La Monacolina K 10 mg aiuta a conservare i normali livelli di colesterolo nel sangue

1 Compressa al giorno

Senza Glutine
Reviews

315 Emanuele Sinagra, Dario Raimondo, Giancarlo Pompei, Gaetano Cristian Morreale, Francesca Rossi, Salvatore Marasà, Marco Calvaruso, Giuseppe Mastrocinque, Stefano Mandala, Guido Martorana, Pier Enrico Marchesa, Aroldo Gabriele Rizzo, Georgios Amvrosiadis, Francesco Cappello, Francesco Carini, Giovanni Tomasello
Pouchitis: a tridimensional view

323 Maryam Nouri, Ali Tarighat-Esfanjani
Mechanisms of breast feeding actions on obesity prevention: a systematic review

Original articles

334 Agostino Serra, Salvatore Cocuzza, Paola Di Mauro, Luisa Licciardello, Giacomo Spinato, S Gallina, Luigi Maiolino
Oxidative stress neuroinflammation and cellular stress response in sensorineural hearing loss: novel nutritional therapeutic approaches

344 Müjgan Öztürk Arıkbuka, Sevinç Yücecan
Assessment of nutritional status and its association with anthropometric measurements, blood results and body composition in elderly cardiovascular patients

352 Ilknur Aydin Avci, Alaattin Altin, Pinar Sökülmez Kaya
The eating habits, consuming foods, and body mass index of elderly people registered in a family health center in Samsun

360 Gülhan Samur, Özlem Özpak Akkuş, Gözde Ede, Aylin Ayaz, Ash Akyol Mutlu, Melib Akkuş, Nuri Danışman
Nutritional status among women with preeclampsia and healthy pregnant women

369 Francesco Di Pierro, Giuliana Rapaccioli, Alexander Bertuccioli
Role of a proprietary mixture of water-soluble, viscous fibers and phytosterols in managing overweight/obese subjects poorly following a prescribed diet and physical exercise regimen. Preliminary results

376 Shagbayegh Hadizadeh Risch, Majid Mobasser, Mohammad-Asghari Jafarabadi, Mahdieh Abbasalizada Farhangi, Elham Ajorlou
Nutritional intakes, lipid profile and serum apo-lipoproteins concentrations and their relationship with antithyroid, antigliadin and anti-tissue transglutaminase antibodies in patients with Hashimoto’s thyroiditis

385 Margherita Gulino, Claudio Maggi, Caterina Strumia, Marcello Caputo, Anna Costa, Marina Mortara, Ilaria De Luca, Monica Minutolo, Cinzia Amelio, Alessandra Fornuto, Angelina Della Torre, Emiliano Antonioli, Bartolomeo Avataneo, Anna Aldrighetti, Ugo Tanti, Domenica Pata, Giuseppe Zicari
The celiac disease: risk management in foodservice
Claudio Maioli, Claudio Colosio, Fulvio Muzio, Federico Cioni
Aspetti nutrizionali dei pasti di una mensa per i poveri: l’esperienza dell’Opera di San Francesco di Milano, Italy

Hamid Arazi, Azadeh Najafdari, Ehsan Eghbali
Effect of Big Bear energy drink on performance indicators, blood lactate levels and rating of perceived exertion in elite adolescent female swimmers

Omer Kilic, Mehmet Ali Kutlu, Fethi Ahmet Ozdemir
Examination of the various chemical properties of the Hizan region (Bitlis-Turkey) honey types

Mohamed Farouk ElSadek, Ali Madi Almajwal, Mahmoud Mustafa Ali Abulmeaty
Antioxidant effects of ginger, cinnamon and combination on Streptozotocin-induced hyperglycemia associated oxidative stress in rats

Sahar Omidpanah, Mahdi Vazirian, Abbas Hadjiakhondi, Seyed Mohammad Nabavi, Azadeh Manayi
Evaluation of antibacterial activity of some medicinal plants against Isolated Escherichia coli from diseased laying hens

Shofiul Azam, Prawej Ansari, Shahnaz Jalil, Abdunasir Hussain Ibrahim, Nasrin Sultana, Mohammad Mosharraf Hossain, Jayse Muhammad Naveed, Mohammad Forhad Hossain
Antinociceptive activity investigation of the methanolic crude extract of Costus speciosus in Mice

Salem M. Al-Amri, Khalid M Elhindi, Ahmed F. Sharaf El-Din
Effects of arbuscular mycorrhizal fungus Glomus mosseae and phosphorus application on plant growth rate, essential oil content and composition of coriander (Coriander sativum L.)

Annarita Nicastro, Aldo Corriero, Francesco Nicastro, Davide De Marzo
Histological characteristics in Longissimus thoracis muscle of Italian and Polish crossbreed horse
Pouchitis: a tridimensional view

Emanuele Sinagra, Dario Raimondo, Giancarlo Pompei, Gaetano Cristian Morreale, Francesca Rossi, Salvatore Marasà, Marco Calvaruso, Giuseppe Mastrocinque, Stefano Mandala, Guido Martorana, Pier Enrico Marchesa, Aroldo Gabriele Rizzo, Georgios Amvrosiadis, Francesco Cappello, Francesco Carini, Giovanni Tomassello

Summary. The preferred surgical treatment of ulcerative colitis (UC) and familial adenomatous polyposis (FAP) is represented by proctocolectomy with ileal pouch-anal anastomosis (IPAA). However, patients with UC who have undergone IPAA are prone to develop several complications, which include surgery related/mechanical complications; inflammatory or infectious disorders; functional disorders; dysplasia or neoplasia; and systemic or metabolic disorders. Pouchitis, which is defined as the acute and/or chronic inflammation of the ileal reservoir, represents the most common long-term adverse sequela after IPAA. Gut microbiota play a pivotal role in the initiation and disease progression of pouchitis. Pouchitis can be classified according to the activity of the disease, the duration of the symptoms, the pattern of the disease or response to antibiotic therapy. Patients with IPAA for UC tend to experience a variety of symptoms, ranging from mild pelvic or perianal discomfort to a debilitating complex of symptoms that may eventually lead to pouch excision thereby necessitating the construction of a permanent ileostomy. To date, the etiology, the diagnosis and the medical management of pouchitis represent a clinical challenge. In fact pouchitis range from a disease with an acute antibiotic-responsive presentation to a chronic antibiotic-refractory form, with subsequent different disease mechanisms and clinical course. A tridimensional and multidisciplinar approach, including endoscopy, histology, and laboratory testing is widely helpful to identify the different phenotypes of the disease and to manage correctly its treatment.

Key words: pouchitis, ulcerative colitis, Intestinal Bowel Diseases, dysbiosis

Epidemiology

The preferred surgical treatment of ulcerative colitis (UC) and familial adenomatous polyposis (FAP) is represented by proctocolectomy with ileal pouch-anal anastomosis (IPAA), which could be considered a better alternative to proctocolectomy with permanent ileostomy, since it preserves intestinal continuity and sphincter function and removes the entire colorectal mucosa. The IPAA consists of total abdominal colec-
tomy, stripping of the rectal mucosa with preservation of the anal sphincter, and the construction of an ileal pouch that is anastomosed to the anus (1).

In the case of UC, up to 30% of affected patients will require surgical management of their disease because of medically intractable disease, fulminant course, dysplasia or cancer and even due to patient preference not to take medication on an indefinite timeline (1).

However, patients with UC who have undergone IPAA are prone to develop several complications, which include surgery related/mechanical complications; inflammatory or infectious disorders; functional disorders; dysplasia or neoplasia; and systemic or metabolic disorders (2).

Pouchitis, which is defined as the acute and/or chronic inflammation of the ileal reservoir, represents the most common long-term adverse sequela after IPAA (3).

According to some series approximately 50% of patients can be expected to experience at least one episode of pouchitis. In a study of complications and long-term outcomes in 1310 patients who underwent IPAA for chronic UC, 559 patients had at least one episode of pouchitis (4). The cumulative risk of having at least one episode was 18% at 1 year after surgery and 48% at 10 years. Approximately 394 of the 559 patients who had at least one attack of pouchitis had a second episode. The cumulative probability of having a second episode after an initial attack within 2 years of IPAA was 64%.

Several studies show that most cases of pouchitis occur within the first few years after IPAA (5) while others, conversely, report that risk could continue to increase during further follow-up (6) Interestingly, pouchitis rarely occurs in patients who have IPAA for familial adenomatous polyposis (FAP) (7).

Several risk factors for pouchitis have been reported, although they have not been demonstrated consistently. Extensive or severe UC (8) backwash ileitis (9) extraintestinal manifestations of UC (10,11) precolotomy thrombocytosis (12,13) pANCA positivity (14,15) nonsmoking status, and nonsteroidal antiinflammatory drug (NSAID) use (16-18) have all been reported as risk factors for the development of pouchitis.

However, there is little agreement in the literature as to which factors definitely increase a patient’s risk for pouchitis. This discrepancy could be due to duration and intensity of follow up after IPAA (19); diagnostic criteria of pouchitis used; stratification of pouchitis — acute versus chronic pouchitis or a combination of both (20); inclusion or exclusion of CD of the pouch (18) or cuffitis (21); and the number of patients studied (22).

Classification

Pouchitis can be classified according to the activity of the disease, the duration of the symptoms, the pattern of the disease or response to antibiotic therapy. With regard to disease activity, pouchitis can be classified as in remission or mildly, moderately, or severely active, based on symptoms. With regard to duration, pouchitis can be classified as acute (<4 weeks) or chronic (more than 4 weeks). On the other hand, disease pattern can be classified as infrequent (1–2 acute episodes), relapsing (more than 3 acute episodes) or continuous. Relapsing pouchitis is also considered a form of chronic pouchitis. Finally, with regard to response to standard antibiotic therapy, pouchitis can be classified as responsive, dependent or refractory (23).

Clinical features

Patients with IPAA for UC tend to experience a variety of symptoms, ranging from mild pelvic or perianal discomfort to a debilitating complex of symptoms that may eventually lead to pouch excision thereby necessitating the construction of a permanent ileostomy. Clinicians typically base their suspicion of pouchitis on a constellation of clinical symptoms such as: an increase in stool frequency, tenesmus, change in stool consistency, abdominal cramps and rectal bleeding. Treatment is often prescribed based on these clinical symptoms alone.

However, diagnosis of pouchitis based on symptoms alone has been shown to be non-specific due to the fact that symptoms can originate from a myriad of aetiologies, not necessarily inflammatory in nature.
Etiology

Gut microbiota play a pivotal role in the initiation and disease progression of pouchitis (2).

The contribution of gut microbiota to the pathogenesis of pouchitis is multifaceted: firstly, through the dysbiosis (24-27) and therefore, through the emergence of pathogenic bacteria, fungi, or viruses (28). The role of dysbiosis in the pathogenesis of pouchitis is not yet fully clear, as it is in the field of inflammatory bowel disease (29).

The construction of the ileal reservoir provoke an altered bowel anatomy that can lead to fecal stasis and colonic metaplasia in the pouch body from the original ileal mucosa, thus creating an environment favourable to the development of inflammation (30).

Pathogen-associated pouchitis can occur in a subset of patients. *C difficile* infection (CDI) is common in symptomatic patients with IPAA. Other pathogens have been reported to be associated with episodes of active pouchitis, including *C perfringens*, *Campylobacter* species, group D streptococci (*Enterococcus* species), haemolytic strains of *E coli*, and cytomegalovirus (CMV) infection (31-35). These pathogenic microbes detected in pouchitis patients with systemic symptoms may contribute to disease episodes or be responsible for a refractory course to conventional antibiotic therapy (2). Furthermore, such bacterial species may exert different impacts on innate and adaptive mucosal immune function.

Table 1 shows the mechanisms of involvement of innate and adaptive immunity in the pathogenesis of pouchitis.

Work-up

At the initial occurrence of symptoms that might suggest a pouchitis, infectious aetiologies should be firstly ruled out, through stool for culture, Clostridium difficile toxin assay and cytomegalovirus tissue polymerase chain reaction.

Once infectious aetiologies and other possible contributors have been excluded, pouch endoscopy should be performed. With regard to the opportunity to administer a trial of antibiotics as being both therapeutic and diagnostic of 'pouchitis', this practice should be avoided, because patients with pouch symptoms may respond quite rapidly to the administration of antibiotics without having evidence of the endoscopic or histological inflammation that is required to make a diagnosis of pouchitis.

On endoscopy, it is important: (a) to examine the pouch, the pre-pouch ileum and the rectal cuff; (b) the bioptic sampling of the pre-pouch ileum and the rectal cuff; (c) the evaluation of the endoscopic features of pouchitis, that may range from anywhere between minimal changes, including erythema, friability and mucus exudate to ulcers and bleeding.

<table>
<thead>
<tr>
<th>Table 1. Involvement of innate immunity in the pathogenesis of pouchitis</th>
<th>Table 1. Involvement of adaptive immunity in the pathogenesis of pouchitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanisms through which innate immunity is involved in the pathogenesis of pouchitis</td>
<td>Mechanisms through which adaptive immunity is involved in the pathogenesis of pouchitis</td>
</tr>
<tr>
<td>Colonic metaplasia related-dysbiosis, with specific regard to production of sulfate-reducing bacteria</td>
<td>Increased proliferation of immature plasma cells</td>
</tr>
<tr>
<td>Alterations in mucin glycoproteins</td>
<td>Increased production of proinflammatory cytokines, such as TNF, and proinflammatory neuropeptides</td>
</tr>
<tr>
<td>Increased permeability of the gastrointestinal mucosa</td>
<td>Increased production of cell adhesion molecules</td>
</tr>
<tr>
<td>Aberrant expression of Toll-like receptors</td>
<td>Increased production of platelet-activating factor</td>
</tr>
<tr>
<td>Altered expression of Paneth-cell–specific human defensin-5</td>
<td>Increased production of lipoxygenase products of arachidonic acids</td>
</tr>
<tr>
<td></td>
<td>Increased production of VEGF</td>
</tr>
</tbody>
</table>
Two composite scores are used to the diagnostic and prognostic assessment of pouchitis. These are the pouchitis disease activity index (PDAI) (36) and the pouchitis activity score (PAS) (37).

In the first one, an overall score is calculated from three separate sixpoint scales including clinical symptoms, endoscopic findings and histological changes. Furthermore, the PDAI incorporates histological features of acute inflammation, and establishes a cut-off for differentiation between ‘pouchitis’ (≥7 points) and ‘no pouchitis’ (<7 points).

On the other hand, the PAS includes findings similar to those of the PDAI but also comprises the histological features of chronic inflammation, distinguishing three grades of pouch inflammation: mild adaptive, moderate pouchitis and severe pouchitis.

Recently, Elder and coworkers evaluated the endoscopic features associated with ileal pouch features (38). The authors concluded that distorted appearance of “beak” portion of owl’s eyes along with Crohn’s disease of the pouch or surgery-related complications, postoperative use of biologics, and persistent cuffitis were the risk factors associated with pouch failure, and that the assessment of endoscopic owl’s eye structure may provide an additional clue to predict pouch outcome (38).

Histological assessment will focus on acute inflammatory infiltrates, however also dysplastic changes...
should be ruled out in the rare case of progression to malignant transformation. Abdominal and pelvic CT scan, pelvic MRI, perineal or transanal ultrasound, pouchography or examination under anaesthesia are requested in the case of signs of inflammation, fistulas, leaks or abscesses.

Medical management

Antibiotics showed widely their effectiveness in treating pouchitis (39). Oral metronidazole (at a dose of 1 to 2 g daily) (40,41) and oral ciprofloxacin (at a dose of 1 g daily) are an effective treatment for pouchitis (42,43). Treatment may be most effective with acute episodes, and was found to be less effective in patients with a chronic course of the disease.

Oral metronidazole, in a double-blind cross-over randomised trial, was associated with a significant reduction in stool frequency by three movements per day (versus an increase of one per day with placebo) even if absence of changes in the endoscopic or histologic grade of inflammation (39).

In another randomized trial consisting of 16 patients, assigned to either ciprofloxacin 1 g/day or metronidazole 20 mg/kg per day, a response to both drugs was showed, but a better improvement and fewer side effects (0 versus 33 percent) were found with ciprofloxacin (42).

For this reason, ciprofloxacin at 1 g daily is primarily used as the initial treatment for acute pouchitis, therefore reserving metronidazole for patients in which ciprofloxacin fails.

Rifaximin has also been used in pouchitis, even if it was not more effective than placebo in a small controlled trial (44). However, rifaximin maintenance therapy was effective in preventing relapse in 65 percent of patients with antibiotic-dependent pouchitis after induction of remission with a variety of antibiotics (45).

On the other hand, a combined approaches, including ciprofloxacin and rifaximin (46,47) metronidazole and ciprofloxacin (48) and ciprofloxacin and tinidazole (49) have also been found to be efficacious in the treatment of chronic refractory pouchitis (50).

Interestingly, in a study performed by McLaughlin and coworkers, fecal coliform sensitivity testing was showed to be helpful in clarifying the choice of effective antibiotics in patients with antibiotic-resistant pouchitis (51), allowing to achieve a clinical remission through an individualized therapy in 80 percent of patients.

In the case of antibiotic failure, budesonide may be a treatment option. Oral budesonide (9 mg/day for eight weeks) was effective in a series of patients with acute pouchitis refractory to antibiotics (52).

Budesonide suppositories for four weeks showed endoscopic improvement or remission at the end of the treatment in all patients with acute pouchitis (53), even if with a high degree of early recurrence. In another controlled trial, 26 patients were randomly assigned to budesonide enemas (2 mg per 100 mL at bedtime) plus placebo tablets or oral metronidazole (500 mg twice daily) plus placebo enemas (54). Both the treatment were associated with a clinical improvement but adverse effects were more common in patients receiving metronidazole.

With regards to probiotics, trials about the treatment of mild/moderate pouchitis are few, with small numbers of adult patients (55). To date, there is limited evidence for a role of probiotics as monotherapy for mild to moderate pouchitis at the present time, as showed by the trials performed by Kuisma, Laake and Gionchetti (56,57). On the other hand, two trials have studied whether there is an advantage to initiate probiotics immediately following ileal pouch-anal anastomosis to evaluate the eventual delay in onset of development of pouchitis (58,59).

Furthermore, small controlled trials have also suggested that at least one probiotic preparation (VSL#3™) may be effective in prevention of recurrent pouchitis after antibiotic induction of remission (60-63).

Glucocorticoid and/or mesalamine enemas followed by a short course of oral steroids if enemas cannot be retained can be used as a therapeutic trial (65). Infliximab was effective long-term (20 months) in IPAA patients with refractory luminal inflammation and in three of seven patients with pouch fistulas (66).
However, risks and benefits need to be considered; and this treatment (such also the treatment with 6-mercaptopurine or azathioprine) is likely reserved for patients with the most severe symptoms.

Perspectives and conclusions

On the basis of the aforementioned data, we can deduce that microbiota play a pivotal role in the pathogenesis of pouchitis. Conversely, the investigation of the role of gut microbiota in the etiopathogenesis of pouchitis has been difficult because most of gut bacteria are not culturable (67).

In fact molecular microbiology techniques for the qualitative and quantitative measurement of microbiota are expensive and labor-intensive, particularly for the identification of the individual responsible bacteria. Therefore, the interpretation of the microbiota changes in cross-sectional studies comparing healthy and diseased pouches results challenging.

Due to the dysbiosis, despite intermittent or chronic antibiotic therapy or probiotic therapy, an abnormal mucosal immune response lead to chronic pouchitis or chronic antibiotic-refractory pouchitis. Furthermore, patients with genetic susceptibility (such as those with a NOD2/CARD15 mutation) and/or systemic immune-mediated disorders (such as PSC, IgG4-associated systemic disorders) result mainly exposed to the development of chronic antibiotic-refractory pouchitis. A molecular classification of pouchitis, with a combined assay of immunogenetic, serologic, and clinical markers, should be advisable (2).

As a consequence, patients with IPAA should be monitored closely. Pouchoscopy is the best way to monitor the anatomic status of the pouch, the degree of inflammation, and the structural abnormalities. For patients with the endoscopic finding of diffuse pouchitis and diffuse enteritis of the afferent limb, immune-mediated pouchitis/enteritis should be considered.

For patients with pouch inflammation that is distributed asymmetrically and has a clear demarcation of inflamed and noninflamed parts of the pouch body, ischemic pouchitis should be suspected.

When pouchoscopy shows abnormalities such as strictures, fistulas, and sinuses, CD of the pouch should be suspected, therefore abdominal and pelvic imaging or examination under anaesthesia are often requested.

In patients with typical symptoms (increased bowel frequency, watery stools, or urgency) antidiarrheal agents can be used first. If the symptoms do not improve in few days, the patient should be evaluated and in some cases treated empirically with antibiotics.

A prolonged course of dual antibiotic therapy may help induce remission in patients with chronic antibiotic-refractory pouchitis. On the other hand, oral or topical mesalamine agents and a topically active corticosteroid agent (such as budesonide) are the preferred first-line drugs for immune-mediated pouchitis/enteritis. Second-line therapies include immunosuppressants (such as 6-mercaptopurine/azathioprine, methotrexate, tacrolimus), or anti-TNF agents.

To date, the aetiology, the diagnosis and the medical management of pouchitis represent a clinical challenge. In fact pouchitis range from a disease with an acute antibiotic-responsive presentation to a chronic antibiotic-refractory form, with subsequent different disease mechanisms and clinical course. A tridimensional and multidisciplinary approach, including endoscopy, histology, and laboratory testing is widely helpful to identify the different phenotypes of the disease and to manage correctly its treatment.

References

40. Sandborn WJ. Pouchitis following ileal pouch-anal anastomo-