensuring breast cell...
Figure 4.
DUSP4 hampers the metastatic potential of BCSCs. A, Western blot analysis for DUSP4 of ER$^+$-BCSCs (pt #18) exposed to medium alone and transduced with scramble (Scr) and short hairpin DUSP4 (shDUSP4) and TN-BCSCs (pt #30) transduced with empty vector (EV) and DUSP4 synthetic gene (DUSP4). β-Actin was used as loading control. B, Cell proliferation of cells transduced as in A. C, Percentage of invading cells as described in A. D, Percentage of colony forming efficiency of cells as described in A. E, Percentage of CD44$^+$/CD24$^-$ positivity of cells treated as in A by flow cytometry analysis. Data are expressed as mean ± SD of three independent experiments using two different ER$^+$-BCSC (pt #4 and pt #18) and two TN-BCSC (pt #10 and pt #30) lines. F, Immunoblot analysis of P-MEK, MEK, P-ERK, ERK, P-P38, P38 of cells transduced as in A. β-Actin was used as loading control. G and H, In vivo whole-body imaging analysis of mice tail vein injected with cells transduced with scramble (Scr) and shDUSP4 (shDUSP4) for ER$^+$-BCSCs and with empty vector (EV) and DUSP4 synthetic gene (DUSP4) for TN-BCSCs. Yellow dashed ellipse outlines the area of metastasis used for photons count. Data shown are mean ± SD of two BCSC lines for each molecular subtype injected into the tail vein of three mice for each indicated condition. *, P < 0.05; **, P < 0.01; ***; P < 0.001.
Nevertheless, loss of DUSP4 and its methylation lead to an aberrant cell proliferation in basal-like breast cancers (9, 10). In addition, the activation of NF-κB signaling plays a crucial role in downregulating the expression levels of DUSP4 in endothelial cells (46). Strikingly, our data revealed that DUSP4 is inhibited by NF-κB activation in an IL4-dependent manner.

Figure 5: IL4 contributes to the protumorigenic microenvironment. A, Relapse-free survival Kaplan–Meier curves according to IL4/DUSP4 gene expression ratio in breast cancer patients. B, Flow cytometry analysis of PD-1 and its IMC on PBMCs gated for CD8 positivity (CD8⁺ T cells). Activated PBMCs (Activated) refers to cells exposed to anti-CD3 in combination with anti-CD28 mAbs for 4 days. Activated cells were then treated, for additional 4 days, with medium (medium), IL4 (IL4), IL4DM (IL4DM), or IL4 in combination with IL4DM (IL4+IL4DM). Resting PBMCs (Resting) represent nonactivated cells cultured in presence of medium alone. C, Representative flow cytometry analysis of IFNγ on resting and activated CD8⁺ T cells treated as in B. D, Schematic model illustrating IL4 signaling in breast cancer cells. ADSCs and CD4⁺ T helper type 2 lymphocytes (LTh2) secrete IL4 into the tumor microenvironment. IL4 binding to its cognate receptor, IL4RI, on breast cancer cells triggers the activation of RAS–MAPK pathway, which promotes cancer stemness and is in turn blocked by DUSP4. Concurrently, IL4-mediated NF-κB activation cooperates in the blockage of DUSP4. Antagonizing IL4Rx, with IL4DM, inhibits IL4 signaling in cancer cells and favors cytotoxic CD8⁺ T cell activation.
Compelling data indicate that P38 and ERK activation promotes cancer cell dormancy, allowing their survival in a hostile microenvironment. In addition, P38 induces EMT awakening cancer cells from dormancy (41, 47). The overexpression of DUSP4 potently impaired ERK and P38 MAPK pathway, preventing the intrinsic metastatic capability of BCSCs.

Within tumor microenvironment, aside from ADSCs, infiltrating CD4+ T cells are the other main source of IL4 (42). IL4 mediates the switching of CD4+ T HL cells to CD4+ T HL cells affecting their innate antitumor immunity (42). Although the activation of IL4/STAT6 signal boosts both the tumorigenic and metastatic activity of breast cancer cells, its loss exerts an antitumor activity through the activation of CD8+ T cells, in a CD4+ LTh cell-independent manner (19, 48). Although the role of TNL2 cytokines in cancer is still contradictory and context dependent (49), we have demonstrated that targeting IL4 pathway fostered the cytotoxicity of CD8+ T cells, by increasing intracellular IFNγ content and decreasing their PD-1 expression, expression that is related with a shorter overall survival in epithelial-originated cancer patients (50).

Finally, our findings propose the targeting of IL4 signaling as a powerful approach in reducing tumor burden and metastatic colonization. Several commercially available compounds that block IL4 signaling are presently being utilized in the treatment of asthma and some have already been tested in clinical trials as anticancer agents [8]. Their administration, in combination with other novel more effective therapies such as MEK, ERK, and PI3K inhibitors, warrants further investigation to establish their effective doses and efficacy.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition

Miriam Gaggianesi, Alice Turdo, Aurora Chinnici, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-16-3126

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2017/04/11/0008-5472.CAN-16-3126.DC1

Cited articles
This article cites 49 articles, 19 of which you can access for free at:
http://cancerres.aacrjournals.org/content/77/12/3268.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.