Development of a nomogram to estimate the quality of life in asthmatic children using the Childhood Asthma Control Test

Laura Montalbano1,2,*, Giovanna Cilluffo1,3,*, Manuel Gentile4, Giuliana Ferrante5, Velia Malizia1, Fabio Cibella1, Giovanni Viegi1,6, Giovanni Passalacqua7 & Stefania La Grutta1

1Institute of Biomedicine and Molecular Immunology, National Research Council of Italy, Palermo, Italy; 2Department of Psychological Educational and Training Sciences, University of Palermo, Palermo, Italy; 3Department of Economics, Statistics and Business Sciences, University of Palermo, Palermo, Italy; 4Institute for Educational Technologies, National Research Council, Palermo, Italy; 5Department of Science for Health promotion and Mother and Child care, University of Palermo, Palermo, Italy; 6Pulmonary Environmental Epidemiology Unit, Institute of Clinical Physiology, National Research Council of Italy, Pisa, Italy; 7Allergy and Respiratory Diseases, IRCCS San Martino-IST-University of Genoa, Genoa, Italy

Abstract

Background: Pediatric Asthma Quality of Life Questionnaire (PAQLQ) provides detailed information on QoL in asthmatic children, whereas Childhood Asthma Control Test (C-ACT) Questionnaire is the most validated instrument for asthma control. No study assessed the relationship between C-ACT and QoL in children by means of those instruments. The aim of this study was to determine whether a QoL estimation is possible using the C-ACT questionnaire in asthmatic children.

Methods: Medical history, spirometry, C-ACT, and PAQLQ were assessed in 144 (60% male) outpatient asthmatic children from September 2011 to November 2014. A generalized linear model (GLM) for the prediction of PAQLQ was obtained through a stepwise procedure starting from a full model with all C-ACT items, and predictive nomograms were created.

Results: Fifty-five (38%) well-controlled (WC) asthma, 37 (26%) partially controlled (PC) asthma, and 52 (36%) uncontrolled asthma (UA) patients were enrolled. Persistent asthmatics (PA) were significantly more uncontrolled \(p < 0.0001\). A significant reduction in FEV\(_1\), FEV\(_1\)/FVC, and FEF\(_{25-75}\) \(p = 0.005, p < 0.0001,\) and \(p < 0.001,\) respectively was found in WC vs. UA. Through a stepwise process, a reduced model showed a positive relationship between the PAQLQ and the four items of C-ACT. The regression equations for predicted PAQLQ were ln (PAQLQ) = 1.17 + 0.05*C-ACT2 + 0.03*C-ACT3 + 0.04*C-ACT6 + 0.03*C-ACT7. Thus, a nomogram was constructed.

Conclusion: The designed nomogram provides a highly predictive assessment of QoL in individual patients, facilitating a more comprehensive assessment of asthmatic children in usual clinical care.

Keywords

children; asthma; nomogram; Childhood Asthma Control Test; Pediatric Asthma Quality of Life Questionnaire; control

Achieving and maintaining asthma control is the goal of asthma treatment according to GINA guidelines (1), and this keeps true also in children. Quality-of-life (QoL) instruments represent an useful tool to better assess asthma control in children (2). The Childhood Asthma Control Test (C-ACT) is a worldwide validated composite test to assess asthma control in children aged between 4 and 11 years (3), and the Pediatric Asthma Quality of Life Questionnaire (PAQLQ) is a supplemental validated instrument to quantify the child’s emotional reactions to the symptoms and limitations caused by asthma, mainly related to health and functional status (4). Both tools have limitations due to the compiler age (overestimation or underestimation of symptoms). In fact,
the C-ACT accounts for this limitation, with part of the items completed by the parent (5). In addition, the PAQLQ, which must be filled only by the children, is time-consuming due to the amount of items (6).

Previous studies focused on the association of poor asthma control and impaired QoL (7, 8). Recently, other studies showed a close correlation between C-ACT and PAQLQ (9), as well as between Asthma Control Questionnaire (ACQ) and PAQLQ (10). In addition, the ability of either C-ACT total score or its individual questions for predicting clinical conditions, such as exercise-induced bronchoconstriction or nocturnal asthma, was reported (11), confirming that C-ACT is a valid complementary tool for predicting clinical outcome in asthmatic children (12).

A nomogram is a graphic tool that allows to predict outcome of interest, by means of a statistically constructed model (13). An advantage of nomogram over the conventional combined use of the C-ACT composite test, and the supplemental tool is the predictive power of the outcome of interest (PAQLQ) captured in a single numerical value. As asthma control is a multidimensional concept, it would be of interest to integrate different measures into a single tool.

The aim of this study was to construct the Pediatric Asthma Control Quality of Life (PACQoL) nomogram using C-ACT test to estimate the predicted values of QoL in asthmatic children aged between 5 and 11 years, allowing a multidimensional disease assessment in clinical practice by a single tool.

Methods

This is a pilot study, part of the ‘Childhood Asthma and Environment Study’ (CHASER, clinicaltrials.gov NCT 02433275), an ongoing cross-sectional study at the Pediatric Allergology & Pulmonology outpatient clinic of IBIM CNR, Palermo, Italy. After parents or legal guardians were interviewed by medical well-trained investigators (S.L.G., V.M., G.F.) according to the SIDRIA (Italian Studies on Respiratory Disorders in Children and the Environment) questionnaire (14), the PAQLQ was filled by participants alone while C-ACT also by parents. The study was observational, did not involve experimental drugs or interventions, and was notified to the inner Ethical Committee. All the participants and their parents gave written informed consent before entering the study. The study was approved by the AOU Policlinico Paolo Giaccone Ethics Committee, Palermo, Italy.

Study population

Over 299 children with asthma, aged between 5 and 11 years, referred from September 2011 to November 2014 for a planned visit at the Pediatric Allergology & Pulmonology outpatient clinic of IBIM CNR of Palermo, 224 (75%) correctly performed pre- and post-bronchodilator spirometric maneuver; 144 (64%) of them correctly completed both C-ACT and PAQLQ. None of the patients were on drug treatment at the time of the enrollment nor were smokers. Exclusion criteria were pulmonary diseases other than asthma and inability to perform spirometry.

Definitions and classifications

The definition of asthma severity and asthma control status (well-controlled, WC; partially controlled, PC; uncontrolled asthma, UA) was retrospectively performed according to GINA (Global Initiative for Asthma) 2008 (1).

Childhood Asthma Control Test (C-ACT)

The C-ACT includes seven items related to the previous 4 weeks, divided into two parts. One part is filled in by the interviewed children, properly supported by their caregiver when necessary, by four questions on the perception of asthma control (Q1), limitation of activities (Q2), coughing (Q3), and awakenings at night (Q4). Each question has four response options. The second part is filled in by the parent/caregiver and with three questions: daytime complaints (Q5), daytime wheezing (Q6), and awakenings at night (Q7). Each question has six response options. The sum of all scores yields the C-ACT score, ranging from 0 (poor asthma control) to 27 (optimal asthma control). A cutoff point of 19 indicates uncontrolled asthma (3).

Lung function

Pulmonary function tests were performed through a portable spirometer (Pony FX portable spirometer, Cosmed, Rome, Italy). The patients performed a deep inhalation maneuver followed by a maximal expiratory maneuver, wearing a nose clip. These forced expiratory maneuvers were performed after a brief demonstration and training by well-trained physicians (S.L.G., V.M., G.F.). The tests were considered successful when three acceptable and reproducible curves were achieved. FVC, FEV1, and FEF25–75% were measured according to ATS/ERS guidelines: The best FVC and FEV1 were retained, and FEF25–75% was selected from the maneuver with the largest sum of FEV1 and FVC. The spirometric values were normalized as a percentage of the predicted values, in accordance with the values obtained by the reference equations described by the Global Lungs Initiative (GLI) (15). A bronchodilator testing was performed; spirometry was repeated after a 15-min interval from the inhalation of 400 μg of salbutamol aerosol, using a spacer.

Quality of life

Quality of life in asthmatic children was measured through the Italian version of PAQLQ (16).

PAQLQ includes three domains:
1. Symptoms (S): questions 1, 3, 5, 7, 9, 11, 13, 15, 17, 20;
2. Activity Limitations (AL): questions 16, 19, 21, 22, 23;
3. Emotional Function (EF): questions 2, 4, 6, 8, 10, 12, 14, 18.

After receiving exhaustive explanations on questions and answering modalities, the children themselves filled out the questionnaire, properly supported by their caregiver when necessary. For each child, the overall score was calculated as the mean of the three domains. The scores ranged from 1 to 7,
being 1 the minimum and 7 the maximum. The same approach was adopted for each subgroup of questions.

Statistical analysis

Mean values were compared between GINA control groups using one-way analysis of variance (ANOVA). Differences of categorical variables between the GINA control groups were analyzed using chi-squared test. Spearman correlations were applied for the relationships between C-ACT, PAQLQ, and PAQLQ domains. Correlations were displayed in a correlation matrix plot. Through a Shapiro–Wilk test, we checked the non-normality of the response variable (PAQLQ). A generalized linear model (GLM) with a log link and a Gamma family, due to the bounded nature of the response variable, was used for PAQLQ total score. The full model was composed by all C-ACT items. Parsimonious models were obtained using a stepwise approach. The Akaike information criterion (AIC) was used as a measure to compare different models. A nomogram was derived to manually obtain predicted values from a regression model. The nomogram does not have lines representing sums, but it has a line called ‘Total points’, ranged between 0 and 400, useful to locate predicted value of the response variable. The sum of the single score related to each explanatory variable composes the value to look for on ‘Total points’ line. Once the reader obtain the ‘Total point’ value, he can find the response predicted value through a perpendicular projection, connecting ‘Total points’ line with ‘predicted value’ line (17).

Analyses were performed using R 3.1.0 statistical analysis software. A p-value < 0.05 was considered statistically significant.

Results

Population

The demographic characteristics of asthmatic subjects according to the level of asthma control are presented in Table 1. There were 55 (38%) well-controlled (WC), 36 (26%) partially controlled (PC), and 52 (36%) uncontrolled asthma (UA) patients. Inadequate control was recorded for 88 (61%) children. Persistent asthmatics (PA) were significantly more uncontrolled (p < 0.0001). Significant trends of reduction in FEV1, FEV1/FVC, and FEF25–75 (p = 0.005, p < 0.0001, and p < 0.001, respectively) were found from WC to UA. A statistically significant trend in the number of exacerbations in the last 12 months was found in WC vs. UA (p < 0.0001).

Table 1 Demographic characteristics of asthmatic by the level of control

<table>
<thead>
<tr>
<th>Demographic</th>
<th>Well Controlled WC</th>
<th>Partially Controlled PC</th>
<th>Uncontrolled Asthma UA</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>55 (38)</td>
<td>37 (26)</td>
<td>52 (36)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Asthma severity, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermittent</td>
<td>42 (76)</td>
<td>14 (38)</td>
<td>11 (22)</td>
<td></td>
</tr>
<tr>
<td>Persistent mild</td>
<td>11 (20)</td>
<td>13 (35)</td>
<td>20 (38)</td>
<td></td>
</tr>
<tr>
<td>Persistent moderate/Severe</td>
<td>2 (4)</td>
<td>10 (27)</td>
<td>21 (40)</td>
<td></td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>21 (38)</td>
<td>18 (49)</td>
<td>18 (35)</td>
<td>0.33</td>
</tr>
<tr>
<td>BMI, mean (s.d.), kg/m²</td>
<td>19.34 (4.27)</td>
<td>19.16 (4.34)</td>
<td>18.42 (4.22)</td>
<td>0.51</td>
</tr>
<tr>
<td>Age, mean (s.d.)</td>
<td>7.98 (1.65)</td>
<td>8.28 (1.65)</td>
<td>8.09 (2.09)</td>
<td>0.75</td>
</tr>
<tr>
<td>Host factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prematurity (<37 weeks of gestation)</td>
<td>6 (11)</td>
<td>5 (14)</td>
<td>5 (10)</td>
<td>0.84</td>
</tr>
<tr>
<td>Breastfeeding ≥3 months**</td>
<td>29 (54)</td>
<td>25 (68)</td>
<td>39 (76)</td>
<td>0.05</td>
</tr>
<tr>
<td>Parental education >8 years**</td>
<td>50 (94)</td>
<td>30 (81)</td>
<td>44 (85)</td>
<td>0.12</td>
</tr>
<tr>
<td>Environmental factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure of ETS (yes)**</td>
<td>23 (43)</td>
<td>14 (38)</td>
<td>17 (33)</td>
<td>0.57</td>
</tr>
<tr>
<td>Exposure to traffic (yes)**</td>
<td>21 (40)</td>
<td>9 (24)</td>
<td>19 (37)</td>
<td>0.34</td>
</tr>
<tr>
<td>Current mold exposure (yes)**</td>
<td>7 (13)</td>
<td>6 (16)</td>
<td>11 (22)</td>
<td>0.53</td>
</tr>
<tr>
<td>Spirometric indices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVC % predicted, mean (s.d.)</td>
<td>99.54 (10.39)</td>
<td>104.36 (24.05)</td>
<td>96.59 (16.67)</td>
<td>0.12</td>
</tr>
<tr>
<td>FEV1% predicted, mean (s.d.)</td>
<td>99.46 (10.41)</td>
<td>99.15 (22.36)</td>
<td>89.63 (17.89)</td>
<td>0.005</td>
</tr>
<tr>
<td>FEV1/FVC % predicted, mean (s.d.)</td>
<td>99.43 (6.59)</td>
<td>94.84 (8.13)</td>
<td>92.13 (10.53)</td>
<td><0.0001</td>
</tr>
<tr>
<td>FEF25–75% predicted, mean (s.d.)</td>
<td>93.93 (20.17)</td>
<td>91.93 (45.69)</td>
<td>72.04 (20.94)</td>
<td><0.001</td>
</tr>
<tr>
<td>Clinical history</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exacerbations last 12 months, mean (s.d.)</td>
<td>0.38 (0.82)</td>
<td>2.06 (2.23)</td>
<td>4.45 (4.02)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Data are presented as n (%) or mean (s.d.); ETS: Environmental Tobacco Exposure; FEV1: forced expiratory volume in 1 s; FVC: Forced vital capacity; FEF25–75: Forced expiratory flow 25–75%.

*Spirometric indices are expressed as percent predict according to GLI2012 equations.

**The p-values are from chi-square test or ANOVA test. p-values in bold are significant."
Association between C-ACT and GINA asthma control

A significantly different frequency distribution of C-ACT total score by the level of GINA asthma control was found, that is, a lower score according to the reduced control ($p < 0.001$) (Fig. 1).

Correlations

Significant correlations between PAQLQ total score and PAQLQ AL ($\rho = 0.74$, $p < 0.001$), between PAQLQ total score and PAQLQ S ($\rho = 0.82$, $p < 0.001$), and between PAQLQ total score and PAQLQ EF ($\rho = 0.83$, $p < 0.001$) were identified (Fig. 2).

Generalized linear model

A generalized linear model with Gamma family and logarithmic link was applied to estimate the relationship between PAQLQ and C-ACT. The starting point was a full model considering all C-ACT items:

$$\log(\text{PAQLQ}) = \beta_0 + \beta_1 \text{C-ACT}_1 + \beta_2 \text{C-ACT}_2 + \beta_3 \text{C-ACT}_3 + \beta_4 \text{C-ACT}_4 + \beta_5 \text{C-ACT}_5 + \beta_6 \text{C-ACT}_6 + \beta_7 \text{C-ACT}_7.$$

Through a stepwise process based on Akaike information criterion (AIC), a parsimonious model was found:

$$\log(\text{PAQLQ}) = \beta_0 + \beta_1 \text{C-ACT}_2 + \beta_2 \text{C-ACT}_3 + \beta_3 \text{C-ACT}_6 + \beta_4 \text{C-ACT}_7.$$

Table 2 shows the estimates of the parsimonious model; there is a positive relationship between the outcome and the four items. If C-ACT$_2$ increases by one unit, PAQLQ increases in mean of 1.05 [exp (0.05)]; when C-ACT$_3$ or C-ACT$_7$ increases by one unit, PAQLQ increases in mean of 1.03 [exp (0.03)]; finally increasing by one unit of C-ACT$_6$ implies an average increasing by 1.04 [exp (0.04)] of PAQLQ. No differences were found in models that stratified by gender and asthma severity.

Nomogram

The relationship observed in the parsimonious model has allowed to develop a nomogram for predicting PAQLQ values. Fig. 3 shows the nomogram with all possible combinations of each C-ACT item. To obtain the predicted value of QoL, the following steps are required: (i) each value of selected C-ACT items has to be reported on the Points line (0–100, each bar corresponds to 2.5 units) on the top of the figure; (ii) the four obtained scores have to be summed each other; (iii) the obtained sum has to be reported on the Total Points line (0–400, each bar corresponds to 10 units); (iv) the PAQLQ Predicted Value will be obtained by tracing a perpendicular segment from the Total Points line to the PAQLQ Predicted Value line. An example and a table with all possible combinations are shown in Table S1.

Clinical test of the nomogram

Figure S1 plots the predicted values vs. the observed values; dark points are the units misclassified, while gray points are correctly classified. About 70% of the units with our rule are correctly classified. No differences were found between the misclassified and the correctly classified groups of children in terms of age, gender, BMI, atopy, spirometry, and other.

Discussion

The assessment of asthma control and QoL is important aspects in children’s asthma management. As C-ACT and PAQLQ give valuable information about the disease’s perception by children and parents, we developed an algorithm for asthma control and QoL through four selected C-ACT questions. Therefore, in our PACQoL nomogram, C-ACT-selected questions are able to predict QoL.

C-ACT has been validated in children and extensively used in clinical trials (3, 18, 19) as reliable assessment tool for disease burden perception by patients. We also found significant association between the frequency distribution of C-ACT total score and the level of GINA asthma control. Asthma was uncontrolled in 61% of our children as found by others (20, 21).

The questionnaires on QoL in asthmatic children have some special features to be mentioned. Firstly, age is to be taken into account, because it has been shown that children older than 10 years are able to develop the concept of chronic disease and the impact that this will generate in their lives. However, in children under age 6, a difficulty for understanding abstract concepts related to emotional or social limitations is reported (22). Secondly, the drawback of time-consuming, given by the
large number of items, might limit their usefulness in daily clinical practice by physicians (5).

In our model, we have observed that starting from a full GLM, in which all C-ACT items were considered, through a stepwise procedure, the PAQLQ significantly depended on only four C-ACT items.

Differently from Chinellato et al. (11), who did not find a statistically significant relationship between the score related to the C-ACT 2 query on symptoms when running, exercising, or playing sports and the \(\Delta FEV_1\) response to the exercise test, in our study, C-ACT 2 shows the highest weight for predicting PAQLQ. This result provides additional information on how much an individual’s illness interferes with daily life and how well the patient is adapting to his or her illness across several areas of functioning such as social, emotional, and physical.

The relationship between asthma severity and child QoL is not well established. Some authors reported that poorly controlled asthma is not consistently associated with measurements of child QoL (23, 24), whereas others found a strong correlation with symptoms of poorer control (25) or with morbidity in adolescents and in children younger than 11 years, respectively (26). Our findings are consistent with Okelo et al., who have observed that the PAQLQ is responsive to changes in asthma status within and between individual asthmatic children with varying severity of asthma (27).

In our analysis, the parsimonious GLM model shows a positive relationship between the PAQLQ and the C-ACT four items, independently from gender and asthma severity. These findings are supported by previous (28) and more recent data (8, 29), which suggest that a child whose asthma symptoms are not well controlled might experience larger impairment in QOL. Thus, asking young children and their parents specific questions about their symptoms elicits valid and important information about their experience, which can help assessing their asthma control.

This is the first published nomogram for PAQLQ concerning asthmatic children. The PACQoL nomogram is a tool that provides a forecast of PAQLQ burden for an individual asthmatic child. It could be more easily applied than a more time-consuming PAQLQ in a field investigation and also in clinical practice. Although several algorithms for asthma diagnosis (30) and for predicted PEFR (13) have been
previous developed, our PACQoL nomogram could improve the overall clinical assessment of asthma control by physicians, responding to the need of guidelines recommendation.

Beside the advantage of the nomogram derivation, several potential limitations need to be considered in this study. First, variables were obtained from children aged between 5 and 11 years; therefore, the nomogram may not be generalizable to older individuals and requires validation in other groups of asthmatic children. The sample size is relatively small, although there is detailed information on all study participants, including confirmation of the diagnosis of asthma based on clinical symptoms and test of reversibility. Finally, the PACQoL nomogram returns an overall idea about QoL without information about the single domain explored by PAQLQ. However, having found a strong relationship between C-ACT and PAQLQ, it is possible to state that our nomogram is able to provide very reliable information about QoL.

Conclusion

We developed a model to predict the QoL starting from questions of C-ACT. Although this model requires validation in other clinical study, it is potentially useful in clinical practice in case in which the time is bounded or in case in which the available information concerns only the asthma control. Therefore, this PACQoL nomogram may help physicians to better address the multidimensional construct of asthma in children.

Future research should focus on validation of the model in the same population during the planned second follow-up of this cohort.

Acknowledgments

We thank all the parents and children who made this study possible.

References

Figure 3 Nomogram for predicting PAQLQ using four C-ACT items. The predicted values are the result of a GLM model. To obtain the predicted value of QoL, the following steps are required: (i) each value of selected C-ACT items has to be reported on the Points line (0–100, each bar corresponds to 2.5 units) on the top of the figure; (ii) the four obtained scores have to be summed each other; (iii) the obtained sum has to be reported on the Total Points line (0–400, each bar corresponds to 10 units); (iv) the PAQLQ Predicted Value will be obtained by tracing a perpendicular segment from the Total Points line to the PAQLQ Predicted Value line.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figures S1. Comparing between predicted PAQLQ score and observed PAQLQ score. Colors identify the units classification, so in gray there are the correctly classified while in dark the units misclassified. The dotted lines sign the cutoff (≥5.3) for observed and predicted PAQLQ score. The classification rate is 70%.

Table S1. All possible combination of four C-ACT items for predicting PAQLQ.