Introduction

Autism term was used for the first time by the Swiss psychiatrist Eugen Bleuler in 1911 to identify a sort of unconscious early childhood thinking, and sometimes persistent over time, tending to isolation and escape actually fantastic so extreme as to exclude anything outside of one’s self.(1-6).

Autistic spectrum disorders (ASD) are a set of neurological dysfunction and development characterized by deficits in social interaction and non-verbal behaviors such as reduced eye contact, reduced facial expression and body gestures, problems with emotional control and with understanding other people’s emotions, a narrow field of interest and activity in the first three years of life.

Few studies have explored the executive functioning in ASD preschoolers. The aim of this pilot study is the assessment of executive functioning in preschool children with ASD.

Material and methods: 8 ASD children (7 males, 1 female) mean age 3.09 (SD ± 0.83 years) were enrolled in the study and compared with a control group of 15 typically developing children (12 males, 3 females) (mean age 24.3 ± 0.61). All subjects underwent assessment of executive functioning with the BRIEF-P test.

Results: The two groups were matched for age (p = 0.625) and gender (p = 0.900).

Table 1 shows the comparison between the two groups at the BRIEF-P, with significantly higher scores on all subscales of ASD children compared with controls.

Conclusions: Despite the small sample examined the results of this study agree with what is already known in the literature confirm the presence of a significant deficit in executive functions of subjects with ASD emphasizing for the first time the emergence of such problems at an early stage of development, but demanding further studies to confirm this.

Keywords: Autism Spectrum Disorders, Preschool children, BRIEF-P, executive functions.

DOI: 10.19193/0393-6384_2017_1_005
In general, ASD is not a single disorder, but multi-factorial, and linked to a genetic predisposition triggered by environmental factors, both during embryonic development both in the first years of life(1-6).

ASD are chronic and pervasive disorders compromising the typical path development and impacting many behavioral areas such as hyperactivity, attentive lability and hyperkinetic behavior(1-6). To the best our knowledge, few reports have explored the executive functioning in ASD preschool children. In this light, aim of the present study is evaluating the executive functioning in preschool-aged children affected by ASD as pilot study.

Materials and methods

Population

During January-July 2016, 8 ASD children were enrolled (7 males, 1 female) aged between 2.7 years and 3.5 years, (mean age 3.09 ± 0.83). ASD was diagnosed according to international criteria.

Exclusion criteria were the following: overweight (z-BMI> 85 pc) and obesity (z-BMI > 95 pc), cognitive disability (IQ <70), neurological disorders (ie headaches, epilepsy), chromosomal syndromes (eg. Down, Prader-Willi, Crouzon, Pierre-Robin; trisomy 18), psychiatric illness (ie. mood disorders, anxiety disorders, psychosis) and specific neurological and neuropsychological disorders(7-42).

For comparison was used a control group consisting of 15 typical developing children (12 males, 3 females) (mean age 24.3 ± 0.61).

All subjects underwent assessment of executive functioning with the Behavior Rating Inventory of Executive Function-Preschool Version (BRIEF-P)(43).

Behavior Rating Inventory of Executive Function-Preschool Version (BRIEF-P)

Functional EF abilities were measured using the BRIEF-P(43). The BRIEF-P is a parent and teacher rating scale developed to provide a glimpse into everyday behaviors associated with emerging EF. Normative data collected on a representative national sample are available for children aged 2-5 years. Internal consistency reliability of the scales ranged from 0.80 to 0.97, and confirmatory factor analyses have been used to validate scale constructs. All ratings are represented by T-scores, with higher scores indicating greater difficulty. Ratings at or above 65 are considered clinically significant. Elevations that were subclinical, yet at least 1 SD above the mean (scores between 60 and 64) were considered “at-risk.”

BRIEF-P consists of 63 items divided into 5 clinical scales independent theoretically and empirically derived ranging to measure: inhibition (I), shift (S), emotion regulation (RE), working memory (ML) and planning/organization (PO). This includes the Inconsistency scale and that of Negativity. In addition to the stairs are associated three broader indexes: self-control inhibitory (ISCI) the sum of the inhibition (I) and the regulation of emotions (RE); flexibility (FI) the sum of the shift (S) and the regulation of emotions (RE); the emerging metacognition (MEI) resulting from the working memory summed planning/organization. Finally considering the score Global Executive Composite (GEC).

The BRIEF-P yields three index scales, composed of five clinical scales, and a global composite score. Moreover, the Inhibitory Self-Control Index is composed of the Inhibit and Emotional Control (EC) scales and represents a child’s ability to regulate actions, responses, emotions, and behavior using inhibitory control. The Flexibility Index (FI) is composed of the Shift and EC scales and represents a child’s ability to move flexibly among actions, responses, emotions, and behavior. The Emergent Metacognition Index (EMI) is composed of the WM and Plan/Organize (P/O) scales and represents a child’s ability to sustain ideas and activities in WM and to plan and organize problem-solving approaches. A Global Executive Composite (GEC) is also available, which provides an overarching summary score that incorporates all the BRIEF-P clinical scales(43).

In addition, the BRIEF-P provides validity scales including the Negativity and Inconsistency scales. The Negativity scale measures the degree in which selective items are described in an unusually negative manner, though it is also possible that the results represent the accurate perceptions of an individual with severe executive dysfunction or that the rater was detail oriented or concrete in his/her response style(43). The Inconsistency scale indicates the tendency to respond inconsistently on similar items relative to normative and clinical samples(43).

Although, as with the Negativity scale, an elevated Inconsistency score may also be indicative of severe EF dysfunction. Given there are no clear
guidelines provided by the BRIEF-P manual, nor from previous literature, on how best to handle elevations on these two validity scales, all BRIEF-P data will be used in analysis (whether meeting validity thresholds or not)\(^{(43)}\).

Statistical analysis

For comparison between the two groups (ASD and controls) t-testing and Chi-square test, where appropriate, were applied. P values<0.05 were considered statistically significant.

For statistical analysis it used the software STATISTICA (data analysis software system, version 6, StatSoft, Inc. (2001).

Results

The two groups are comparable for age (p = 0.625) and sex distribution (p = 0.900).

Table 1 shows the comparison between the two groups results in the BRIEF-P, specifically, individuals with ASD, showed significantly higher scores on all subscales for BRIEF-P scales than healthy controls, suggesting a clear impairment also in preschool ASD subjects.

Table 1: shows comparison between ASD preschool and typical developing children among BRIEF-P subscales. For comparison between the two groups (ASD and controls) t- Test was applied. P values<0.05 were considered statistically significant.

<table>
<thead>
<tr>
<th>BRIEF T subscales</th>
<th>ASD N=8</th>
<th>Controls N=15</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibit</td>
<td>62.15±12.41</td>
<td>42.38±6.94</td>
<td><0.001</td>
</tr>
<tr>
<td>Shift</td>
<td>65.23±12.69</td>
<td>47.41±8.37</td>
<td><0.001</td>
</tr>
<tr>
<td>Emotional Control</td>
<td>65.17±14.06</td>
<td>47.61±5.19</td>
<td><0.001</td>
</tr>
<tr>
<td>Working Memory</td>
<td>59.42±17.34</td>
<td>41.38±2.94</td>
<td><0.001</td>
</tr>
<tr>
<td>Plan/Organize</td>
<td>55.56±12.04</td>
<td>46.05±4.08</td>
<td>0.012</td>
</tr>
<tr>
<td>Inhibitory Self-Control Index (ISCI)</td>
<td>59.16±15.84</td>
<td>46.12±8.04</td>
<td>0.015</td>
</tr>
<tr>
<td>Flexibility Index (FI)</td>
<td>65.15±12.71</td>
<td>42.27±9.84</td>
<td><0.001</td>
</tr>
<tr>
<td>Emergent Metacognition Index (EMI)</td>
<td>61.09±15.23</td>
<td>46.41±6.12</td>
<td>0.003</td>
</tr>
<tr>
<td>Global Executive Composite (GEC)</td>
<td>56.58±12.64</td>
<td>46.05±4.19</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Discussion

The main findings of the present pilot study may be identified in significantly higher scores for all subscales of the BRIEF-P in ASD preschool subjects than typical developing children.

In general, a very small minority of ASD children (about 6%) tend to show extraordinary skills such as high musical sensibility, exceptional computational skills, especially memory for numbers or dates, or unexpected talents as faithfully taking portraits or landscapes without possessing design concepts, recite texts after simply reading or play music previously heard. In fact, in clinical practice ASD children seem to present conflicting results about their cognitive and executive impairments, that are scarcely probed in scientific literature, although generally lower than controls.

Considering that the most recent data tend to emphasize the importance of early diagnosis and intervention, resulting in significant improvements in the areas cognitive, emotional and social, an early and intensive intervention allow a better development of skills cognitive, language and symptom reduction disorder and problematic behaviors. This concept may guide the whole clinical management for all neurodevelopmental disorders in children\(^{(44-50)}\).

We have to take into account as limitation of the present study the small sample size that we can justify because this one may be considered as a pilot study. The strong novelty of our report may be considered the EF evaluation on preschool-aged ASD children.

Despite the small sample size examined the results of this study agree with what is already known in the literature confirm the presence of a significant impairments in executive functions of subjects with ASD emphasizing for the first time the emergence of such problems at an early stage of development, but further studies will be needed to confirm this picture.

References

Executive functioning in preschool children affected by autism spectrum disorder: a pilot study

Corresponding author
Michele Roccella, MD, PhD
Department of Psychological Pedagogical and Educational Sciences
University of Palermo (Italy)