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Abstract 

 

Abstract 

Background: Short Term Starvation (STS) is a type of dietary restriction able to reduce 

tumorigenesis and cancer progression but molecular bases of this effect are still unclear.  

Aim: In vitro analysis of STS effects in presence of chemotherapy and evaluation of 

microRNAs (miRNAs) involvement. 

Results: STS affects the expression profiles of miRNAs involved in chemotherapy response 

leading to cancer cells sensitization and to healthy cells protection. 
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Summary 

 

Summary 

Chemotherapy is the main therapeutic strategy for cancer treatment but potentially presents 

serious side effects that may limit its use and/or impair its effectiveness, especially in high 

grade tumors. It has been shown that non-genetic approaches that limit food intake (dietary 

restrictions) can provide a benefit in terms of tumorigenesis and tumor progression. 

Considering that cancer patients are incline to weight loss, because of their debilitating 

disease and neoplastic cachexia, short term starvation (STS) seems to be the most suitable 

dietary condition because it consists of short courses of fasting and cycles with no food 

restriction. Previous studies indicate that STS is able to reduce tumor progression in vitro 

and vivo but molecular changes involved in is beneficial effect needs further consideration. 

Until now, it seems that a key role is exerted by nutrient signaling pathways and in particular 

by insulin like growth factor-1 (IGF-1) pathway. 

Other experiences showed that microRNAs (miRNAs) are non-coding RNA that negatively 

regulate various biological processes. Recently miRNAs have been correlate to diseases 

onset and progression including cancer. 

This manuscript aims to confirm STS effect on a triple negative breast cancer (TNBC) cell 

line treated with Doxorubicin and to study in deep the knowledge of the molecular basis 

focusing on miRNAs involvement. 

TNBC cell line (MDA-MB-231) and healthy mammary cell line (MCF10A) have been 

cultivated in STS medium or standard medium. Once STS was established, cells were treated 

with Doxorubicin and cell conditions were evaluated. Their cell viability has been evaluated 

through CellTiter 96® AQueous One Solution and trypan blue assay and their cell 

proliferation has been set through growth curves. STS influence on angiogenesis has been 
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analyzed through real time PCR using TaqMan gene expression assay. Finally, miRNAs 

expression profiles has been obtained using Taqman® Array Human A microRNA 

Microfluidic Cards and their targets have been evaluated through online databases (Pubmed, 

DIANA tools, miRBase). 

From preliminary data, comparing MDA-MB-231 subjected to 48h STS and Doxorubicin 

10γM treatment with MCF10A in the same experimental condition, it emerges that 

approximately the 23,36% of miRNAs was significantly deregulated and, among these the 

61,8% was downregulated. In addition, it is possible to discover a little amount of miRNAs 

(4.46%) that are specific only for the MDA-MB-231 cell undergone STS and treated with 

Doxorubicin. MiRNAs expression profiles analysis seems to explain the beneficial STS 

effect. Moreover, in MDA-MB-231, among upregulated miRNA there are miRNAs that 

increase drug sensitivity (MiR-26a, miR-149, miR-181a, miR-193b, miR-195 and miR-324-

3p) while among the downregulated ones there are miRNAs that induce chemoresistance 

(miR-15b, miR-23a, miR-29a, miR-106b, miR-128, miR-192 and miR-494). 

In MCF10A, miRNAs involved in antiblastic drug response have a heterogeneous expression 

levels that could explain the increased healthy cell line resistance to treatment, compared to 

cancer cells.  

So, knowing that a miRNA acts on multiple target genes, that each target can have binding 

sites for miRNAs interaction, data obtained from the study need to be confirmed and 

insighted. However, results are encouraging and clinically managed for example by 

developing molecules that will target the oncomiRNAs and consequently will increase the 

levels of the tumor suppressor in order to make chemotherapy more tolerable.   
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   CHAPTER 1 

 

 

BACKGROUND 
 
 
 
 
 

1.1  Dietary Restriction  
 
Currently, chemotherapy remains the most widely adopted strategy for the treatment of a 

wide range of tumors [1], although it is potentially able to cause serious side effects up to 

lose the therapeutic efficacy, especially in advanced neoplasm stage. 

Research groups are developing therapeutic approaches to make chemotherapy more 

tolerable by reducing the adverse effects involving both cancer cells and healthy ones. 

Recent in vitro and in vivo (animal models) studies have shown encouraging data about the 

association between chemotherapy and different types of dietary approaches that seems to 

have a protective effect. Literature reports various types of food restrictions that differs each 

other on the basis of ingested nutrients (such as the aminoacid restriction and the restriction 

calories) or fasting period length (long- or short-term starvation).[2] 

Dietary restriction such as short-term starvations (STS), represent a non-genetic intervention 

with a protective role against age-related diseases (cancer included) able to increase 

mammalian la life-span. [3] 

STS is described as an alternation of periods in which food consuming is not restricted and 

designated limited feeding periods[3]. Other authors described it as the period of time in 

which animals lose weight after initiation of food restriction but prior to rebound or weight 

maintenance.[4] STS is able to induce antibacterial, antimutagenic, and anticancer effects 

and to reduce reactive oxygen species (ROS) levels.[5] Davis et al. have observed on murine 

models that STS may be advantageous in presence of moderate intensity cortical impact 

injury.[6] 

Despite the evidences of the dietary restriction-inducted beneficial effects, the underlying 

mechanisms are unclear. Currently, researchers have not identified a single signaling 

pathway or a particular molecular mechanism but appear to be partly involved nutrient-

signaling pathways and in particular the growth promoting insulin-like growth factor 1 (IGF-

1) receptor and its downstream effectors, such as extracellular signal-regulated kinase 

(ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and 
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phosphoinositide 3-kinase (PI3K), which are known to regulate several detoxification 

enzymes.[7] 

As demonstrated by experiments on rats, fasting also has the ability to inhibit inflammatory 

response, reducing the expression levels of inflammatory cytokines and chemokines (such as 

IL1beta, TNF-alpha and MCP-1) in various tissues.[8]  

STS also influences the energy-sensing AMP-activated protein kinase (AMPK) and its 

downstream targets (ACC, ERK1/2, mTOR). Alterations in mTOR pathway could be 

associated directly to growth factors deprivation.[9] 

Dietary Restriction affects cell proliferation regulating genes like the insulin signaling 

adaptor (Irs2) and the mitogenic hormone prolactin receptor (Prlr) in both cancer and healthy 

cells.[10] Lee et al observed that constitutively active mutations related to PI3K pathway are 

determinant in cancer response to nutrient deprivation.[11]  

It’s clear that STS alerts cell inducing autophagy. Autophagy is a conserved self-eating 

process useful to transfer nutrients from unnecessary to essential process.[11] STS stimulates 

autophagy through the activation of poly(ADP-ribose) polymerase(PARPA)-1, an enzyme 

usually activated in presence of DNA damage. In case of STS, ROS are responsible for the 

activation of PARP-1 required for starvation-induced autophagy.[12] 

 

1.2  Dietary Restriction and cancer  
 
Cancer occurrence is triggered by a series of genetic and epigenetic cell mutations that give 

them the ability to be self-sufficient to growth and to ignore anti-growth and pro-apoptotic 

stimulation while healthy cells can’t grow without stimuli. It could be due to growth factors 

(like platelet-derived growth factor, vascular endothelial growth factor and insulin-like 

growth factor) produced in an autocrine way by cancer cells or because of mutations that 

make constitutively active proteins involved in signaling pathways or membrane 

receptors.[13] Alterations giving the most relevant contribution in the neoplastic 

transformation regards genes coding for members of the Ras/Raf/MAPK and 

PTEN/PI3K/AKT pathways. Mutated Ras alleles, detected in a quarter of all cancers[14] and 

in half of colon cancers,[15] are responsible of malignant cells independent proliferation. 

It’s necessary to underline that, in presence of a tumor, stroma cells generate a 

microenvironment that encourages disease progression (through remodeling, invasion, 

angiogenesis and metastasis). Cancer microenvironment is heterogeneous and it is composed 

of malignant cells, macrophages, adipocytes, fibroblasts, and endothelial cells that are 

different from the corresponding in healthy environment.[16]  

Studies showed that serum starvation and short term starvation are able to reduce, 

respectively in vitro and in vivo, growth factor levels in healthy cells,[17, 18] decreasing the 
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basal cellular metabolism and, consequently, setting a quiescent status.[9] Tumor cells don’t 

show the same ability and react to stress regulating autonomous growth stimulation in order 

to reprogram their metabolism and maintain a continuous proliferation.[14] Then STS causes 

a differential stress in healthy and malignant cells. This feature could clarify the evidence 

that starvation protects normal cells without interfering with the chemotherapy-dependent 

cancer cell death.[19, 20] It’s well known in fact that several chemotherapy drugs interfering 

with DNA (in part through oxidative damage) causing both normal and tumor cells 

death.[21] In vitro and vivo studies showed that, among dietary restrictions approaches, STS 

is the most effective.[20]   

It is noteworthy that STS may sensitize various types of cancer to chemotherapy, but it 

seems also to be able to attenuate side effects when followed by the treatment. An example is 

the cardioprotective effect after Doxorubicin utilization.[22] About that, Raffaghello et al. 

evaluated the effect of high-dose chemotherapy and STS in murine models. They have tested 

the manifestation of side effects after the administration of etoposide, a drug with a non-

specific toxicity profile, in a group of mice undergone to fasting for 48 h and in a control 

group fed ad libitum. Unlike the fasting mice, control group showed reduced mobility, 

posture alterations and other signs of pain and stress. STS affected also mice vitality: in fact 

the mortality rate of fed group was around the 43% while the acute toxicity of etoposide 

caused only one dead in fasting group. The same researchers repeated the experiment using a 

dose of etoposide four or five times higher than the recommended one for human and 

increasing the fasting period from 48 h to 60 h. In this case the control group mice died or 

manifested toxicity while starved mice lost the 40% of their weight (recover after a week of 

re-feeding). STS effects have been experienced in also in ten human volunteers affected by 

different type of tumors starved for 48-140 h before chemotherapy and 56 h after 

treatment.[21] Fasting after chemotherapy seems to be important because of the association 

of re-feeding and DNA damage provoked by antiblastic drugs: prolonged starvation induces 

cell death while re-feeding trigs cell proliferation that, in presence of toxins, increase DNA 

damage.[23, 24]. All patients had a benefit from STS with a decrease of chemotherapy-

induced side effects.[21] 

Dietary Restrictions can affect tumor microenvironment and thus can become tools able to 

promote favorable changes.[25] Cancer-associated adipocytes are compounds of tumor 

microenvironment and differ from adipocyte because of a reduction of cellular markers (like 

HSL, APN, and resistin) and an increased inflammatory cytokines expression (such as IL-6 

and IL-1β).[26] Since adipocytes represent a source of pro-inflammatory cytochines (IL-6, 

TNF-α), ROS, and matrix metalloproteinases, they are involved in carcinogenesis and tumor 

invasiveness.[27-30]
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Moreover, adipocytes can secrete adipokines that recruit macrophages and endothelial cells 

in a way NF-kB-mediated leading to an increase of angiogenesis, fibrosis, and 

inflammation.[31] 

Dietary approaches alter adipocytes (reducing their secretions) and thus induce changes in 

tumor microenvironment.[28]  

Standard chemotherapy creates an environment rich of glucose and glutamine that induces 

cancer cells metabolism, thus it’s spreading the idea to use metabolic therapy as an 

alternative to usual treatment. A study shows that among the metabolic therapies there is the 

calorie-restricted ketogenic diet (KD-R) able to improves prognosis of patients with 

glioblastoma multiform and brain cancer through its anti-angiogenic, anti-inflammatory, and 

anti-apoptotic effects.[32] 

 

1.3 MicroRNA 

 
Recent studies have demonstrated that microRNAs (miRNA) are able to regulate 

chemotherapy or target therapy sensibility/resistance.[33] 

MiRNAs are small non-coding strands of RNA (long 18-25 nt-nucleotides) acting as 

posttranscriptional regulators (post-transcriptional gene silencing) of messenger RNA 

(mRNA) and binding its mRNA target promote its degradation and consequently inhibit or 

suppress translation.[34] MiRNAs can provoke translation inhibition or mRNA cleavage 

through the base pairing with the 3’ untranslated region (3’-UTR) of their target mRNAs, 

depending on the complementarity degree between the miRNA and its target sequence.[35] 

In vitro analysis showed that the miRNA-mRNA recognition could occur not only at 3’UTR 

level but also in the 5’UTR or in coding regions even though the pairing in these sites play a 

marginal role in silencing.[36]  

Numerous miRNA can recognize different targets and a target can be regulated by various 

miRNAs. This evidence explains why they represent pathways regulator involved in 

numerous biological functions (including cell cycle regulation, cell proliferation, 

differentiation, apoptosis, immune response, differentiation of stem cells and embryonic 

development). It has been shown that if their expression appears to be altered, miRNAs may 

be involved in various complex diseases, including tumors.[37] miRNAs are found 

aberrantly expressed in many cancer types and they can work either as tumor suppressor 

(TS-miRs) or as oncogenes (oncomiRs). The first category is usually deleted or silenced in 

tumor and this condition facilitates cancer cell growth and thus malignancy progression. The 

latter is found in amplified regions or is overexpressed in the tumor and this determines an 

increase of cell proliferation, angiogenesis, invasiveness and a reduction of apoptosis. A 

relevant number of MiRNA genes are located in genomic regions frequently rearranged in 
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tumors such as fragile sites, deleted regions (minimal region of loss of heterozygosity, LOH) 

or amplified (minimal amplicons) and common areas of break-point, providing further 

evidence of their role in the pathogenesis of cancer.[38, 39] 

There are few evidences that correlate miRNAs to Dietary Restrictions. For example, 

researchers[40] evaluated the miRNA transcriptome in peripheral blood cells of ten obese 

women undergone to a 8weeks weight-loss program (the 50% of them was categorized as 

non-responders) observing a differential abundance of selected c-miRNAs. Other previous 

experiences have shown no differences before and after 14 weeks of energy-restricted diet 

despite the evidence of a 17% loss in body mass.[41]
 

In conclusion, miRNAs are emerged as possible therapeutic targets for a large number of 

diseases and can use as a novel clinical method to monitor the progression, prognosis, 

diagnosis, and evaluation of treatment responses.[42]
 

 

1.4 Objectives  
 
Among Dietary Restriction, STS is the more suitable because of the characteristic alternating 

phases of fasting and feeding.[10] Since short-term fasting is able to reduce the 

chemotherapy toxicities, the initial project aim is to evaluate its effects in vitro. I have 

decided to analyze cell viability and proliferation in triple negative breast cancer cell line 

(MDA-MB-231) undergone to STS and treated with Doxorubicin, the aforementioned 

antineoplastic agent. 

Triple negative breast cancer (TNBC) represents about 10% - 20% of breast cancers. It is a 

biologically aggressive tumor setting with high response rates to Neoadjuvant Chemotherapy 

(NAC) but poor outcome.[43]
 
TNBCs are characterized by lack of expression of hormone 

receptors (HR, Estrogen ER and Progesterone PR) and human epidermal growth factor 

receptor 2 (HER2). Patients with TNBC tend to recur within the first 3 years and are 

considered at high risk of death in 5 years. Moreover, TNBC exhibits a higher frequency of 

metastasis then the other types of breast cancer, particularly in visceral and cerebral 

sites.[44]
 

Doxorubicin is a highly efficacious and well-established anthracycline chemotherapeutic 

agent[45] and it works as an intercalating agent inserting between the bases of DNA, 

blocking synthesis and transcription. It also determines the inhibition of the enzyme 

topoisomerase (type II). Both mechanisms lead to the rupture of DNA strands. Consequently, 

in order to evaluate the effect of STS on the response to conventional chemotherapy, I 

treated the MDA cells with two different concentrations of Doxorubicin (1 and 10μM). 

Since several studies have shown that miRNAs are involved both in the development and in 

tumor therapy sensitivity/resistance, after evaluating cellular conditions we decided to 
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analyze miRNAs expression profiles in MDA-MB-231 after 48h STS and 3h Doxorubicin 

treatment. 

The same experiment has been proposed for the healthy breast tissue cells MCF10A. 

The project includes a phase of in vivo mouse models that have not been able to achieve but 

you may be referred to as a future perspective. 
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   CHAPTER 2 

 

 

Materials and Methods 
 
 
 
 
 

2.1 Cell cultures  
 
Cell lines were purchased from ATCC (American Type Culture Collection): The Global 

Bioresource Center (https://www.atcc.org/).  

 MDA-MB-231 has been starved in DMEM-GlutaMax–32430-027-ThermoFisher (4.5gr D-

Glucose/Liter) with Fetal Bovine Serum (FBS-10%), Non Essential Amino Acids (NEAA-

1%) and Streptomycin-Penicillin (Strepto/Pen). The medium used for the experiment of 

Short Term Starvation was DMEM-11966025-ThermoFisher (no glucose) addicted with 

glucose (0.5gr D-glucose/Liter), FBS (1%), NEAA (1%), Strepto/Pen (1%) and Hepes (2%). 

MCF10A has been starved in Medium DMEM F:12 enriched with the MEGM™ Mammary 

Epithelial Cell Growth Medium – Lonza kit, 1gr/L Glucose and the 10% of FBS.  For STS 

experiment DMEM medium (without glucose) consisted of 0.5gr/L Glucose, 1%FBS, 

1%NEAA, 1% Strepto/Pen and 25mM Hepes. 

 

2.2 Cell proliferation 

 
To assess cell proliferation, it has been used the Burker Chamber, a device of manual 

counting of cells in the electron microscope. It consists of a rectangular slide of 7,5x3,5 cm
2
 

planar size and thickness of 4 mm; It has two depth cells of 0.1 mm and known surface, 

separated by a recess that allows the execution of the two counts on the same instrument. On 

them is placed a glass slide, blinded thanks to special metallic fins. The thin space that is 

created between the two surfaces is then filled by capillarity with a drop of cell suspension. 

The grating of Burker Chamber is structured into nine squares larger (camps) delimited by 

three parallel lines, inside squares and rectangles delimited by two parallel lines; Thanks to 

this structure is the count of the cells present in the sample can make. 

150000 fasting cells were harvested in various Petri Plate. A group of them has been 

subjected to fasting while another group of cells (identified as the control group) was in a 

standard medium. Among both group cells, some plates have been subjected to 

https://www.atcc.org/
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chemotherapeutic treatment for 3 h with Doxorubicin 10 γM and 24 h with Doxorubicin 1 

γM. Cells were detached from the Petri dishes through trypsin (catalyzes the proteolytic 

cleavage with specificity for arginine and lysine favoring the detachment cell/plate and 

cell/cell) and counted Burker Chamber after 24 h, 48 h and 5 days of fasting (Fig.1).  

The grid of hemocytometer Burker is structured into nine squares, delimited by three parallel 

lines, with inside sixteen small squares delimited by two parallel lines. 

Alive and dead cells visible in the nine squares were counted and the mean of cells present in 

each square (M) was determined. To calculate the number of cells that were present in each 

well was performed the following calculation: 

Cells = M x 10
4
 x V (ml) x Dilution factor 

 

2.3 Cell viability 

 
Cell viability was assessed by two methods: Trypan blue and MTT colorimetric assay. 

Assay using Trypan blue is a test used to determine the number of live and dead cells present 

in a suspension. It is based on the principle that alive cells, having an intact cell membrane, 

are able to exclude the entrance to certain dyes, just as the Trypan blue, contrary to what 

occurs for dead cells, which instead turn blue color. Both dead and living cells are counted 

by Burker Chamber.  

Another methodology used to analyze cell viability is the MTT assay performed through 

MTT Cell Growth Kit-MILLIPORE consisting of 3-(4,5-dimethylthiazol-2)-2,5-

difeniltetrazolium bromide. It is a laboratory standard colorimetric assay to measure the 

mitochondrial enzymes activity that reduce MTT to formazan, by making the tack with 

isopropanol (extraction solvent) at room temperature in the dark because it is a 

photosensitive compound. The intensity of the coloration of the solution obtained is directly 

proportional to the concentration of formazan and is therefore the expression of cell viability. 

The optical density (OD) is measured spectrophotometrically at a wavelength equal to 490 

nm. Both the degree of cell viability and the degree of toxicity of the compound tested, can 

be expressed by the following formula: 

% Cell viability = [OD (490 nm) compound tested / OD (490 nm) negative control] x 100 

In particular, 8000 cells have been placed in 96-well multiwell and subjected to fasting and 

chemotherapy treatment. 
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2.4 Total RNA extraction and analysis 

 
Treated cells were taken and subjected to RNA extraction through QUIAZOL and following 

the MiRNeasy Mini Kit – QUIAGEN protocol. This kit is useful to purify total RNA, 

including small RNAs (such as miRNAs), from animal cells and tissue. Then mRNA and 

miRNAs have been obtained from the extraction. MiRNAs were utilized for comparative 

analysis through the microfluidic cards while mRNAs were used for the evaluation of factor 

gene expressions involved in angiogenesis and of miRNAs targets. Acid nucleic integrity has 

been assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies). MRNA and 

MiRNA extraction procedures provided for the reverse transcription of RNA to cDNA. In 

the case of miRNAs it was required the TaqMan® MicroRNA Reverse Transcription Kit- 

ThermoFisher Scientific. MRNA needed the High Capacity Reverse Transcription kit – 

ThermoFisher Scientific. Finally, cDNA analysis was realized through by RT-PCR with the 

7900HT Sequence Detection System. 

Since Angiogenesis (a process of new blood vessel formation from pre-existing vascular 

networks)[46] represents a critic step in cancer progression and in metastasis sprouting, it 

has been interesting evaluate it in MDA-MB-231 undergone to STS and Doxorubicin 

treatment. In particular, pro-angiogenic (such as VEGFA) and anti-angiogenic (THBS) 

factor expression levels were analyzed through TaqMan gene expression assay. 

A comparative analysis between miRNA expression profiles of the different experimental 

conditions were performed through Taqman® Array Human microRNA Microfluidic Cards 

– ThermoFischer Scientific that focuses on more highly characterized miRNA. Complete 

coverage of Sanger miRBase v10 is enabled across a two-card set of TaqMan® MicroRNA 

Arrays for a total of 762 (381+381) unique assays specific to human miRNAs. Each array 

contains four control assays— three endogenous control assays and one negative control 

assay. Up- and down-regulated miRNAs that have a Fold Change increased at least to 1.5 

and less than 0.5 respectively were considered significant deregulated. 

To confirm MiRNAs expression levels has been used the endogenous control snRNA 

RNU6B. Changes in the expression of miRNAs, based on RNU6B snRNA, has been 

determined by the comparative Ct method, which calculates changes of coach, in order to 

have the changes in the fold and in percentage. 

Results obtained using cards were confirmed by miRNA targets expression levels with RT-

PCR assay. MiRNA targets were searched through database online (MiRbase and 

Targetscan) or through literature data presented on PubMed. 
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CHAPTER 3 

 

Results 
 
 
 
 
 

3.1 Short Term Starvation reduces cancer cells viability  
 
Viability assays, MTT or Trypan Blue assay, have shown that MDA-MB-231 undergone to 

short term starvation (STS) were less healthy than tumor cells in standard medium (NoSTS). 

MTT assay was set for three days, observing a noticeable reduction in cell viability after STS 

in a time dependent way (Fig.2.) 

As regards the chemotherapeutic treatment, for this assay two different treatments have been 

used: Doxorubicin 1γM for 24 hours and Doxorubicin 10γM for 3 hours (Fig.3 and Fig.4). 

The association of STS and chemotherapy reduces vitality. Because of the absence of 

significant difference on cell viability between the treatment with both concentration of 

Doxorubicin, the Doxorubicin 1γM has been excluded from the experimental protocol.  

The same reduction was observed with Trypan Blue assay (Fig.5). 

Decreased viability was also evident in cancer cells undergone to STS and treatment for 3h 

with Doxorubicin 10γM (Fig.6). 

In conclusion, it has been observed that Short Term Starvation provokes a reduction in 

MDA-MB-231 cell viability more evident after chemotherapeutic treatment. 

 

3.2 Short Term Starvation reduces cancer cells proliferation  
 
Proliferation curves during five days showed how fasting (STS) respect to the standard 

condition (NoSTS) reduces cell viability in MDA-MB-231. Reduction is directly 

proportional to the time spent in fasting (Fig.7). 

The presence of Doxorubicin induces a reduction in cell proliferation more evident in the 

cancer cells previously subjected to fasting compared to the ones in standard medium 

(NoSTS) (Fig.8). 

Thus it seems that the greatest effect occurs when Short Term Starvation is associated with 

chemotherapy (Fig.9). 
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3.3 Short Term Starvation protect mammary tissue against Doxorubicin treatment 

 
Dietary restriction has caused a reduction in healthy cells (MCF10A) viability that was lower 

than the one observed in cancer cells (Fig.10 and Fig.11). 

The interesting data was observed after the establishment of Short Term Starvation and 

chemotherapeutic treatment with Doxorubicin 10γM. (Fig.12 and Fig.13) 

Thus it has been observed that Short Term Starvation induces a reduction in MCF10A cell 

viability that is lower than the MDA-MB-231 ones and that, in presence of chemotherapy, 

STS seems to have a protective effect. 

STS effect on MCF10A has been confirmed with the realization of growth curves (Fig.14, 

Fig.15 and Fig.16). 

After 3 hours of treatment with doxorubicin 10γM, cell proliferation and viability were 

reduced but healthy cells undergone to STS were more viable than MDA-MB-231.  

 

3.4 Angiogenetic Evaluation  
 
Through real time PCR and TaqMan gene expression assay, expression levels of 

angiogenetic factors have been evaluated: Vascular endothelial growth factor A (VEGFA), 

as pro-angiogenetic factor, and thrombospondin 1 (THBS1), as anti-angiogenic factor. Their 

expression has been analyzed in cancer and healthy cells after 24h and 48h of STS.  

In MDA-MB-231, Short Term Starvation induces the upregulation of both the factor 

involved in angiogenesis during the first 24h but after 48h VEGFA return to basal levels 

(Fig.17 and Fig.18). 

It is interesting that three hours of treatment with doxorubicin 10γM in presence of STS 

induced a downregulation of VEGFA (more evident after 48h of STS) and an upregulation 

of THBS1, indicating that a fasting period concomitant with chemotherapeutic treatment 

could inhibit angiogenesis (Fig.17 and Fig.18). 

Expression levels of VEGFA and THBS1 have been observed in MCF10A after 24h and 48h 

of short term starvation: in detail, VEGFA and THBS1 were respectively upregulated and 

downregulated during 24h of STS but their expression returned to basal levels after 48h of 

STS (Fig.19 and Fig.20). 

Similarly for the cancer cells, in healthy cells VEGFA in presence of STS and Doxorubicin 

10γM at 24 and 48 hours was downregulated while THBS1 was upregulated. This indicates 

that even in MCF10A, the association of STS and chemotherapy inhibits angiogenesis 

(Fig.19 and Fig.20). 
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3.5 MDA-MB-231 MiRNAs analysis  
 
Expression profiles of miRNA were analyzed through the Taqman® Array Human 

microRNA Microfluidic Cards – ThermoFischer Scientific and some of them were 

confirmed by real time PCR of their targets. 

MiRNAs expression in tumor cells during 48h Short Term Starvation, in standard medium 

and the last two conditions but in presence of chemotherapy, has been compared. Given the 

purpose of this manuscript, the attention has been focused on MDA-MB-231 treated with 

Doxorubicin (Fig.21). 

TaqMan cards assay showed that approximately the 23,36% of miRNAs was significantly 

deregulated and, among these the 61,8% was downregulated and 38,2% was upregulated 

(Fig.22). In addition to the deregulated miRNAs, it was present around the 4,46% of 

miRNAs expressed only in MDA-MB-231 cells undergone in STS and treated with 

Doxorubicin (Fig.23). 

Targets of the miRNAs that observed the selection criteria were searched through online 

databases (such as miRBase, DianaTOOLS, miRanda and miRò) and evaluated through 

PubMed. 

The miRNAs analysis has shown that data already published in literature are conflicting and 

that it depends on the cell line in which they are located, tumor grade and experimental 

conditions probably because each microRNA is able to influence several signaling cascades. 

 

3.5.1 Upregulated miRNAs  
 
Among upregulated miRNAs, some of the most relevant are miR-26a, miR-28-5p, miR-29c, 

miR-132, miR-149, miR-181a, miR-193a-5p, miR-193b, miR-195, miR-324-3p and miR-

455-3p. 

Literature data indicate them as tumor suppressors involved in cell proliferation, migration, 

invasion and in drugs sensitivity/resistance. To confirm card results, the expression of their 

target genes or the expression level of their mature form have been evaluated. 

TaqMan gene expression microRNA assays have been used for a group of microRNAs: miR-

MiR-132 (Hs04231496_s1), miR-149 (Hs04231523_s1), miR-181a (Hs04231460_s1), miR-

193b (Hs04231604_s1) and miR-324-3p (Hs04273262_s1) (Fig.24). 

The other group of miRNA has been defined through their target expression levels:  

MiR-26a has been tested through E2F2 TaqMan gene expression assay (Hs00918090_m1), 

miR-28-5p levels has been confirmed evaluating IGF-1 expression (IGF-1 TaqMan gene 

expression assay Hs01547656_m1) (Fig.25), MiR-29c expression levels has been proved 

analyzing VEGFA through TaqMan gene expression assay (Hs00900055_m1) (Fig.17), for 

miR-193a-5p has been used its target mTOR (TaqMan gene expression assay 
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Hs00234508_m1), and miR-195 expression levels has been evaluated analyzing its target 

cyclin D1(CCD1TaqMan gene expression assay Hs00765553_m1). IL-1β expression levels 

have been assessed by real time PCR (using  IL-1β TaqMan Gene Expression Assays 

Hs01555410) for miR455-3p confirmation (Fig.25). 

 

3.5.2 Downregulated miRNAs  
  
Most downregulated miRNAs act as oncomiRs influencing cell proliferation, invasion, 

migration and antiblastic response: miR-15b, miR-17, miR-19a, miR-19b, miR-23a, miR-

29a, miR-32, miR-103, miR-106a, miR-106b, miR-128, miR-192, miR-494 and miR-503. 

MiR-15b and miR-503 block inhibit the expression of Smurf2 and in fact its expression 

(analyzed through TaqMan gene expression assay Hs00224203_m1) is increased (Fig.25).  

PTEN is a confirmed target of miR-17, miR-19b, miR-32, miR-103, miR-106a and miR-

106b and its expression (evaluated using TaqMan gene expression assay Hs02621230_s1) 

seems correlate with their downregulation. MiR-19a downregulation was confirmed with 

SOCS1 TaqMan gene expression assay (Hs00705164_s1) (Fig.25).  

TaqMan gene expression microRNA assays have been used for the other miRNAs: miR-23a 

Hs03659093_s1, miR-29a Hs03849009_s1, miR-128 Hs04231535_s1, miR-192 

Hs04231449_s1, and miR-494 Hs04231605_s1 (Fig.24). 

  

3.5.3 Specific miRNAs  
 
Specific RNAs are significant because they identify those changes that occur simply under 

experimental conditions. 

In this group there are: miR-148a, miR-154, miR-194, miR-361-5p and miR-449b. Two 

among these MiRNAs have been defined through TaqMan gene expression microRNA 

assay: miR-148a (Hs04273238_s1) and miR-154 (Hs04231525_s1) (Fig.24). 

MiR-449b and MiR-194 expression levels have been confirmed with the evaluation of 

CCND1 expression levels (TaqMan gene expression assay Hs00765553_m1) (Fig.25) and 

miR-361-5p with VEGFA TaqMan gene expression assay (Hs00900055_m1) (Fig.17). 

 

3.6 MCF-10A MiRNAs expression analysis  
 
The analysis of miRNAs in MCF10A occurred evaluating expression levels of miRNAs 

involved in cell proliferation, migration, and invasion in response to chemotherapy using 

Real time PCR. 

Tumor suppressors miR-132, miR-148a and miR-154 were upregulated in MCF10A. 

(Fig.26) MiR-361-5p and miR-449 were upregulated and this was confirmed respectively 

http://www.thermofisher.com/order/genome-database/browse/gene-expression/gene/IL1B
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through VEGFA TaqMan gene expression assay (Hs00900055_m1) (Fig.19) and CCND1 

TaqMan gene expression assay (Hs00765553_m1) (Fig.27).  

We decide to evaluate expression levels of miRNAs involved in chemotherapy response in 

MCF10A. Unlike in MDA-MB-231, miR-26a, miR-106b, miR-128 and miR-192 were no 

deregulated while the others were heterogeneously expressed. MiR-15b, miR-29a, miR-

181a, miR-195, and miR-494 were downregulated and miR-23a, miR-149, miR-193b, and 

miR-324-3p were upregulated microRNAs. TaqMan gene expression assays that quantify 

miRNA levels were used to confirm MiRNAs: miR-15b (Hs04231486_s1), miR-23a 

(Hs03659093_s1), miR-29a (Hs03849009_s1), miR-149 (Hs04231523_s1), miR-181a 

(Hs04231460_s1), miR-193b (Hs04231607_s1), miR-195 (Hs03656088_s1), and miR-324-

3p (Hs04273262_s1) (Fig.26). 

MiR-494 downregulation was verified through PTEN TaqMan expression level assay 

(Hs02621230_s1) (Fig.27). 
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CHAPTER 4 

 

Discussion 
 
 
 

Short Term Starvation (STS) represents a feasible tool in preventing and protecting against 

the onset and the progression of age-related diseases and an ally for drugs treatment.  To 

understand the protective effect derived from the establishment of STS, it is essential to 

identify genes and/or signaling pathways that are subjected to changes during nutrient 

deprivation conditions. 

The lack of nutrient represents a trigger of autophagy, a way that allows to keep active 

fundamental biological processes at the expense of the superfluous ones.[12]. Poly(ADP-

ribose) polymerase (PARP-1), a nuclear enzyme activated by DNA damage, is a mediator of 

STS-related autophagy induction. Moreover, during STS, the production of reactive oxygen 

species (ROS) could actives PARP-1.[47]. The latter factor is involved in ADP hydrolysis 

and thus a PARP-1 lack not decreases ATP levels as much as when it works. [48]. The 

permanence of the active state of AMPK and, consequently, the absence of mTOR signaling 

inhibition, cause an impaired autophagy. Some authors suggest that, in vivo, PARP-1 

regulates autophagy. In conclusion STS, ROS production and DNA damage, induce PARP-1 

activation that represent an important step for starvation-induced autophagy.[47] 

The present study shows that STS, alone or in association with Doxorubicin treatment, 

inhibits cell proliferation and viability in MDA-MB-231, a triple negative breast cancer 

(TNBC) cell line, and, even though it is less evident, in MCF10A, a healthy mammary gland 

cell line. This is consistent with literature data.[2, 49]  

It seems that 48 hours of STS, especially when associated with chemotherapy, affects 

angiogenesis reducing expression levels of the pro-angiogenetic factor, VEGFA, and 

upregulating the anti-angiogenetic ones, THBS1. This suggesting that a short term dietary 

restriction protocol could be useful reducing angiogenesis promotion inducted by nutrient 

lack and thus inhibiting new vessels sprouting and consequently metastasis formation.[46] 

This concept can be considered innovative because, currently, there are no investigations that 

correlate STS approach to miRNAs expression profile analysis in MDA-MB-231 cell line. 
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Moreover, it contemplates comparative evaluation between MDA-MB-231 and MCF10A 

miRNAs expression profile. 

MiRNAs are non-coding RNAs involved in different physiological and pathological 

processes including tumorigenesis and drugs resistance/sensitization. The understanding of 

miRNAs involvement can be useful to outline new strategies of target therapy directed to 

enhance antiblastic treatment effects modulating miRNAs activity. Actually, this assumption 

is unworkable because investigations related to dietary restriction approaches and miRNA 

functions are required. In fact, it is necessary to define STS protocols (consisting of food 

amount and fasting period length) suitable for humans, especially for cancer patients already 

prone to lose weight. 

In addiction microRNAs analysis present difficulties related to their multifunctional nature: a 

single factor can be target of numerous miRNAs. An example is the cyclin D1that is 

regulated by miR-194, miR-195 and miR-449b. 

Information in database online (including Pubmed) are often in conflict and show that 

miRNAs activity depends on cell line features. Examples are the downregulated miR-16, 

miR-100, miR-199a-3p, the upregulated miR-522 and the specific miR-23b. In detail, some 

authors [50-52] showed that miR-16 arrested cell proliferation and induced apoptosis 

targeting cyclin E1, Bcl-2 and FEAT in breast cancer (BC), Hepatocellular carcinoma (HCC) 

and lung cancer (LC), while, other researchers [53, 54] observed that miR-16 promoted cell 

proliferation and inhibited apoptosis in esophageal squamous cell carcinoma (ESCC) and 

renal cell carcinoma (RCC) targeting RECK and SOX6 mRNA. MiR-100 induced epithelial 

mesenchymal transition (EMT) and inhibited tumorigenesis, migration, invasion in BC 

targeting SMARCA5 (downregulating E-cadherin) and HOXA1 [55] but it inhibited 

apoptosis regulating MTMP3-p27 pathway in SK-BR-3 cells compared with other human 

BC cell lines (MCF7, MDA-MB-453, T47D, HCC1954 and SUM149).[56] MiR-199a-3p 

improved gastric cancer (GC) progression targeting ZHX1 [57] and inhibited apoptosis in 

CRC silencing nemo like kinase (NLK)[58] while it acted as a tumor suppressor in ovarian 

cancer (pmid:25839163) and blocked glioma cell progression regulating Akt/mTOR 

signaling pathway.[59] MiR-522 correlated with an increased tumor cell proliferation in 

HCC by targeting dickkopf-1 (DKK1) and secreted frizzled-related protein 2 (SFRP2)[60] 

but provoked cell cycle arrest in G1 step, cell detach without anoikis and the acquisition of 

properties mesenchymal in different BC phenotypes[61] DIANA tools point out that Cyclin-

dependent kinase 6 (CDK6) is a target of miRNA and this can explain cell cycle arrest.  

Finally, MiR-23b acted as tumor suppressor in RCC[62] while it improved gastric cancer 

progression.[63] 

Preliminary analysis of the results obtained in this work indicate that STS has an effect on 

miRNAs expression profiles that maybe influence cell proliferation, migration, invasion and 

https://en.wikipedia.org/wiki/Cyclin-dependent_kinase_6
https://en.wikipedia.org/wiki/Cyclin-dependent_kinase_6
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drugs response. In particular, it seems that a short fasting period induces the expression or 

the upregulation of microRNAs with tumor suppressive activity and the downregulation of 

those that stimulate tumor progression.  

Among upregulated miRNA there are miR-28-5p, miR-29c, miR-30b, miR-130a, miR-132, 

miR-193a-5p, miR-195, miR-331-3p, miR-374 and miR-455-3p. 

MiR-28-5p inhibited metastasis and tumor growth inactivating PI3K/Akt through its target 

IGF-1.[64] MiR-29c is a tumor suppressor able to inhibit cell proliferation, migration, 

invasion in lung cancer cell line 95C, silencing integrin β1 and MMP2 [65] and angiogenesis 

in glioma targeting VEGFA.[66] MiR-30b inhibited NSCLC cells through a negative 

regulation of Rab18[67] and plasminogen activator inhibitor 1 (PAI) in non-small cell lung 

cancer (NSCLC) and gastric cancer (GC).[68] MiR-130a inhibited cell proliferation, 

migration and invasion targeting RAB5A in BC.[69] MiR-132 is a tumor suppressor able to 

inhibit cell proliferation, invasion, migration and metastasis in BC by targeting 

Hematological and Neurological Expressed 1 (HN1)[70, 71] Similar results have been found 

in osteosarcoma, through the silencing of SRY-Box 4 (Sox4)[72] and HCC by the inhibition 

of Phosphoinositide-3-Kinase Regulatory Subunit 3(PIK3R3). [73] Literature data describe 

miR-193a-5p levels lower in colorectal cancer (CRC) than in healthy tissue and more 

reduced in presence of lymph node metastases. Authors have observed that it suppresses 

metastasis in osteosarcoma repressing Rab27B and SRR through inhibition of TGFβ, 

Myc/Max and ATF2/ATF3/ATF4 signaling pathways.[74] Moreover miRNA-193a-5p 

upregulation in non-small cell lung cancer (NSCLC) inhibited migration, invasion and 

epithelial mesenchymal transition (EMT). MiR-193a-5p, together with miR-193a-3p, acts as 

tumor suppressor probably inactivating Akt/mTOR signaling. Unlike the miR-193a-5p, miR-

193a-3p seems not to be influenced by STS.[75] MiR-195 is a miRNA identified as tumor 

suppressor in different studies and it inhibited cell proliferation, invasion and migration in 

NSCLC [76] and in prostatic cancer (PC) targeting breast cancer-overexpressed gene 1 

(BCOX1),[77] Ribosomal protein S6 kinase beta-1 (RPS6KB1)[78] and Checkpoint kinase 1 

(Chk1). Moreover, miR-195 was downregulated in BC and its reset suppressed cell 

proliferation and invasion and increased apoptosis through the silencing of the proto-

oncogene Raf1, cyclin 1 (CCDN1), Bcl-2 and P-glycoprotein.[79] MiR-331-3p has been 

indicated as a tumor suppressor that inhibited cell proliferation in glioblastoma targeting 

neuropilin-2 (NRP-2) and in GC, silencing E2F1.[80, 81] MiR-374b suppressed cell 

proliferation and promoted apoptosis in t-cell lymphoblastic lymphoma repressing Akt1 and 

Wnt16.[82] Direct interaction of miR-455-3p with IL-1β is predicted by DIANA-microT and 

miRBase servers. IL-1β gene located on chromosome 2 and encoding a protein of 269 

aminoacids is a chief regulator of the body’s inflammatory response and is produced as a 

consequence of an injury and antigenic challenge. A previous experience showed that IL-1β 
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secreted by macrophages, an important stromal component in many breast cancers, 

stimulated a ROS/Src/MAPK/AP-1 pathway inducing the increased COX-2 levels.[83] 

Moreover, levels of IL-1β are higher in invasive breast cancers than in ductal carcinoma in 

situ or benign lesions, and IL-1β content in BC correlated with the degree of macrophage 

infiltration.[84].  

As regards downregulated miRNAs after 48h STS and 3h Doxorubicin treatment there are 

miR-503, miR-15b, miR-17, miR-18a, miR-19a, miR-19b, miR-21, miR-103, miR-106a, 

miR-135, miR-200b and miR-744. 

Literature data showed that miR-503 improves tumor progression in CRC [85] and in 

esophageal cancer.[86] Li Y. et al indicated that SMAD specific E3 ubiquitin protein ligase 2 

(smurf2) and SMAD family member 7 (SMAD7) are miR-503 targets. Smurf2 and SMAD7 

are two regulators of TGF-β that has an oncogenic activity promoting metastasis in breast 

cancer. Another miRNA that targets Smurf2 is miR-15b that promotes EMT in pancreatic 

cancer.[87] Thus miR503 and miR-15b suppressed Smad7 and Smurf2 leading to enhanced 

TGFβ signaling and metastatic capability of breast cancer cells.[88] These results seem to 

confirm the downregulation of miR-503 and miR-15b. 

MiR-17 suppresses tumor growth and metastasis in osteosarcoma.[89] MiR-18a increased 

cell proliferation, migration and invasion in GC (targeting IRF2 leading to p53 

suppressing)[90] and it weakened miRs biogenesis in nasopharyngeal cancer regulating 

Dicer1.[91] Moreover the inhibition of miR-18a in U87 and U251 glioblastoma cell lines 

upregulated neogenin leading to a reduced cell proliferation, invasion and migration and to 

an improved apoptosis.[92] MiR-19a resulted upregulated in different types of malignant 

cancer (such as CRC,[93] RCC,[94] GC[95], NSCLC[96] and bladder cancer[97] where 

provokes tumor necrosis factor α (TNFα) induced EMT, metastasis formation through 

activating PI3K/Akt pathway and inactivating STAT3 through its target SOCS1. MiR-19b 

increased the expression of PI3K acting like an oncogene.[98, 99] MiR-21 was upregulated 

in BC (including TNBC), CRC, and other types of malignancy where acted like oncomiR 

targeting STAT3 and promoting PI3K/Akt pathway[100-103] 

MiR-32 that improves tumorigenesis (targeting Kruppel-like factor 4) and cell 

proliferation[104, 105] and of miR-103 that promotes tumor progression and metastasis in 

CRC targeting both also death-associated protein kinase (DAPK) and Kruppel-like factor 4 

(KLF4).[106, 107] MiR-106a acts inducing cell proliferation and inhibiting apoptosis by the 

regulation of  JNK/MAPK pathway in glioma[108] and improves migration and invasion in 

NSCLC though phosphatase and tensin homolog (PTEN) silencing.[109] MiR-135 improved 

cell proliferation in endometrial cancer, targeting FOXO1[110],  in BC, suppressing 

midline1 (MID1) and mitochondrial carrier 200homolog 2 (MTCH2),[111] and in CRC 

targeting TGFBR2.[112] MiR-200b is another oncomiR that in CRC promoted cell 
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proliferation reducing reversion-inducing cysteine-rich protein with kazal motifs (RECK) 

and leading to the upregulation of S-phase kinase-associated protein 2 (SKP2) and the 

degradation of p27.[113] MiR-744 increased tumorigenesis in pancreatic cancer cells  

targeting negative regulators of cancer activating Wnt/β-catenin pathway, such as secreted 

frizzled-related protein1 (SFRP1), glycogen synthase kinase 3β (GSK3β) and transducing-

like enhancer of split (TLE3)[114] and in nasopharyngeal carcinoma through the silencing of 

Rho GTPase activating protein 5 (ARHGP5).[115] 

Of note, the majority of specific miRNAs acts as tumor suppressor providing encouraging 

results like miR-148a, miR-154, miR-194, miR-296-5p, miR-361-5p, miR-362-5p, miR-429, 

miR-449b and miR-652. 

 MiR-148a suppressed metastatic process in both human and mouse triple negative 

breast cancer cells by targeting two oncogenes: (Wnt family member 1) WNT1 and 

(Neuropilin-1) NRP1.[116] MiR-148a seems able to inhibit invasion and migration also in 

ovarian cancer through sphingosine-1-phosphate receptor 1. [117]  Moreover, this miRNA 

was observed correlated with the carcinogenesis in HCC and was downregulated compared 

with healthy control.[118] Historically, MiR-154 is considered a tumor suppressor. MiR-154 

inhibited cell proliferation, migration and invasion in HCC[119], NSCLC[120], CRC[121] 

and prostatic cancer.[122] This activity is due to its target zinc finger E-box binding 

homeobox 2 (ZEB2), toll like receptor 2 (TLR2) and High Mobility Group AT-Hook 2 

(HMGA2). Another tumor suppressor is miRNA-194 and it affected PI3k/Akt/FPXP3a 

pathway reducing CCD1 and increasing p21.[123, 124]  It also inhibited cell proliferation in 

HCC and in CRC by targeting MAP4K4.[125, 126] MiR-296-5p reduced cell proliferation 

and viability in NSCLC, BC and PC. Some of its targets are polo-like kinase 1(PLK1) and 

Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1(PIN1).[127-129] MiR-361-5p is a 

tumor suppressor that arrested cell cycle in NSCLC and in PC targeting signal transducer 

and activator of transcription 6 (STAT6)[130, 131] and inhibited angiogenesis decreasing 

VEGFA. MiR-362-5p inhibited cell proliferation and migration in neuroblastoma targeting 

PI3K-C2β.[132]. MiR-429 prevented cell migration and invasion in CRC[133], in 

glioma[134], in MDA-MB-231[135] and in cervical cancer[136] silencing big mitogen-

activated protein kinase 1 (BMK1), and consequently GSK3β, ZEB1 and  CRKL, a kinase 

harboring SH2 and SH3 domain. MiR-449b that inhibited cell proliferation in CRC 

(SW1116) through the downregulation of Cyclin-D1 (CCND1) and E2F Transcription Factor 

3 (E2F3).[137, 138] Moreover, high levels of miR-449 was associated with recurrence after 

prostatectomy [139] and act as tumor suppressor also in retinoblastoma.[137] Finally, miR-

652 inhibited ZEB1 leading to a suppression acidity-induced EMT in Prostatic cancer 

cells.[140] 
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In oncology it is essential to develop a strategy that makes more effective and tolerable 

chemotherapeutic treatment. Literature data showed that MiRNAs are able to affect 

chemotherapy response and it seems that short term starvation influence their expression. In 

MDA-MB-231 cells undergone to 48hours of STS and treated with doxorubicin, the 

expression profiles of miRNAs are modulated so as to make the cancer cells more sensitive 

to antiblastic therapy. 

Among upregulated miRNAs in STS+Doxo condition there are: MiR-26a, miR-149, miR-

181a, miR-193b, miR-195 and miR-324-3p. 

MiR-26a sensitized nasopharyngeal carcinoma to irradiation blocking IL-8/STAT3 

pathway[141] and increased gastric cancer cells response to cisplatin targeting NRas and 

E2F2.[142]  

MiR-149 is a tumor suppressor able to increase chemosensitivity to Temozolomide treatment 

through a remodeling of cellular cytoskeleton RAP1B-mediated in glioblastoma[143] and 

suppressed metastasis in BC and in HCC targeting actin-regulatory protein (PPM1F)[144, 

145] 

MiR-181a sensibilized GC cells to Cisplatin treatment,[146] and enhanced Adryamicin-

inducted apoptosis targeting Bcl-2.[147] 

MiR-193b levels were lower in BC Doxorubicin-resistant. The restoring of its expression 

reduced myeloid cell leukemia-1 (MCL-1) and sensitized cancer cells to Doxorubicin.[148] 

Moreover miR-193b has been indicated downregulated in MDA-MB-231 and MCF-7[149] 

so it is evident that the combination of Doxorubicin and STS acts by increasing it. 

MiR-195 increased Adriamycin sensibility downregulating Raf.[150] 

Finally, miR-324-3p was downregulated in chemoresistant patients compared to those 

sensitive and its target is SMAD7, an antagonist of TGFβ receptor, associated with lung-, 

pancreas, skin cancer.[151] 

Among MicroRNAs downregulated involved in chemotherapy response there are: miR-15b, 

miR-23a, miR-29a, miR-106b, miR-128, miR-192 and miR-494. 

MiR-15b was upregulated in lung cancer cell line A549 Cisplatin-resistant and one of its 

target is phosphatidylethanolamine-binding protein 4 (PEBP4).[152] 

MiR-23a improved cisplatin chemoresistance and prevented cisplatin-inducted apoptosis in 

tongue squamous cell carcinoma through twist. MiR-23a and Twist individually increased 

cisplatin chemoresistance.[153] 

MiR-29a conferred Adriamycin and docetaxel resistance in BC[154] and it induced EMT 

downregulating tristetraprolin (TTP).[155] 

MiR-106b induces radioresistance in cancer cell through the silencing of PTEN and p21 

leading to an increased tumorigenesis in CRC.[156] Moreover it was associated with high 

risk of recurrence, lymph node metastasis and tumor progression in BC.[157]  
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MiR-128 induces chemoresistance in BC cells targeting BAX (pro-apoptotic).[158] 

MiR-192 conferred Cisplatin-resistance in lung cancer cells A549/DDP and inhibit apoptosis 

binding BIM 3’-UTR.[159] 

Finally, miR-494 acts as an oncomiR, promoting cell proliferation, migration and invasion, 

and increases Sorafenib-resistance in HCC targeting PTEN. As shown in Fig.39, PTEN 

expression levels support miR-494 downregulation.[160, 161] 

Whereas many chemotherapy treatments exert their activities interacting with DNA bases, 

Medina et al. that evaluated the activity of miRNA-221 and miRNA-222 showing that 

miRNAs promote cell proliferation and induce quiescence preventing the premature entry 

into S phase of this action, in the absence of nutrients, may lead to cell death.[162] 

Ending, from the experience of my project, I could verify that STS beneficial effects in terms 

of reduction of cell proliferation, migration, invasion and angiogenesis could be explained by 

the remodeling of microRNA expression profiles that promotes the expression of tumor 

suppressor and inhibits that of oncomiR. Also, the results show those miRNAs that let the 

MDA-MB-231 cells chemosensitive are upregulated. These evidences could lead to the 

development in the next future of a new class of drugs able to interfere with the oncomiR 

and/or to improve the expression of selected miRNAs with tumor suppressor activity. 

Further analysis is needed involving the expression profiles of miRNAs of MCF10A healthy 

cell lines to confirm the purposed results and to develop new strategies and tools to protect 

healthy tissue from chemotherapy cytotoxic effect.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

 

CHAPTER 5 

 

Figures 
 
 
 

 

 

Fig.1: Procedure used to create growth curves 

 

 

Fig.2: MDA-MB-231 cell viability after 24h, 48h and 72h STS through MTT assay  
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Fig.3: MDA-MB-231 cells viability after 24h, 48h and 72h STS and 24h Doxorubicin 

1γM treatment through MTT assay 

 

 

Fig.4: MDA-MB-231 after 24h, 48h and 72h STS and 3h Doxorubicin 10γM treatment 

through MTT assay 
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Fig.5: MDA-MB-231 viability after 24h, 48h and 72h STS through trypan blue assay 

 

 

Fig.6: MDA-MB-231 cell viability after 24h, 48h and 72h STS and 3h Doxorubicin 

10γM treatment through trypan blue assay 
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Fig.7: Growth curves of MDA-MB-231 after 1,2,3,4 or 5 days STS 

 

 

Fig.8: Growth curves of MDA-MB-231 after 1,2,3,4 or 5 days STS and 3h Doxorubicin 

10γM treatment 
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Fig.9: Growth curves of MDA-MB-231 after 1,2,3,4 and 5 days STS with and without 

3h Doxorubicin 10γM treatment 

 

Fig.10: MCF10A viability after 24h, 48h and 72h STS 
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Fig.11: MCF10A viability after 24h, 48h and 72h STS through MTT assay 

 

 

Fig.12: MCF10A cell viability after 24h, 48h and 72h STS and 3h Dororubicin 

treatment through MTT assay 
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Fig.13: MCF10A cell viability after 24h, 48h and 72h STS and 3h Doxorubicin 10γM 

treatment through trypan blue assay 

 

 

Fig.14: Growth curves of MCF10A after 1,2,3,4 and 5 days STS 
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Fig.15: Growth curves of MCF10A after 1,2,3,4 and 5days STS and 3h Doxorubicin 

10γM treatment 

 

 

Fig.16: Growth curves of MCF10A after 1,2,3,4 and 5 days STS with and without 3h 

Doxorubicin 10γM treatment 
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Fig.17: VEGFA expression levels in MDA-MB-231 after 24h and 48h STS and 3h 

Doxorubicin Treatment  

 

 

Fig.18: THBS1 expression levels in MDA-MB-231 after 24h and 48h STS and 3h 

Doxorubicin10γM treatment 
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Fig.19: VEFGA expression levels in MCF10A after 24h and 48h STS and 3h 

Doxorubicin treatment 

 

Fig.20: THBS1 expression levels in MCF10A after 24h and 48h STS and 3h 

Doxorubicin treatment 
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Fig.21: Heatmap of MDA-MB-231 after 48h STS and 3h Doxorubicin 10γM treatment 
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Fig.22: Deregulated miRNA after 48hSTS and 3h Doxorubicin 10γM treatment 

 

 

Fig.23: MiRNA specifically expressed in MDA-MB-231 undergone to 48h STS and 3h 

Doxorubicin treatment 

 

 

Fig.24: MiRNAs confirmed in MDA-MB-231 after 48h STS and 3h Doxorubicin 

treatment 
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Fig.25: MiRNAs target expression levels in MDA-MB-231 after 48h STS and 3h 

Doxorubicin treatment 

 

 

Fig.26: MiRNAs confirmed in MCF10A after 48h STS and 3h Doxorubicin treatment  
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Fig.27: MicroRNAs expression levels in MCF10A after 48h STS and 3h Doxorubicin 

treatment 
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