APOTOPSIS RATE IN CUMULUS CELLS AS POSSIBLE MOLECULAR BIOMARKER FOR OOCYTE COMPETENCE.

Liana Bosco¹, Maria C. Roccheri¹, Chiara Martino¹, Roberto Chiarelli¹, Monica Lispi², Giovanni Ruvolo³

1. Department STEBICEF, University of Palermo, Palermo, Italy
2. Merck Serono S.p.A, Italy
3. Centro di Biologia della Riproduzione, Palermo, Italy

ARTICLE INFO

Article history:
Received 25 January 2017
Revised 28 February 2017
Accepted 31 March 2017

Keywords:
Oocyte competence, Granulosa cells, DNA fragmentation, Hormonal treatment, Poor responder

ABSTRACT

Several lines of evidence showed that apoptosis rate of cumulus cells in oocytes derived by assisted reproductive technologies could be used as an indicator of fertilizing gamete quality. Aim of the study was to investigate the effects of three different ovarian stimulation protocols on the biological and clinical outcome in hyporesponder patients. Collected data showed a higher significant rate of DNA fragmentation index (DFI) in U group (patients treated with Highly Purified human Menopausal Gonadotrophin) than in P group (treated with recombinant human Follicle Stimulating Hormone (r-hFSH) combined with recombinant human Luteinizing Hormone (r-hLH)). Both groups R (treated with r-hFSH alone) and P showed a significant increase in collected and fertilized oocytes number, embryo quality number. This study showed that combined r-hFSH/r-hLH therapy could represent the best pharmacological strategy for controlled ovarian stimulation and suggests to use DFI as a biomarker of ovarian function in hyporesponder patients.

© EuroMediterranean Biomedical Journal 2017

1. Introduction

Ovarian follicle development is a complex process; granulosa and cumulus cells could play a pivotal role during the preovulatory phase, synchronizing nuclear and cytoplasmatic maturation through the complete suppression of oocyte transcription until nuclear maturity. Paracrine interactions between somatic and germ cells are critical for normal follicular development [1]. Somatic cells in ovaries are known to participate in regulating oocyte growth and development, meiosis, and global transcriptional activity [2]. On the other hand, oocytes promote granulosa cell proliferation and differentiation [3]. In the assisted reproductive technologies (ARTs) clinical routine, the oocyte selection is based on the morphological parameters of the cytoplasm, polar body and cumulus cells [4]. However, all the morphological criteria for grading and screening of oocytes are subjective and controversial, and are not related to the intrinsic competence of the oocyte [5]. Research is designed to define objective and non-invasive molecular markers predictive of oocyte competence. It has been demonstrated that the apoptosis rate of cumulus cells in women who achieved pregnancy was considerably lower than in women who did not become pregnant. In animal studies, both oocyte DNA fragmentation and their apoptosis might account for poor oocyte competence and lower fertility [6-7]. Cumulus cell apoptosis rate has been evaluated to verify its relationship with pregnancy and implantation rate in different studies. With this in mind, cumulus cell apoptosis rate was suggested as molecular marker in selecting oocytes with higher implantation potentiality [8-10].

In our previous study [11], we have demonstrated that r-hLH supplementation during ovarian stimulation, significantly reduced apoptosis in the cumulus cells, improving oocyte competence, which is necessary for adequate fertilization and a consequent embryo implantation. HP-hMG, r-hFSH and a combination of r-hFSH/r-hLH, are commonly used for for controlled ovarian stimulation (COS) in infertile women undergoing IVF/ICSI treatments. Several publications have compared the...
effectiveness of these compounds [12]. Most studies have been performed in women undergoing pituitary down-regulation with a GnRH agonist long protocol, focusing on the outcome after r-hFSH and HP-hMG ovarian stimulation [13]. Two meta-analyses showed that HP-hMG ovarian stimulation accounts for an increased live birth rate compared to r-hFSH in the GnRH agonist long protocol [14].

In clinical practice, HP-hMG is the treatment of choice when LH activity is required to achieve successful ovarian stimulation; this is due to the LH activity present in hCG added to this formulation. Several studies have suggested to add LH activity to FSH to stimulate ovarian function in IVF/ICSI-embryo transfer to improve clinical outcomes [15], but they have not been able to address the role that LH administration plays during the follicular phase of a stimulation cycle for IVF-ET, under pituitary suppression. When r-hFSH is administered to normo-gonadotrophic patients, low levels of endogenous LH can still be present, following pituitary down-regulation with GnRH analogues [16]. It is known that only 1% of LH receptors need to be occupied to drive adequate ovarian steroidogenesis for reproduction [17], but the potential benefit of additional exogenous LH supplementation in ARTs is still controversial [18]. Different meta-analyses did not demonstrate any clinical benefit from r-hLH supplementation [19]. However, in older patients undergoing ARTs, the addition of r-hLH seems to be beneficial [20].

The first aim of this study was to determine oocyte competence. We further compared the effects of stimulation therapy with r-hFSH, r-hFSH/hLH or HP-hMG (containing hCG as LH-like activity) in patients undergoing ICSI.

2. Material and methods

Study design

This prospective observational study was performed on 61 patients, being treated at the “Centro di Biologia della Riproduzione”, Palermo, Italy. Patients were included in the observation after signing the Informed Consent which included both the agreement for the study participation and the possible use of any discarded cumulus cells for apoptosis rate assessment. The patients involved in the study were classified hypo-oogenic协议 patients, low levels of endogenous LH can still be present, following pituitary down-regulation with GnRH analogues [16]. It is known that only 1% of LH receptors need to be occupied to drive adequate ovarian steroidogenesis for reproduction [17], but the potential benefit of additional exogenous LH supplementation in ARTs is still controversial [18]. Different meta-analyses did not demonstrate any clinical benefit from r-hLH supplementation [19]. However, in older patients undergoing ARTs, the addition of r-hLH seems to be beneficial [20].

The first aim of this study was to determine oocyte competence. We further compared the effects of stimulation therapy with r-hFSH, r-hFSH/hLH or HP-hMG (containing hCG as LH-like activity) in patients undergoing ICSI.

<table>
<thead>
<tr>
<th>TREATMENT GROUPS</th>
<th>R Group (r-hFSH)</th>
<th>P Group (r-hFSH/hLH)</th>
<th>U Group (HP-hMG)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº subject (mean±SD)</td>
<td>21</td>
<td>18</td>
<td>22</td>
<td>ns</td>
</tr>
<tr>
<td>Age (mean±SD)</td>
<td>35.1±3.6</td>
<td>37.7±1.8</td>
<td>38.6±3.4</td>
<td>ns</td>
</tr>
<tr>
<td>BMI (Kg/m²±SD)</td>
<td>23.4±3</td>
<td>21.6±3</td>
<td>21.3±2.8</td>
<td>ns</td>
</tr>
<tr>
<td>Basal FSH (µg/mL±SD)</td>
<td>49.0±10.1</td>
<td>54.3±11.3</td>
<td>48.0±13.2</td>
<td>ns</td>
</tr>
<tr>
<td>Basal LH (IU/mL±SD)</td>
<td>6.9±2.3</td>
<td>5.3±1.6</td>
<td>8.6±2.2</td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 1 - Characteristics of patients receiving study treatment. Values are expressed as mean ± SD; ns = not significant; p-value reported when significant.

<table>
<thead>
<tr>
<th>Cycles</th>
<th>R Group</th>
<th>P Group</th>
<th>U Group</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22</td>
<td>18</td>
<td>21</td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 2 - Ovarian stimulation protocols in the treatment groups. Values are expressed as IU ± SD; ns = not significant; *p-value measured P & R vs. U

As a routine practice at our Centre, we evaluated cumulus cells apoptosis rate as a molecular biomarker for oocyte competence in all patients agreeing to donate discarded cumulus cells for research purposes. The collection of cumulus cells material was approved by the Local Ethics Committee of “Centro di Biologia della Riproduzione”, Palermo, Italy. As a medical research involving human subjects, this study was conducted according to the Declaration of Helsinki 2008 (Ref.: NCT01872247). The quality embryo was evaluated in according to ASEBIR embryo assessment criteria: A = top quality; B = good quality (not for elective single embryo transfer); C = impaired embryo quality; D = do not recommend to transfer (includes all multinucleated embryos) [21].

Apoptosis in cumulus cells was examined with the use of a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays [11, 22], as described below, that allowed us to highlight DNA fragmentation (last step of apoptosis pathway). The pool of cumulus cells was collected after incubating the cumulus-oocyte complex in a solution of hyaluronidase (80 IU/mL, Medicult, Jyllinge, Denmark). The released
cells were collected in a test tube (Falcon, Franklin Lakes, NJ) containing 2 ml of basic culture medium (Quinn’s advantage medium with HEPES; SAGE IVF, Trumbull, CT) and centrifuged twice at 300 g for 10 min. Oocytes were transferred to a culture medium (fertilization medium, SAGE IVF) and incubated at 37°C, 5% CO2, until intracytoplasmic sperm injection (ICSI) was performed. Cumulus cells were then fixed in 3.7% paraformaldehyde for 60 min. After centrifugation at 300 g for 5 min, the supernatant was removed and phosphate-buffered saline (PBS)-glycine was added (0.1 M glycine in PBS and 0.3 mg/mL bovine serum albumin [BSA]). Finally, the cells were mounted on polylysine-coated glass slides by cyto-centrifugation [23-25].

Fluorescent TUNEL assay, or TdT in situ

Cumulus cells were washed for 5 min in PBS and permeated for 10 min on ice in 0.1% Triton X100 and 0.1% sodium-citrate in PBS, and then washed three times in PBS at room temperature for 5 min each time. Cumulus cells were then incubated for 60 min at 37°C in a humidified chamber in 50 µL of a mixture containing 5 µL of nucleotide mix, 1 µL of TdT enzyme, and 45 µL of equilibration buffer (DeadEnd Fluorometric TUNEL System, Promega Italia SRL, Milano, Italy). An additional slide was incubated with the same mixture without the TdT enzyme (negative control), while another slide was pretreated for 5 min with 100 µL of DNase buffer, and then treated for 10 min with a DNase buffer solution containing 10 unit/ml of DNase I (positive control). The reaction was blocked with SSC for 15 min, then followed by three 5 min-washes in PBS. Cumulus cells were stained with propidium iodide (1 µg/ml) for 10 min at room temperature and observed under a fluorescent microscope equipped with a x20 0.40 objective.

Apoptosis rate or DNA fragmentation index (DFI) indicates the percent value of apoptotic cells observed; total apoptotic nuclei labelled in green (TUNEL assay) / total nuclei labelled in red (Propidium iodide) x 100.

Statistical analysis

Data were analyzed with the statistical software package SPSS version 17. All the analyses presented were assessed using a two-sided significance level, α, of 0.05.

To verify the normal distribution of the population the Kolmogorov – Smirnov test was used and the Levene test was performed to analyze the homogeneity of variance.

To compare significant differences between the mean values two tests were used, Welch and Brown-Forsythe. Analysis of variance (ANOVA) models were used to compare treatment groups, except for the LH variables, where a T-test for independent variables was used. The η squared was used to calculate the effect size. Non-parametric analysis was performed with Kruskal-Wallis test. Data are presented as mean ± standard deviation (SD), unless otherwise specified.

3. Results

The study of apoptosis on discarded cumulus cells performed on individual groups with Fluorescent TUNEL assay allowed us to quantify the DNA fragmentation index (DFI), expression of apoptosis (Figure 1).

As can you see the fig.1 shows DNA fragmentation, expressed by green fluorescent chromatin for each treatment group (A1, B1, C1), the second column (A2, B2, C2) shows the total nuclei labelled in red (Propidium iodide) (A2, B2, C2) and the third column shows a merge of green and red (A3, B3, C3). (see in orange the cell with DNA fragmentation). Collected data showed a relatively high DNA Fragmentation Index, measured as total apoptotic nuclei labelled in green (TUNEL assay) / total nuclei labelled in red (Propidium iodide) x 100, in U group. Comparing the results obtained with different ovarian stimulation protocols, the DFI significantly higher in U group was than in the other two, especially compared to the P group (Table 3, Figure 1 and Figure 2).

Figure 1 - TUNEL assay in situ. A = R Group; B = U Group; C = P Group. Green: DNA fragmentation (A1, B1, C1). Red: nucleic acids stained with Propidium Iodide (A2, B2, C2). Merge of green and red (A3, B3, C3). Fields observed under fluorescent microscope.

Figure 2 - Apoptosis in cumulus cells: DFI in three treatment group

The respective numbers of collected oocytes, fertilized oocytes and good quality embryo (a/b) were significantly higher in either P or R groups than in U group (see table 4). Collected data were related to only embryos of category A and B (top and good quality) in according to ASEBIR embryo assessment criteria [21].
Furthermore U group patients needed to be treated with higher significant amount of FSH (Table 2). At last, group U showed lower but not statistically significant implantation and pregnancy rates (Table 4).

<table>
<thead>
<tr>
<th>Cycles (n)</th>
<th>R Group</th>
<th>P Group</th>
<th>U Group</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells (n)</td>
<td>623 ± 57</td>
<td>562 ± 64</td>
<td>615 ± 87</td>
<td></td>
</tr>
<tr>
<td>DFI</td>
<td>22.01±11.2</td>
<td>18.3±4.5</td>
<td>27.2±12.5</td>
<td>p<0.05*</td>
</tr>
</tbody>
</table>

Table 3 - Apoptosis in cumulus cells measured TUNEL assay. HP-hMG (U Group), r-hFSH (R Group) and r-hFSH/r-hLH (P Group). DFI = DNA fragmentation index. Values are expressed as mean ± SD; ns = not significant; p-value reported when significant. *(P vs. U and U vs. P)

<table>
<thead>
<tr>
<th>R Group</th>
<th>P Group</th>
<th>U Group</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GV-MI oocytes</td>
<td>1.6 ± 1.9</td>
<td>0.7 ± 1</td>
<td>0.3 ± 0.5</td>
</tr>
<tr>
<td>MI oocytes</td>
<td>6.2±3.4</td>
<td>5.3±2.3</td>
<td>4.26±2.6</td>
</tr>
<tr>
<td>Fertilized oocytes</td>
<td>3.7±1.9</td>
<td>4.6±1.4</td>
<td>3±1</td>
</tr>
<tr>
<td>Embryo a/b</td>
<td>3±1.7</td>
<td>3.5±1.1</td>
<td>2.4±1</td>
</tr>
<tr>
<td>E2 on day of hCG (pg/mL)</td>
<td>1700±3</td>
<td>185±3</td>
<td>193±3</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>27.2</td>
<td>27.7</td>
<td>19</td>
</tr>
<tr>
<td>Implantation</td>
<td>14</td>
<td>10.3</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Table 4 - Clinical outcome of COS. HP-hMG (U Group), r-hFSH (R Group) and r-hFSH/r-hLH (P Group). GV-MI oocytes = germinal vesicle and metaphase I oocyte MII oocytes = metaphase II oocyte embryo a/b = good quality embryo E2 = 17 beta estradiol. Values are expressed as mean ± SD; ns = not significant; p-value reported when significant.

4. Discussion

In this study we evaluated the effects of different ovarian stimulation protocols on oocyte competence and secondly their clinical outcome, in patients hyporesponders to FSH stimulation. Results obtained showed high efficacy, in term of either DFI or clinical outcome, of recombinant gonadotropins treatments compared to HP-hMG treatment. Historically in the treatment of infertility and in ARTs, urinary human menopausal gonadotropin (u-hMG), from post-menopausal women, has been used to stimulate folliculogenesis. Over the years, technological advances have led to the ability to produce recombinant forms of human FSH (r-hFSH) and LH (r-hLH). These are now available as potential alternatives to u-hMG and may be more suitable in those sub populations of patients requiring the addition of LH in their stimulation protocols.

During the follicular phase of the ovarian cycle, growth and follicular recruitment are stimulated mainly by FSH while during the late phase of follicular growth is supported mainly by the LH. The induction of cell differentiation and the support of the final stages of follicle maturation depend on the action of LH. To get more mature follicles, and thus increase the yield of oocytes from patients for ARTs pharmacological strategies rely on the modulation of the administration of exogenous gonadotropins with COS protocols tailored. LH supplementation can be achieved through the administration of r-hLH or hCG (more than 80% of homology with LH). The similarity of action of LH and hCG may depend on the fact that both gonadotropins bind the same LH/CG receptor. For this reason, hCG has become an alternative source of exogenous LH activity during COS for ART cycles. Our results may suggest HP-hMG treatment is less effective than r-hFSH/r-hLH treatment. It is conceivable that, while interacting with the same receptor, r-LH and hCG may differently support follicle maturation and development. These data are consistent with our previous results [11], showing that supplementation with r-LH related with the reduction of apoptosis rate in COC and production embryos with a higher implantation potential.

Moreover, both in vitro and clinical studies have recently challenged the hypothesis of LH and hCG bioequivalence [26]. Differences were observed when the recombinant forms of the two gonadotropins were used in vitro to stimulate primary and immortalized granulose cells. For example, hCG, was 5-times more potent than LH for cAMP accumulation, while maximal LH stimulation was 6-fold faster. Conversely, LH was a stronger activator of the ERK1/2 and AKT pathways. Inhibition of ERK1/2 enhanced aromatase gene expression mediated by LH. On the contrary this effect was not observed in patient treated with hCG, suggesting that, downstream LHCG-R, intracellular signaling activation may diverge and lead to different targets [27]. In our model, we could speculate that extractive HCG, contained in HP-hMG, was not able to reduce apoptosis in cumulus cells due to the high dosage exposure of LH/CGR to hCG that down-regulated the receptor. In addition, hCG is not acting on the granulose cell with the same pathways involved by LH, and is not effective in activating the AKT pathway which can protect follicle somatic cells from apoptosis.
Our results showed that use of r-hFSH significantly improved the number of collected oocytes and at the same time reduced the dose of exogenous gonadotropins administration. This result is in line with previous literature data [13, 28]. A recently published study demonstrated that the expression level of LH/hCG receptor gene was reduced in hMG-treated granulosa cells compared with recombinant FSH–treated granulosa cells [29]. This could explain why ovarian stimulation with recombinant FSH (with or without r-hLH) induces significantly more follicles and more oocytes retrieved.

We further demonstrated that increased pregnancy and implantation rates were obtained in patients who were treated with recombinant gonadotropins than in patients treated with HP-hMG. These results were not statistically significant probably for the limited number of study patients.

Our data seem to confirm the important role of native LH in reducing apoptosis in the cumulus cells, probably supporting the actions of a series of paracrine factors. Kinase Akt, members of bcl-2 family, KIT-ligand and c-KIT receptors, stem cell factor (SCF), members of TGF-beta family (activating, factors BMP-4 and BMP-7, GDF9), estrogens, insulin and IGFs, epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), TGF-α, interleukin 1β (IL-1β), growth hormone (GH) and the member of apoptosis inhibitors, surviving could promote survival during the growth and differentiation of follicles [27].

LH could induce the expression and the synthesis of EGF-like growth factors such as amphiregulin, epiregulin, and betacellulin and activate the EGF receptor pathway in the granulosa cells of preovulatory follicles, thereby impacting on ovulation [26, 27, 29, 30].

Results of this study are in favour of the use of a combination treatment r-hFSH and r-hLH to stimulate ovarian functions. It is tempting to speculate that this strategy may contribute to create a better microenvironment in the follicle than that observed in patient treated with HP-hMG. Recombinant combination treatment was also able to produce better oocyte competence, embryo viability and less FSH administration. A larger, prospective, randomized study is needed to confirm the data of this observational prospective pilot study.

Acknowledgements

We are grateful to Dr C. Caropreso for his help with the statistical analyses of the data.

Competing interests

Monica Lispi is employed at Merck Serono company; all others authors declare that they have no competing interests.

References

